4D-Flow MRI Characterization of Pulmonary Flow in Repaired Tetralogy of Fallot
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Cardiac MRI
2.3. Standard Cardiac Imaging Evaluation
2.4. 4D-Flow Data Analysis
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, L.; Ouyang, R.; Sun, A.; Wang, Q.; Guo, C.; Peng, Y.; Qin, Y.; Zhang, Y.; Xiang, Y.; Zhong, Y. Pulmonary artery hemodynamic assessment of blood flow characteristics in repaired tetralogy of Fallot patients versus healthy child volunteers. Quant. Imaging Med. Surg. 2020, 10, 921–933. [Google Scholar] [CrossRef]
- Villafañe, J.; Feinstein, J.A.; Jenkins, K.J.; Vincent, R.N.; Walsh, E.P.; Dubin, A.M.; Geva, T.; Towbin, J.A.; Cohen, M.S.; Fraser, C.; et al. Hot Topics in Tetralogy of Fallot. J. Am. Coll. Cardiol. 2013, 62, 2155–2166. [Google Scholar] [CrossRef]
- Cuypers, J.A.; Menting, M.E.; Konings, E.E.; Opić, P.; Utens, E.M.; Helbing, W.A.; Witsenburg, M.; Bosch, A.E.V.D.; Ouhlous, M.; van Domburg, R.T.; et al. Unnatural History of Tetralogy of Fallot. Circulation 2014, 130, 1944–1953. [Google Scholar] [CrossRef]
- François, C.J.; Srinivasan, S.; Schiebler, M.L.; Reeder, S.B.; Niespodzany, E.; Landgraf, B.R.; Wieben, O.; Frydrychowicz, A. 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot. J. Cardiovasc. Magn. Reson. 2012, 14, 16. [Google Scholar] [CrossRef]
- Gatzoulis, M.A.; Balaji, S.; A Webber, S.; Siu, S.C.; Hokanson, J.S.; Poile, C.; Rosenthal, M.; Nakazawa, M.; Moller, J.H.; Gillette, P.C.; et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: A multicentre study. Lancet 2000, 356, 975–981. [Google Scholar] [CrossRef]
- Dyverfeldt, P.; Bissell, M.; Barker, A.J.; Bolger, A.F.; Carlhäll, C.-J.; Ebbers, T.; Francios, C.J.; Frydrychowicz, A.; Geiger, J.; Giese, D.; et al. 4D flow cardiovascular magnetic resonance consensus statement. J. Cardiovasc. Magn. Reson. 2015, 17, 1–19. [Google Scholar] [CrossRef]
- Lai, W.W.; Gauvreau, K.; Rivera, E.S.; Saleeb, S.; Powell, A.J.; Geva, T. Accuracy of guideline recommendations for two-dimensional quantification of the right ventricle by echocardiography. Int. J. Cardiovasc. Imaging 2008, 24, 691–698. [Google Scholar] [CrossRef]
- Jeong, D.; Anagnostopoulos, P.V.; Roldan-Alzate, A.; Srinivasan, S.; Schiebler, M.; Wieben, O.; François, C.J. Ventricular kinetic energy may provide a novel noninvasive way to assess ventricular performance in patients with repaired tetralogy of Fallot. J. Thorac. Cardiovasc. Surg. 2014, 149, 1339–1347. [Google Scholar] [CrossRef]
- Stankovic, Z.; Allen, B.D.; Garcia, J.; Jarvis, K.B.; Markl, M. 4D flow imaging with MRI. Cardiovasc. Diagn. Ther. 2014, 4, 173–192. [Google Scholar] [CrossRef]
- Zhong, L.; Schrauben, E.M.; Garcia, J.; Uribe, S.; Grieve, S.M.; Elbaz, M.S.; Barker, A.J.; Geiger, J.; Nordmeyer, S.; Marsden, A.; et al. Intracardiac 4D Flow MRI in Congenital Heart Disease: Recommendations on Behalf of the ISMRM Flow & Motion Study Group. J. Magn. Reson. Imaging 2019, 50, 677–681. [Google Scholar] [CrossRef]
- Warmerdam, E.G.; Neijzen, R.L.; Voskuil, M.; Leiner, T.; Grotenhuis, H.B. Four-dimensional flow CMR in tetralogy of fallot: Current perspectives. Br. J. Radiol. 2022, 95, 20210298. [Google Scholar] [CrossRef]
