Reconstructing Polarization Multiplexing Terahertz Holographic Images with Transmissive Metasurface
Abstract
1. Introduction
2. Theoretical Analysis
3. Structure Design
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jiang, Q.; Jin, G.; Cao, L. When metasurface meets hologram:principle and advances. Adv. Opt. Photon. 2019, 11, 518–576. [Google Scholar] [CrossRef]
- Huang, L.; Zhang, S.; Zentgraf, T. Metasurface holography: From fundamentals to applications. Nanophotonics 2018, 7, 1169–1190. [Google Scholar] [CrossRef]
- Zhao, R.; Huang, L.; Wang, Y. Recent advances in multi-dimensional metasurfaces holographic technologies. Photonix 2020, 1, 20. [Google Scholar] [CrossRef]
- Yu, N.; Genevet, P.; Kats, M.A.; Aieta, F.; Tetienne, J.P.; Capasso, F.; Gaburro, Z. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 2011, 334, 333–337. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Zhu, W.; Crozier, K.B. Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica 2015, 2, 376–382. [Google Scholar] [CrossRef]
- Ozer, A.; Yilmaz, N.; Kocer, H.; Kurt, H. Polarization-insensitive beam splitters using all-dielectric phase gradient metasurfaces at visible wavelengths. Opt. Lett. 2018, 43, 4350–4353. [Google Scholar] [CrossRef] [PubMed]
- Khorasaninejad, M.; Chen, W.T.; Devlin, R.C.; Oh, J.; Zhu, A.Y.; Capasso, F. Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging. Science 2016, 352, 1190–1194. [Google Scholar] [CrossRef]
- Kang, M.; Ra’Di, Y.; Farfan, D.; Alù, A. Efficient focusing with large numerical aperture using a hybrid metalens. Phys. Rev. Appl. 2020, 13, 044016. [Google Scholar] [CrossRef]
- Khorasaninejad, M.; Zhu, A.Y.; Roques-Carmes, C.; Chen, W.T.; Oh, J.; Mishra, I.; Devlin, R.C.; Capasso, F. Polarization-insensitive metalenses at visible wavelengths. Nano Lett. 2016, 16, 7229–7234. [Google Scholar] [CrossRef]
- Huang, L.; Xu, S.; Reineke, B.; Li, T.; Zentgraf, T. Volumetric generation of optical vortices with metasurfaces. ACS Photonics 2017, 4, 338–346. [Google Scholar] [CrossRef]
- Bai, Y.; Lv, H.; Fu, X.; Yang, Y. Vortex beam: Generation and detection of orbital angular momentum [Invited]. Chin. Opt. Lett. 2022, 20, 012601. [Google Scholar] [CrossRef]
- Wang, X.; Liu, B.; Yao, J.; Song, J.; Jiang, Y. High-efficiency optical vortex generation with hybrid all-dielectric geometric-metasurface in visible frequency. Appl. Phys. Express 2021, 14, 012008. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, W.; Huo, P.; Feng, L.; Song, M.; Zhang, C.; Chen, L.; Lezec, H.J.; Lu, Y.; Agrawal, A.; et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci. Appl. 2021, 10, 107. [Google Scholar] [CrossRef] [PubMed]
- Georgi, P.; Wei, Q.; Sain, B.; Schlickriede, C.; Wang, Y.; Huang, L.; Zentgraf, T. Optical secret sharing with cascaded metasurface holography. Sci. Adv. 2021, 7, eabf9718. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Zhong, J.; Li, B.; Qi, S.; Li, Y.; Li, P.; Wen, D.; Liu, S.; Wei, B.; Zhao, J. Full-color holographic display and encryption with full-polarization degree of freedom. Adv. Mater. 2022, 34, 2103192. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Zhang, X.; Plum, E.; Xu, Q.; Wei, M.; Xu, Y.; Zhang, H.; Liao, Y.; Gu, J.; Han, J.; et al. Polarization and frequency multiplexed terahertz meta-holography. Adv. Opt. Mater. 2017, 5, 1700277. [Google Scholar] [CrossRef]
