Radiometric Normalization Using a Pseudo−Invariant Polygon Features−Based Algorithm with Contemporaneous Sentinel−2A and Landsat−8 OLI Imagery
Abstract
:1. Introduction
2. Study Area and Data
3. Normalization Algorithms
3.1. Hyperspectral Library−Based Normalization
3.2. Pseudo-Invariant Point Feature-Based Normalization
3.2.1. Pseudo-Invariant Point Features with the Single Band (Point-Single)
3.2.2. Pseudo−Invariant Point Features with Multiple Bands (Point−Multi)
3.3. Pseudo−Invariant Polygon Features−Based Normalization
3.3.1. Pseudo−Invariant Polygon Features with the Single Band (Polygon−Single)
3.3.2. Pseudo−Invariant Polygon Features with Multiple Bands (Polygon−Multi)
3.4. Histogram Matching
4. Evaluation of Normalization Results
4.1. Comparisons among Bands
4.2. Comparison of Each Pixel Normalization
4.3. Comparison of Image Frequency Distribution
5. Discussion
5.1. Variation of Pseudo−Invariant Point Features
5.2. Limitations of Polygon Feature−Based Normalization Algorithms
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Henchiri, M.; Ali, S.; Essifi, B.; Kalisa, W.; Zhang, S.; Bai, Y. Monitoring land cover change detection with NOAA-AVHRR and MODIS remotely sensed data in the North and West of Africa from 1982 to 2015. Environ. Sci. Pollut. Res. 2020, 27, 5873–5889. [Google Scholar] [CrossRef]
- Mansaray, L.R.; Kanu, A.S.; Yang, L.; Huang, J.; Wang, F. Evaluation of machine learning models for rice dry biomass estimation and mapping using quad-source optical imagery. GIScience Remote Sens. 2020, 57, 785–796. [Google Scholar] [CrossRef]
- Schroeder, T.A.; Cohen, W.B.; Song, C.; Canty, M.J.; Yang, Z. Radiometric correction of multi-temporal Landsat data for characterization of early successional forest patterns in western Oregon. Remote Sens. Environ. 2006, 103, 16–26. [Google Scholar] [CrossRef]
- Loiseau, T.; Chen, S.; Mulder, V.L.; Dobarco, M.R.; Richer-De-Forges, A.C.; Lehmann, S.; Bourennane, H.; Saby, N.P.A.; Martin, M.P.; Vaudour, E.; et al. Satellite data integration for soil clay content modelling at a national scale. Int. J. Appl. Earth Obs. Geoinf. 2019, 82, 101905. [Google Scholar] [CrossRef]
- Pu, R.; Landry, S. Mapping urban tree species by integrating multi-seasonal high resolution pléiades satellite imagery with airborne LiDAR data. Urban For. Urban Green. 2020, 53, 126675. [Google Scholar] [CrossRef]
- Deliry, S.I.; Avdan, Z.Y.; Do, N.T.; Avdan, U. Assessment of human-induced environmental disaster in the Aral Sea using Landsat satellite images. Environ. Earth Sci. 2020, 79, 471. [Google Scholar] [CrossRef]
- Rahman, M.M.; Hay, G.J.; Couloigner, I.; Hemachandran, B.; Bailin, J. A comparison of four relative radiometric normalization (RRN) techniques for mosaicing H-res multi-temporal thermal infrared (TIR) flight-lines of a complex urban scene. ISPRS J. Photogramm. Remote Sens. 2015, 106, 82–94. [Google Scholar] [CrossRef]
