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Abstract: As sensor parameters and atmospheric conditions create uncertainties for at−sensor ra-
diation detection, radiometric consistency among satellite images is difficult to achieve. Relative
radiometric normalization is a method that can improve multi−image consistency with accurate
pseudo−invariant features (PIFs), especially over large areas or long time series satellite images.
Although there are algorithms that manually or automatically select PIFs, the spatial mismatch of
satellite images can affect PIF extraction, particularly with artificial pixels. To alleviate this prob-
lem, we proposed to use Landsat−8 OLI as the reference image and Sentinel−2A as the subject
image, to apply pseudo−invariant features−based algorithms with polygon features through the
single−band and multiple−band regression. Compared to pseudo−invariant point features, hyper-
spectral library, and histogram matching approaches, the results demonstrate the superiority of the
proposed algorithms with correlation coefficients of 0.9948 and 0.9945, and an RMSE of 0.0097 and
0.0095 with multiple− and single−band regression, respectively. We also found more accurate linear
fitting and better shape matching through band scattering and reflectance frequency analysis. The
proposed algorithms are a significant improvement in radiometric normalization, within artificial
pixels, achieving spectral signature consistency.

Keywords: pseudo−invariant polygon features; single−band regression; multiple−band regression;
contemporaneous satellite images

1. Introduction

Remote sensing has proven itself to be essential in land change detection [1], crop
growth monitoring [2], and forest succession monitoring [3]. Different kinds of satellite
image data, including Landsat, MODIS, Sentinel, GF, and ZY, among others, are achieving
great success. Building on this success, by integrating different types of satellite data, has
the potential to solve ecological, natural resource, and human development challenges
through large coverage remote sensing images, capitalizing on our ability to process large
datasets [4–6]. However, among platforms, images differ due to variation in temporal,
spatial, radiometric, and observation angles. Solving image data inconsistency is the
most important issue that will allow the application of multiple remote sensing images.
Radiometric value is essential in remote sensing, so radiometric normalization, which is
a preprocessing procedure to eliminate radiometric differences among images, has been
studied by several researchers with the development of many radiometric normalization
algorithms [7–10].

Radiometric normalization algorithms can be divided into two main categories based
on the transformation of grayscale values to physical signals: absolute radiometric normal-
ization requiring accurate sensor calibration parameters and atmospheric properties [11,12],
and relative radiometric normalization (RRN), which is an image−based approach using
one image as a reference to normalize another image through its radiometric characteris-
tics [13–15]. Due to parameter differences among sensors and the difficulty in collecting
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atmospheric parameters, the relative radiometric normalization method is generally used
for image normalization that does not require extra parameters [16,17]. Hence, in this
process, the subject image tends to need similar radiometric conditions as the reference
image. Nevertheless, images from different satellite sensors have inherent bandwidth and
spectral response differences (among others) that limits the practical application of absolute
radiometric normalization but facilitates relative radiometric normalization algorithms in
many applications.

Among these relative radiometric normalization techniques, linear regression using
pseudo−invariant features (PIFs) has been promoted as an empirical and practical method
to normalize radiometric distortion caused by non−land surface−related factors [18,19].
This approach assumes that reference and subject images have a consistent response
and adjusts the subject image’s radiometric properties with paired pixels from the two
images [20,21]. The key to preprocessing is to extract accurate PIFs, allowing image
data collected at different times or by different sensors to be normalized. Comparing
seven relative radiometric normalization methods with Landsat MSS images at different
times, Sadeghi, Ebadi [19] and Syariz, Lin [22] have shown that accurately extracted
PIFs can improve image radiometric consistency for the same sensor type at different
times. Accurate PIFs are essential to compare sensor images. Rahman, Hay [7], Razzak,
Mateo−García [16], Yan, Yang [17], and Padró, Pons [23] normalized images from different
sensor types (e.g., Landsat, Sentinel−2, Gaofen, and super−resolution images) using a
PIF−based method and reported coherent image correction among varying time series and
sensor types. The biggest difference between these studies is the processing of manually or
automatically PIFs selection.