- Zhao, X.; Hu, L.; Leng, S.; Tan, R.-S.; Chai, P.; Bryant, J.A.; Teo, L.L.S.; Fortier, M.V.; Yeo, T.J.; Ouyang, R.Z.; et al. Ventricular flow analysis and its association with exertional capacity in repaired tetralogy of Fallot: 4D flow cardiovascular magnetic resonance study. J. Cardiovasc. Magn. Reson. 2022, 24, 1–17. [Google Scholar] [CrossRef]
- Tsuchiya, N.; Nagao, M.; Shiina, Y.; Miyazaki, S.; Inai, K.; Murayama, S.; Sakai, S. Circulation derived from 4D flow MRI correlates with right ventricular dysfunction in patients with tetralogy of Fallot. Sci. Rep. 2021, 11, 11623. [Google Scholar] [CrossRef]
- Hirtler, D.; Garcia, J.; Barker, A.; Geiger, J. Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI. Eur. Radiol. 2016, 26, 3598–3607. [Google Scholar] [CrossRef]
- Schäfer, M.; Barker, A.J.; Morgan, G.J.; Jaggers, J.; Stone, M.L.; Browne, L.P.; Ivy, D.D.; Mitchell, M.B. Increased systolic vorticity in the left ventricular outflow tract is associated with abnormal aortic flow formations in Tetralogy of Fallot. Int. J. Cardiovasc. Imaging 2020, 36, 691–700. [Google Scholar] [CrossRef]
- Kramer, C.M.; Barkhausen, J.; Bucciarelli-Ducci, C.; Flamm, S.D.; Kim, R.J.; Nagel, E. Standardized cardiovascular magnetic resonance imaging (CMR) protocols: 2020 update. J. Cardiovasc. Magn. Reason. 2020, 22, 17. [Google Scholar] [CrossRef]
- Hudani, A.; White, J.A.; Greenway, S.C.; Garcia, J. Whole-Heart Assessment of Turbulent Kinetic Energy in the Repaired Tetralogy of Fallot. Appl. Sci. 2022, 12, 10946. [Google Scholar] [CrossRef]
- Van der Hulst, A.E.; Westenberg, J.J.M.; Kroft, L.J.M.; Bax, J.J.; Blom, N.A.; de Roos, A.; Roest, A.A.W. Tetralogy of Fallot: 3D Velocity-encoded MR Imaging for Evaluation of Right Ventricular Valve Flow and Diastolic Function in Patients after Correction. Radiology 2010, 256, 724–734. [Google Scholar] [CrossRef]
- Garcia, J.; Beckie, K.; Hassanabad, A.F.; Sojoudi, A.; White, J.A. Aortic and mitral flow quantification using dynamic valve tracking and machine learning: Prospective study assessing static and dynamic plane repeatability, variability and agreement. JRSM Cardiovasc. Dis. 2021, 10, 204800402199990. [Google Scholar] [CrossRef]
- Warmerdam, E.; Krings, G.J.; Leiner, T.; Grotenhuis, H.B. Three-dimensional and four-dimensional flow assessment in congenital heart disease. Heart 2020, 106, 421–426. [Google Scholar] [CrossRef]
- Geiger, J.; Callaghan, F.M.; Burkhardt, B.E.U.; Buechel, E.R.V.; Kellenberger, C.J. Additional value and new insights by four-dimensional flow magnetic resonance imaging in congenital heart disease: Application in neonates and young children. Pediatr. Radiol. 2021, 51, 1503–1517. [Google Scholar] [CrossRef]
- Gbinigie, H.; Coats, L.; Parikh, J.D.; Hollingsworth, K.G.; Gan, L. A 4D flow cardiovascular magnetic resonance study of flow asymmetry and haemodynamic quantity correlations in the pulmonary artery. Physiol. Meas. 2021, 42, 025005. [Google Scholar] [CrossRef]
- Liu, X.; Sun, A.; Fan, Y.; Deng, X. Physiological Significance of Helical Flow in the Arterial System and its Potential Clinical Applications. Ann. Biomed Eng. 2015, 43, 3–15. [Google Scholar] [CrossRef]
- Falahatpisheh, A.; Rickers, C.; Gabbert, D.; Heng, E.L.; Stalder, A.; Kramer, H.-H.; Kilner, P.J.; Kheradvar, A. Simplified Bernoulli′s method significantly underestimates pulmonary transvalvular pressure drop. J. Magn. Reson. Imaging 2015, 43, 1313–1319. [Google Scholar] [CrossRef]