- Wu, W.; Sun, X.; Wang, X.; Fan, J.; Luo, J.; Shen, Y.; Yang, Y. A long time-series radiometric normalization method for landsat images. Sensors 2018, 18, 4505. [Google Scholar] [CrossRef] [Green Version]
- Moghimi, A.; Mohammadzadeh, A.; Celik, T.; Brisco, B.; Amani, M. Automatic Relative Radiometric Normalization of Bi-Temporal Satellite Images Using a Coarse-to-Fine Pseudo-Invariant Features Selection and Fuzzy Integral Fusion Strategies. Remote Sens. 2022, 14, 1777. [Google Scholar] [CrossRef]
- Bonnet, W.; Celik, T. Random Sampling-Based Relative Radiometric Normalization. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–4. [Google Scholar] [CrossRef]
- Yan, W.Y.; Shaker, A. Radiometric normalization of overlapping LiDAR intensity data for reduction of striping noise. Int. J. Digit. Earth 2016, 9, 649–661. [Google Scholar] [CrossRef]
- Nazeer, M.; Ilori, C.O.; Bilal, M.; Nichol, J.E.; Wu, W.; Qiu, Z.; Gayene, B.K. Evaluation of atmospheric correction methods for low to high resolutions satellite remote sensing data. Atmos. Res. 2021, 249, 105308. [Google Scholar] [CrossRef]
- Li, J.; Feng, L.; Pang, X.; Gong, W.; Zhao, X. Radiometric cross calibration of gaofen-1 wfv cameras using landsat-8 oli images: A simple image-based method. Remote Sens. 2016, 8, 411. [Google Scholar] [CrossRef] [Green Version]
- Leach, N.; Coops, N.C.; Obrknezev, N. Normalization method for multi-sensor high spatial and temporal resolution satellite imagery with radiometric inconsistencies. Comput. Electron. Agric. 2019, 164, 104893. [Google Scholar] [CrossRef]
- Santra, A.; Mitra, S.S.; Mitra, D. Relative Radiometric Normalisation-performance testing of selected techniques and impact analysis on vegetation and water bodies. Geocarto Int. 2019, 34, 98–113. [Google Scholar] [CrossRef]
- Razzak, M.T.; Mateo-García, G.; Lecuyer, G.; Gómez-Chova, L.; Gal, Y.; Kalaitzis, F. Multi-spectral multi-image super-resolution of Sentinel-2 with radiometric consistency losses and its effect on building delineation. ISPRS J. Photogramm. Remote Sens. 2023, 195, 1–13. [Google Scholar] [CrossRef]
- Yan, L.; Yang, J.; Zhang, Y.; Zhao, A.; Li, X. Radiometric Normalization for Cross-Sensor Optical Gaofen Images with Change Detection and Chi-Square Test. Remote. Sens. 2021, 13, 3125. [Google Scholar] [CrossRef]
- Moghimi, A.; Celik, T.; Mohammadzadeh, A.; Kusetogullari, H. Comparison of Keypoint Detectors and Descriptors for Relative Radiometric Normalization of Bitemporal Remote Sensing Images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 4063–4073. [Google Scholar] [CrossRef]
- Sadeghi, V.; Ebadi, H.; Ahmadi, F.F. A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods. Appl. Math. Model. 2013, 37, 6437–6445. [Google Scholar] [CrossRef]
- Hall, F.; Strebel, D.; Nickeson, J.; Goetz, S. Radiometric rectification: Toward a common radiometric response among multidate, multisensor images. Remote Sens. Environ. 1991, 35, 11–27. [Google Scholar] [CrossRef]