Automatically extracting PIFs makes the radiometric correction processing more
efficient and has been proposed by several researchers [24–28]. In these studies, PIFs are
extracted automatically and sorted into a radiometric control set, radiometric control points,
no−change set, and unchanged pixels [29–32]. However, manual PIFs extraction is more
accurate in some applications, especially when ground types are complicated. Manual
extraction allows pairwise pixels in different ground types to be selected, decreasing the
matching error for paired pixels [7,15]. Although spatial mismatch problems in RRN are
well−addressed in [18,33,34], three issues remain: (1) the spectra of paired pixels may
differ due to the pixel−level spatial mismatch, especially for pairwise images with different
sensing angles that create spatial distortion; (2) a regression analysis in which one variable
does not consider the influence of adjacent bands, and; (3) applications are not focused on
crop−growing areas and extracted PIFs are untrained to different types of crop or ground
materials. To address these issues, we propose new relative radiometric normalization
methods by replacing invariant points or pixels with invariant polygons or surfaces to
apply to a crop−growing area that has been surveyed on the ground. We show decreases
in the influence of pixel−level spatial mismatch and demonstrate the effect of adjacent
bands using multiple variable regression. The proposed algorithms show superiority in
crop area radiometric normalization and contribute to the improvement in normalization
accuracy, particularly in human−impacted areas of the Earth’s surface.

2. Study Area and Data

To test the performance invariant polygon and adjacent bands, we evaluated Landsat−8 OLI
as the reference image and the Sentinel−2A as a distortion image. The study area is located
at Baiquan, in Heilongjiang Province, China. Images were from September 2019 (Figure 1).
In this area, crops, including rice, corn, and soybean, are close to harvest, resulting in mixed
pixels with soil properties, contributing to the generalizability of our results. Field surveys
identified five types of ground material: water, grass, trees, pure soil, and artificial. A
regression relationship of minimum and maximum reflectance [20] proved to be the most
accurate to predict land cover. Through field experiments, we established the relation-
ship between two images based on the reflectance of different land cover types, including
minimum through maximum reflectance values.
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Figure 1. Scope and true color images of the study area.

To focus on radiometric normalization, we geometrically registered two images
covering the same spatial range. To match tiles, we upscaled Sentinel−2A images us-
ing the nearest neighbor method to obtain the same spatial resolution as the match-
ing Landsat−8 OLI image. Data were downloaded from the European Space Agency
(https://sentinels.copernicus.eu/, accessed on 26 September 2019) and the United States
Geological Survey (https://earthexplorer.usgs.gov/, accessed on 22 September 2019),
both with absolute radiometric calibration. Here, we regard the Landsat−8 OLI image
as a reference and Sentinel−2A as the subject. Six data bands were chosen for analysis
(Table 1). Due to higher spatial resolution, the 0.785–0.900µm band was selected from
Sentinel−2A imagery.

Table 1. The selected bands of image data.

Band

Image
Landsat 8−OLI (Resolution) Sentinel−2A (Resolution)

1 (Blue) 0.450–0.510 µm (30 m) 0.458–0.523 µm (10 m)
2 (Green) 0.530–0.590 µm (30 m) 0.543–0.578 µm (10 m)
3 (Red) 0.640–0.670 µm (30 m) 0.650–0.680 µm (10 m)
4 (NIR) 0.850–0.880 µm (30 m) 0.785–0.900 µm (10 m)

5 (SWIR−1) 1.570–1.650 µm (30 m) 1.565–1.655 µm (20 m)
6 (SWIR−2) 2.110–2.290 µm (30 m) 2.100–2.280 µm (20 m)

3. Normalization Algorithms

We used an approach of hyperspectral library−based normalization. As satellite
sensors differ, the influence of sensor channels is best analyzed using radiometric nor-
malization from hyperspectral library data. Polygon features (pseudo−invariant polygon
features−based normalization) and point feature normalization (pseudo−invariant point
features−based normalization) were compared to determine the most effective method.
To identify the effects of adjacent bands, multiple−band fitting and single−band fitting

https://sentinels.copernicus.eu/
https://earthexplorer.usgs.gov/
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methods were applied as cross−integrations. Therefore, pseudo−invariant point features
with the single band (point−single), pseudo−invariant point features with multiple bands
(point−multi), hyperspectral features with the single band (SpecLib−single), hyperspectral
features with multiple bands (SpecLib−multi), pseudo−invariant polygon features with
a single band (polygon−single), and pseudo−invariant polygon features with multiple
bands (polygon−multi) were all tested to evaluate data normalization. Histogram matching
was another approach we used for comparison.