- Garcia, J.; Barker, A.J.; Markl, M. The Role of Imaging of Flow Patterns by 4D Flow MRI in Aortic Stenosis. JACC Cardiovasc. Imaging 2019, 12, 252–266. [Google Scholar] [CrossRef]
- Hassanabad, A.F.; Burns, F.; Bristow, M.S.; Lydell, C.; Howarth, A.G.; Heydari, B.; Gao, X.; Fedak, P.W.; White, J.A.; Garcia, J. Pressure drop mapping using 4D flow MRI in patients with bicuspid aortic valve disease: A novel marker of valvular obstruction. Magn. Reson. Imaging 2019, 65, 175–182. [Google Scholar] [CrossRef]
- Geeraert, P.; Jamalidinan, F.; Hassanabad, A.F.; Sojoudi, A.; Bristow, M.; Lydell, C.; Fedak, P.W.; White, J.A.; Garcia, J. Bicuspid aortic valve disease is associated with abnormal wall shear stress, viscous energy loss, and pressure drop within the ascending thoracic aorta. Medicine 2021, 100, e26518. [Google Scholar] [CrossRef]
- Robinson, J.D.; Rose, M.J.; Joh, M.; Jarvis, K.; Schnell, S.; Barker, A.J.; Rigsby, C.K.; Markl, M. 4-D flow magnetic-resonance-imaging-derived energetic biomarkers are abnormal in children with repaired tetralogy of Fallot and associated with disease severity. Pediatr. Radiol. 2018, 49, 308–317. [Google Scholar] [CrossRef]
- Barker, A.J.; van Ooij, P.; Bandi, K.; Garcia, J.; Albaghdadi, M.; McCarthy, P.; Bonow, R.O.; Carr, J.; Collins, J.; Malaisrie, S.C.; et al. Viscous energy loss in the presence of abnormal aortic flow. Magn. Reson. Med. 2013, 72, 620–628. [Google Scholar] [CrossRef]
Inclusion | Exclusion | ||||||
---|---|---|---|---|---|---|---|
Age > 18 | No History of CVD | No Hypertension | Record of Tetralogy of Fallot | Unable to Complete MRI | Poor Image Quality | Contra-Indication for MRI | |
Controls | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | |
Patients | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ |
Bandwidth (Hz/Pixel) | Repetition Time (ms) | Echo Time (ms) | Spatial Resolution (mm3) | Phases | Temporal Resolution (ms) |
---|---|---|---|---|---|
455–495 | 4.53–5.07 | 2.01–2.35 | 2.0–3.6 × 2.0–3.0 × 2.5–3.5 | 30 | 25–35 |
Patients (n = 17) | Controls (n = 20) | p-Value | |
---|---|---|---|
Age at scan (year) | 29 ± 13 | 38 ± 13 | 0.022 |
Sex (f/m) | 6/11 | 6/14 | 0.740 |
BSA (m2) | 1.78 ± 0.26 | 1.92 ± 0.26 | 0.093 |
HR (bpm) | 71 ± 12 | 64 ± 12 | 0.125 |
BP systolic (mmHg) | 105 ± 15 | 110 ± 15 | 0.254 |
BP diastolic (mmHg) | 59 ± 16 | 61 ± 16 | 0.571 |
Pulmonary diameter (mm) | 34 ± 4 | 24 ± 4 | <0.001 |
LVEF (%) | 60 ± 4 | 62 ± 4 | 0.353 |
LVEDV (mL) | 138 ± 47 | 140 ± 47 | 0.868 |
LVEDVi (mL/m2) | 77 ± 46 | 111 ± 46 | 0.006 |
LVESV (mL) | 56 ± 19 | 54 ± 19 | 0.719 |
LVESVi (mL/m2) | 31 ± 19 | 42 ± 19 | 0.044 |
RVEF (%) | 46 ± 3 | 54 ± 3 | <0.001 |
RVEDV (mL) | 231 ± 46 | 181 ± 46 | 0.054 |
RVEDVi (mL/m2) | 128 ± 20 | 92 ± 20 | 0.006 |
RVESV (mL) | 128 ± 24 | 83 ± 24 | 0.012 |
RVESVi (mL/m2) | 71 ± 11 | 42 ± 11 | 0.003 |
Parameter | MPA Diameter (r, p-Value) | Pulmonary Valve Peak Velocity (r, p-Value) | Pulmonary Valve Regurgitant Fraction (r, p-Value) |
---|---|---|---|
RVOT Peak Velocity | 0.520, 0.002 | 0.474, 0.003 | 0.478, 0.003 |
RVOT Regurgitant Fraction | 0.480, 0.005 | 0.487, 0.002 | 0.787, 0.001 |
Pulmonary Valve Peak Velocity | 0.544, 0.001 | - | 0.316, 0.056 |