- Sadeghi, V.; Ahmadi, F.F.; Ebadi, H. A new automatic regression-based approach for relative radiometric normalization of multitemporal satellite imagery. Comput. Appl. Math. 2017, 36, 825–842. [Google Scholar] [CrossRef]
- Syariz, M.A.; Lin, B.-Y.; Denaro, L.G.; Jaelani, L.M.; Van Nguyen, M.; Lin, C.-H. Spectral-consistent relative radiometric normalization for multitemporal Landsat 8 imagery. ISPRS J. Photogramm. Remote Sens. 2019, 147, 56–64. [Google Scholar] [CrossRef]
- Padró, J.-C.; Pons, X.; Aragonés, D.; Díaz-Delgado, R.; García, D.; Bustamante, J.; Pesquer, L.; Domingo-Marimon, C.; González-Guerrero, Ò.; Cristóbal, J.; et al. Radiometric correction of simultaneously acquired Landsat-7/Landsat-8 and Sentinel-2A imagery using pseudoinvariant areas (PIA): Contributing to the Landsat time series legacy. Remote Sens. 2017, 9, 1319. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Liu, S.; He, J.; Wen, Q.; Song, L.; Ma, Y. A new model for the automatic relative radiometric normalization of multiple images with pseudo-invariant features. Int. J. Remote Sens. 2016, 37, 4554–4573. [Google Scholar] [CrossRef]
- Lin, B.-Y.; Wang, Z.-J.; Syariz, M.A.; Denaro, L.G.; Lin, C.-H. Pseudoinvariant feature selection using multitemporal MAD for optical satellite images. IEEE Geosci. Remote Sens. Lett. 2019, 16, 1353–1357. [Google Scholar] [CrossRef]
- Liu, K.; Ke, T.; Tao, P.; He, J.; Xi, K.; Yang, K. Robust radiometric normalization of multitemporal satellite images via block adjustment without master images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6029–6043. [Google Scholar] [CrossRef]
- Xu, H.; Wei, Y.; Li, X.; Zhao, Y.; Cheng, Q. A novel automatic method on pseudo-invariant features extraction for enhancing the relative radiometric normalization of high-resolution images. Int. J. Remote Sens. 2021, 42, 6155–6186. [Google Scholar] [CrossRef]
- Canty, M.J.; Nielsen, A.A. Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation. Remote Sens. Environ. 2008, 112, 1025–1036. [Google Scholar] [CrossRef] [Green Version]
- Elvidge, C.D.; Yuan, D.; Weerackoon, R.D.; Lunetta, R.S. Relative radiometric normalization of Landsat multispectral scanner (MSS) data using an automatic scattergram-controlled regression. Photogramm. Eng. Remote Sens. 1995, 61, 1255–1260. [Google Scholar]
- Ya’Allah, S.M.; Saradjian, M.R. Automatic normalization of satellite images using unchanged pixels within urban areas. Inf. Fusion 2005, 6, 235–241. [Google Scholar] [CrossRef]
- Im, J.; Hodgson, M.E. Characteristics of search spaces for identifying optimum thresholds in change detection studies. GIScience Remote Sens. 2009, 46, 249–272. [Google Scholar] [CrossRef]
- Hong, G.; Zhang, Y. A comparative study on radiometric normalization using high resolution satellite images. Int. J. Remote Sens. 2008, 29, 425–438. [Google Scholar] [CrossRef]