- Wang, Q.; Plum, E.; Yang, Q.; Zhang, X.; Xu, Q.; Xu, Y.; Han, J.; Zhang, W. Reflective chiral meta-holography: Multiplexing holograms for circularly polarized waves. Light Sci. Appl. 2018, 7, 25. [Google Scholar] [CrossRef] [PubMed]
- Su, D.; Wang, X.; Shang, G.; Ding, X.; Burokur, S.N.; Liu, J.; Li, H. Amplitude-phase modulation metasurface hologram with inverse angular spectrum diffraction theory. J. Phys. D Appl. Phys. 2022, 55, 235102. [Google Scholar] [CrossRef]
- Zang, X.; Ding, H.; Intaravanne, Y.; Chen, L.; Peng, Y.; Xie, J.; Ke, Q.; Balakin, A.V.; Shkurinov, A.P.; Chen, X.; et al. A multi-foci metalens with polarization-rotated focal points. Laser Photonics Rev. 2019, 13, 1900182. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Y.; Li, X.; Wang, Q.; Huang, L. Switchable active phase modulation and holography encryption based on hybrid metasurfaces. Nanophotonics 2020, 9, 905–912. [Google Scholar] [CrossRef]
- Jia, D.; Tian, Y.; Ma, W.; Gong, X.; Yu, J.; Zhao, G.; Yu, X. Transmissive terahertz metalens with full phase control based on a dielectric metasurface. Opt. Lett. 2017, 42, 4494–4497. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Du, J.; Liu, Y.; Zang, X. Helicity multiplexed terahertz multi-foci metalens. Opt. Lett. 2020, 45, 463–466. [Google Scholar] [CrossRef]
- Xu, Y.; Li, Q.; Zhang, X.; Wei, M.; Zhang, W. Spin-decoupled multifunctional metasurface for asymmetric polarization generation. ACS Photonics 2019, 6, 2933–2941. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Quan, X.; Wang, Q.; Zhang, W. Polarization-independent all-silicon dielectric metasurfaces in the terahertz regime. Photonics Res. 2018, 6, 24–29. [Google Scholar] [CrossRef]
- Hui, Y.; Guanhai, L.; Guangtao, C.; Zengyua, Z.; Feilong, Y.; Xiaoshuang, C.; Wei, L. Polarization-independent metalens constructed of antennas without rotational invariance. Opt. Lett. 2017, 42, 3996–3999. [Google Scholar]
- Zhang, H.; Zhang, X.; Xu, Q.; Tian, C.; Wang, Q.; Xu, Y.; Li, Y.; Gu, J.; Tian, Z.; Ouyang, C. High-efficiency dielectric metasurfaces for polarization-dependent terahertz wavefront manipulation. Adv. Opt. Mater. 2018, 6, 1700773. [Google Scholar] [CrossRef]
- Yan, C.; Li, X.; Pu, M.; Ma, X.; Luo, X. Generation of polarization-sensitive modulated optical vortices with all-dielectric metasurfaces. ACS Photonics 2019, 6, 628–633. [Google Scholar] [CrossRef]
- Liu, W.; Yang, Q.; Xu, Q.; Jiang, X.; Wu, T.; Wang, K.; Gu, J.; Han, J.; Zhang, W. Multifunctional all-dielectric metasurfaces for terahertz multiplexing. Adv. Opt. Mater. 2021, 9, 2100506. [Google Scholar] [CrossRef]
- Cheng, Q.; Ma, M.; Yu, D.; Shen, Z.; Xie, J.; Wang, J.; Xu, N.; Guo, H.; Hu, W.; Wang, S. Broadband achromatic metalens in terahertz regime. Sci. Bull. 2019, 64, 1525–1531. [Google Scholar] [CrossRef]
- Heiden, J.T.; Min, S.J. Design framework for polarization-insensitive multifunctional achromatic metalenses. Nanophotonics 2022, 11, 583–591. [Google Scholar] [CrossRef]
- Guo, J.; Wang, T.; Zhao, H.; Wang, X.; Feng, S.; Han, P.; Sun, W.; Ye, J.; Situ, G.; Chen, H.-T.; et al. Reconfigurable terahertz metasurface pure phase holograms. Adv. Opt. Mater. 2019, 7, 1801696. [Google Scholar] [CrossRef]
- Gerchberg, R.W. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 1972, 35, 237–250. [Google Scholar]
- Zhao, W.; Jiang, H.; Liu, B.; Song, J.; Jiang, Y.; Tang, C.; Li, J. Dielectric Huygens’ metasurface for high-efficiency hologram operating in transmission mode. Sci. Rep. 2016, 6, 30613. [Google Scholar] [CrossRef] [PubMed]