Pulmonary Valve Regurgitant Fraction | 0.497, 0.004 | 0.316, 0.056 | - |
MPA Peak Velocity | 0.564, 0.001 | 0.886, 0.001 | 0.310, 0.062 |
MPA Regurgitant Fraction | 0.661, 0.001 | 0.520, 0.001 | 0.724, 0.001 |
Pre-bifurcation Peak Velocity | 0.495, 0.004 | 0.898, 0.001 | 0.263, 0.116 |
Pre-bifurcation Regurgitant Fraction | 0.624, 0.001 | 0.522, 0.001 | 0.862, 0.001 |
RPA Peak Velocity | 0.181, 0.322 | 0.520, 0.001 | 0.288, 0.084 |
RPA Regurgitant Fraction | 0.423, 0.016 | 0.448, 0.005 | 0.844, 0.001 |
LPA Peak Velocity | 0.287, 0.111 | 0.673, 0.001 | 0.407, 0.012 |
LPA Regurgitant Fraction | 0.679, 0.001 | 0.454, 0.005 | 0.873, 0.001 |
RVOT Average WSS | 0.262, 0.147 | 0.230, 0.170 | 0.330, 0.046 |
Pulmonary Valve Average WSS | 0.395, 0.025 | 0.361, 0.028 | 0.478, 0.003 |
MPA Average WSS | 0.224, 0.218 | 0.475, 0.003 | 0.316, 0.057 |
Pre-bifurcation Average WSS | 0.377, 0.033 | 0.617, 0.001 | 0.426, 0.009 |
RPA Average WSS | 0.260, 0.150 | 0.550, 0.001 | 0.288, 0.084 |
LPA Average WSS | 0.310, 0.084 | 0.726, 0.001 | 0.558, 0.001 |
Pre-bifurcation Maximum WSS | 0.180, 0.325 | 0.405, 0.013 | 0.190, 0.260 |
RPA Maximum WSS | 0.074, 0.689 | 0.522, 0.001 | 0.357, 0.030 |
LPA Maximum WSS | 0.117, 0.522 | 0.384, 0.019 | 0.051, 0.763 |
RVOT Average axial WSS | 0.340, 0.057 | 0.340, 0.039 | 0.570, 0.001 |
Pulmonary Valve Average axial WSS | 0.364, 0.040 | 0.511, 0.001 | 0.506, 0.001 |
MPA Average axial WSS | 0.421, 0.016 | 0.724, 0.001 | 0.492, 0.003 |
Pre-bifurcation Average axial WSS | 0.401, 0.023 | 0.672, 0.001 | 0.593, 0.001 |
RPA Average axial WSS | 0.409, 0.020 | 0.769, 0.001 | 0.485, 0.002 |
LPA Average axial WSS | 0.395, 0.025 | 0.755, 0.001 | 0.228, 0.174 |
RVOT Average circumferential WSS | 0.362, 0.042 | 0.732, 0.001 | 0.377, 0.021 |
Pulmonary Valve Average circumferential WSS | 0.634, 0.001 | 0.870, 0.001 | 0.492, 0.002 |
MPA Average circumferential WSS | 0.524, 0.002 | 0.725, 0.001 | 0.264, 0.114 |
Pre-bifurcation Average circumferential WSS | 0.662, 0.001 | 0.639, 0.001 | 0.392, 0.016 |
RPA Average circumferential WSS | 0.367, 0.039 | 0.744, 0.001 | 0.403, 0.013 |
LPA Average circumferential WSS | 0.584, 0.001 | 0.725, 0.001 | 0.521, 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudani, A.; Ihsan Ali, S.; Patton, D.; Myers, K.A.; Fine, N.M.; White, J.A.; Greenway, S.; Garcia, J. 4D-Flow MRI Characterization of Pulmonary Flow in Repaired Tetralogy of Fallot. Appl. Sci. 2023, 13, 2810. https://doi.org/10.3390/app13052810
Hudani A, Ihsan Ali S, Patton D, Myers KA, Fine NM, White JA, Greenway S, Garcia J. 4D-Flow MRI Characterization of Pulmonary Flow in Repaired Tetralogy of Fallot. Applied Sciences. 2023; 13(5):2810. https://doi.org/10.3390/app13052810
Chicago/Turabian StyleHudani, Ashifa, Safia Ihsan Ali, David Patton, Kimberley A. Myers, Nowell M. Fine, James A. White, Steven Greenway, and Julio Garcia. 2023. "4D-Flow MRI Characterization of Pulmonary Flow in Repaired Tetralogy of Fallot" Applied Sciences 13, no. 5: 2810. https://doi.org/10.3390/app13052810
APA StyleHudani, A., Ihsan Ali, S., Patton, D., Myers, K. A., Fine, N. M., White, J. A., Greenway, S., & Garcia, J. (2023). 4D-Flow MRI Characterization of Pulmonary Flow in Repaired Tetralogy of Fallot. Applied Sciences, 13(5), 2810. https://doi.org/10.3390/app13052810