- Moghimi, A.; Sarmadian, A.; Mohammadzadeh, A.; Celik, T.; Amani, M.; Kusetogullari, H. Distortion Robust Relative Radiometric Normalization of Multitemporal and Multisensor Remote Sensing Images Using Image Features. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5400820. [Google Scholar] [CrossRef]
- Kim, T.; Han, Y. Integrated Preprocessing of Multitemporal Very-High-Resolution Satellite Images via Conjugate Points-Based Pseudo-Invariant Feature Extraction. Remote Sens. 2021, 13, 3990. [Google Scholar] [CrossRef]
- Richards, J.A. Remote Sensing Digital Image Analysis; Springer: Berlin/Heidelberg, Germany, 1999; Volume 3. [Google Scholar]
- Rahman, M.M.; Hay, G.J.; Couloigner, I.; Hemachandran, B.; Bailin, J. An assessment of polynomial regression techniques for the relative radiometric normalization (RRN) of high-resolution multi-temporal airborne thermal infrared (TIR) imagery. Remote Sens. 2014, 6, 11810–11828. [Google Scholar] [CrossRef] [Green Version]
- De Carvalho, O.A.; Júnior; Guimarães, R.F.; Silva, N.C.; Gillespie, A.R.; Gomes, R.A.T.; Silva, C.R.; De Carvalho, A.P.F. Radiometric normalization of temporal images combining automatic detection of pseudo-invariant features from the distance and similarity spectral measures, density scatterplot analysis, and robust regression. Remote Sens. 2013, 5, 2763–2794. [Google Scholar]
- Kim, D.S.; Pyeon, M.W.; Eo, Y.D.; Byun, Y.G. Automatic pseudo-invariant feature extraction for the relative radiometric normalization of hyperion hyperspectral images. GIScience Remote Sens. 2012, 49, 755–773. [Google Scholar] [CrossRef]
- Moghimi, A.; Celik, T.; Mohammadzadeh, A. Tensor-based keypoint detection and switching regression model for relative radiometric normalization of bitemporal multispectral images. Int. J. Remote Sens. 2022, 43, 3927–3956. [Google Scholar] [CrossRef]
Image | Landsat 8−OLI (Resolution) | Sentinel−2A (Resolution) | |
---|---|---|---|
Band | |||
1 (Blue) | 0.450–0.510 µm (30 m) | 0.458–0.523 µm (10 m) | |
2 (Green) | 0.530–0.590 µm (30 m) | 0.543–0.578 µm (10 m) | |
3 (Red) | 0.640–0.670 µm (30 m) | 0.650–0.680 µm (10 m) | |
4 (NIR) | 0.850–0.880 µm (30 m) | 0.785–0.900 µm (10 m) | |
5 (SWIR−1) | 1.570–1.650 µm (30 m) | 1.565–1.655 µm (20 m) | |
6 (SWIR−2) | 2.110–2.290 µm (30 m) | 2.100–2.280 µm (20 m) |
Landsat8 | Band−1 | Band−2 | Band−3 | Band−4 | Band−5 | Band−6 | |
---|---|---|---|---|---|---|---|
Sentinel−2A | |||||||
Band−1 | 1.1105 | 0.0329 | −0.0052 | 0.1199 | −0.0023 | 0.0091 | |
Band−2 | −0.0871 | 0.9900 | 0.0523 | −0.1169 | 0.0089 | −0.0262 | |
Band−3 | 0.0626 | 0.0802 | 1.1079 | −0.1476 | −0.0111 | 0.0234 | |
Band−4 | −0.0614 | −0.0279 | −0.0660 | 1.4037 | 0.0049 | −0.0104 | |
Band−5 | −0.0093 | −0.0020 | 0.0000 | 0.0038 | 0.9994 | 0.0020 | |
Band−6 | 0.0095 | 0.0025 | 0.0020 | 0.0031 | −0.0021 | 1.1088 | |
Bias | 0.0002 | 0.0001 | 0.0002 | −0.0001 | 0.0000 | 0.0002 | |
R2 | 1.0000 | 1.0000 | 1.0000 | 0.9999 | 1.0000 | 0.9999 | |
RMSE | 0.0015 | 0.0006 | 0.0006 | 0.0024 | 0.0005 | 0.0019 |