- Shang, G.; Li, H.; Wang, Z.; Zhang, K.; Ding, X. Coding metasurface holography with polarization-multiplexed functionality. J. Appl. Phys. 2021, 129, 035304. [Google Scholar] [CrossRef]
- Huang, L.; Chen, X.; Mühlenbernd, H.; Hao, Z.; Chen, S.; Bai, B.; Tan, Q.; Jin, G.; Cheah, K.W.; Qiu, C.W. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun. 2013, 4, 2808. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, J.; Wang, Y.; Pu, M.; Li, X.; Zhao, Z.; Gao, P.; Wang, C.; Luo, X. Metasurface-based broadband hologram with high tolerance to fabrication errors. Sci. Rep. 2016, 6, 19856. [Google Scholar] [CrossRef]
- Montelongo, Y.; Tenorio-Pearl, J.O.; Williams, C.; Zhang, S.; Milne, W.I.; Wilkinson, T.D. Plasmonic nanoparticle scattering for color holograms. Proc. Natl. Acad. Sci. USA 2014, 111, 12679–12683. [Google Scholar] [CrossRef]
- Wang, Q.; Xu, Q.; Zhang, X.; Tian, C.; Xu, Y.; Gu, J.; Tian, Z.; Ouyang, C.; Zhang, X.; Han, J. All-dielectric meta-holograms with holographic images transforming longitudinally. ACS Photonics 2018, 5, 599–606. [Google Scholar] [CrossRef]
- Overvig, A.C.; Shrestha, S.; Malek, S.C.; Ming, L.; Yu, N. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl. 2019, 8, 92. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, X.; Xu, Y.; Gu, J.; Li, Y.; Tian, Z.; Singh, R.; Zhang, S.; Han, J.; Zhang, W. Broadband metasurface holograms: Toward complete phase and amplitude engineering. Sci. Rep. 2016, 6, 32867. [Google Scholar] [CrossRef]
- Wang, R.; Ren, G.; Ren, Z.; Liu, J.; Li, S.; Chen, X.; Li, L. Reconstructing subwavelength resolution terahertz holographic images. Opt. Express 2022, 30, 7137–7146. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Cui, Y.; Ren, B.; Tang, S.; Wu, J.; Jiang, Y. Metalens for generating multi-channel polarization-wavelength multiplexing metasurface holograms. Opt. Express 2022, 30, 47856–47866. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Huang, L.; Li, X.; Li, X.; Wang, Y. All-dielectric bifocal isotropic metalens for single-shot hologram generation device. Opt. Express 2020, 28, 21549–21559. [Google Scholar] [CrossRef] [PubMed]
- Goodman, J.W. Introduction to Fourier Optics. In Introduction to Fourier Optics; McGraw-Hill: New York, NY, USA, 1968. [Google Scholar]
- Zhang, Y.; Liu, W.; Gao, J.; Yang, X. Generating focused 3D perfect vortex beams by plasmonic metasurfaces. Adv. Opt. Mater. 2018, 6, 1701228. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Wu, J.; Wang, R.; Li, L.; Jiang, Y. Reconstructing Polarization Multiplexing Terahertz Holographic Images with Transmissive Metasurface. Appl. Sci. 2023, 13, 2528. https://doi.org/10.3390/app13042528
Wang X, Wu J, Wang R, Li L, Jiang Y. Reconstructing Polarization Multiplexing Terahertz Holographic Images with Transmissive Metasurface. Applied Sciences. 2023; 13(4):2528. https://doi.org/10.3390/app13042528
Chicago/Turabian StyleWang, Xiaosai, Jinlei Wu, Ruoxing Wang, Li Li, and Yongyuan Jiang. 2023. "Reconstructing Polarization Multiplexing Terahertz Holographic Images with Transmissive Metasurface" Applied Sciences 13, no. 4: 2528. https://doi.org/10.3390/app13042528
APA StyleWang, X., Wu, J., Wang, R., Li, L., & Jiang, Y. (2023). Reconstructing Polarization Multiplexing Terahertz Holographic Images with Transmissive Metasurface. Applied Sciences, 13(4), 2528. https://doi.org/10.3390/app13042528