Landsat8 | Band−1 | Band−2 | Band−3 | Band−4 | Band−5 | Band−6 | |
---|---|---|---|---|---|---|---|
Sentinel−2A | |||||||
Band−1 | 0.6386 | 0.5386 | 0.5773 | −0.0735 | 0.5868 | 1.0106 | |
Band−2 | −0.5458 | −0.3355 | −0.8125 | 0.0166 | −1.2052 | −1.4804 | |
Band−3 | 0.1608 | 0.1515 | 0.7489 | −0.1694 | 0.0999 | 0.1242 | |
Band−4 | 0.0768 | 0.1005 | 0.0639 | 0.9756 | 0.1713 | 0.1599 | |
Band−5 | −0.5442 | −0.5553 | −0.5363 | −0.3156 | 0.1266 | −0.6149 | |
Band−6 | 0.6779 | 0.6665 | 0.6427 | 0.4385 | 0.8774 | 1.5224 | |
Bias | 0.0286 | 0.0443 | 0.0432 | 0.0182 | 0.0440 | 0.0412 | |
R2 | 0.2982 | 0.3356 | 0.4222 | 0.7169 | 0.7733 | 0.6855 | |
RMSE | 0.0441 | 0.0445 | 0.0486 | 0.0460 | 0.0497 | 0.0535 |
Landsat−8 | Band−1 | Band−2 | Band−3 | Band−4 | Band−5 | Band−6 | |
---|---|---|---|---|---|---|---|
Sentinel−2A | |||||||
Band−1 | 0.6945 | −0.0268 | −0.0758 | 0.2168 | −0.1613 | 0.1875 | |
Band−2 | 0.2421 | 1.2244 | 0.7760 | 0.1973 | 1.0132 | 0.5372 | |
Band−3 | −0.1027 | −0.1630 | 0.4461 | −0.0332 | −0.4453 | −0.3343 | |
Band−4 | −0.0455 | −0.0540 | −0.0878 | 0.9290 | 0.0004 | 0.0350 | |
Band−5 | 0.1315 | 0.1467 | 0.1451 | 0.2432 | 0.8925 | −0.0506 | |
Band−6 | −0.1596 | −0.1671 | −0.1581 | −0.3065 | 0.0135 | 0.8808 | |
Bias | −0.0070 | −0.0113 | −0.0123 | −0.0240 | −0.0368 | −0.0293 | |
R2 | 0.9667 | 0.9743 | 0.9785 | 0.9956 | 0.9977 | 0.9972 | |
RMSE | 0.0020 | 0.0021 | 0.0028 | 0.0043 | 0.0035 | 0.0029 |
Methods | Point− Single | Point− Multi | Polygon− Single | Polygon− Multi | SpecLib− Single | SpecLib− Multi | Histogram Matching | |
---|---|---|---|---|---|---|---|---|
Error | ||||||||
R2 | 0.9944 | 0.9941 | 0.9945 | 0.9948 | 0.9861 | 0.9812 | 0.9943 | |
RMSE | 0.0112 | 0.0148 | 0.0097 | 0.0095 | 0.0398 | 0.0439 | 0.0095 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, L.; Ma, Y.; Lian, Y.; Zhang, H.; Yu, Y.; Lin, Y. Radiometric Normalization Using a Pseudo−Invariant Polygon Features−Based Algorithm with Contemporaneous Sentinel−2A and Landsat−8 OLI Imagery. Appl. Sci. 2023, 13, 2525. https://doi.org/10.3390/app13042525
Chen L, Ma Y, Lian Y, Zhang H, Yu Y, Lin Y. Radiometric Normalization Using a Pseudo−Invariant Polygon Features−Based Algorithm with Contemporaneous Sentinel−2A and Landsat−8 OLI Imagery. Applied Sciences. 2023; 13(4):2525. https://doi.org/10.3390/app13042525
Chicago/Turabian StyleChen, Lei, Ying Ma, Yi Lian, Hu Zhang, Yanmiao Yu, and Yanzhen Lin. 2023. "Radiometric Normalization Using a Pseudo−Invariant Polygon Features−Based Algorithm with Contemporaneous Sentinel−2A and Landsat−8 OLI Imagery" Applied Sciences 13, no. 4: 2525. https://doi.org/10.3390/app13042525
APA StyleChen, L., Ma, Y., Lian, Y., Zhang, H., Yu, Y., & Lin, Y. (2023). Radiometric Normalization Using a Pseudo−Invariant Polygon Features−Based Algorithm with Contemporaneous Sentinel−2A and Landsat−8 OLI Imagery. Applied Sciences, 13(4), 2525. https://doi.org/10.3390/app13042525