The main processing procedures we used were: (1) download valid and contempo-
raneous images of Sentinel−2A and Landsat 8−OLI and resample Sentinel−2A images
to have the same spatial resolution as Landsat 8−OLI (30 m per pixel) using nearest
neighbor interpolation; (2) perform spatial registration through geographical coordinates
and manual processing; (3) select feature points in each ground type based on ground
survey information; (4) confirm the best processing window size and calculate the mean
reflectance of each polygon feature area; and (5) calculate fitting equations using the poly-
gon features and couple them with single−band and multiple−band regression for image
radiometric normalization.

We examined two factors, correlation coefficient (R2) and root mean square error
(RMSE), to determine the accuracy of both regression equations and normalization results.
They are briefly described in Equations (1) and (2):

R2 =
Cov(S, Ŝ)√

Var(S)·Var(Ŝ)
(1)

RMSE =

√√√√ 1
N

N

∑
i=1

(S − Ŝ)2 (2)

where Cov(X, Y) is the covariance of X and Y, and Var(X) is the variance of X. When the two
factors were applied to evaluate linear regression, S and Ŝ are the measured and predicted
value, respectively. These represent the reference and normalized subject image reflectance,
respectively, when used for normalization evaluation. N is the image pixel number.

3.1. Hyperspectral Library−Based Normalization

The key step to normalizing spectral radiation from different sensors is developing a
hyperspectral library. We built a hyperspectral library by selecting images of relevant land
cover ground types from the USGS and ASTER libraries, and simulated spectra from the
PROSAIL model, spectra of GF−5, and Hyperion imagery. Each band’s spectral response
function from Sentinel−2A and Landsat−8 OLI images (Figure 2) was used in Equation (3)
by using corresponding data types from all bands within the same range to obtain the
normalized reflectance.

ρλ =
∫ λ2

λ1

fiρidλi (3)

Where ρλ is the normalized reflectance on the band (Table 1), λ1 and λ2 are the
start–stop wavelengths of the band λ, and fi and ρi are the spectral response function and
hyperspectral reflectance of band I, respectively. After applying Equation (3) to process each
spectral dataset, differences among sensor bandwidths were removed and the corrected
data regressed to calculate the transfer coefficient for each band between the two datasets.

We found that radiation from two images has a strong linear relationship with a
fitted correlation coefficient approaching 1 (Figure 3). Adjacent bands have little influence
on satellite image band radiation (Table 2). Except for band 4, all other coefficients of
corresponding bands are close to 1. It is clear from these relationships that the radiometric
difference caused by bandwidth effects can be linearly calibrated. If linear regression is
used for the radiometric normalization of two images, the bandwidth variation detected is
the linear regression coefficient, which is not necessary to conduct separated processing.
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Table 2. Normalization coefficient and errors by SpecLib−Multi.

Sentinel−2A

Landsat8
Band−1 Band−2 Band−3 Band−4 Band−5 Band−6

Band−1 1.1105 0.0329 −0.0052 0.1199 −0.0023 0.0091
Band−2 −0.0871 0.9900 0.0523 −0.1169 0.0089 −0.0262
Band−3 0.0626 0.0802 1.1079 −0.1476 −0.0111 0.0234
Band−4 −0.0614 −0.0279 −0.0660 1.4037 0.0049 −0.0104
Band−5 −0.0093 −0.0020 0.0000 0.0038 0.9994 0.0020
Band−6 0.0095 0.0025 0.0020 0.0031 −0.0021 1.1088

Bias 0.0002 0.0001 0.0002 −0.0001 0.0000 0.0002
R2 1.0000 1.0000 1.0000 0.9999 1.0000 0.9999

RMSE 0.0015 0.0006 0.0006 0.0024 0.0005 0.0019



Appl. Sci. 2023, 13, 2525 6 of 16

3.2. Pseudo-Invariant Point Feature-Based Normalization

Pseudo-invariant polygon feature-based normalization was conducted using pseudo−
invariant point features. One crucial procedure for point feature−based radiometric nor-
malization is to accurately select pixels that indicate the same geometric position in different
images [22]. In our study, eight different surface types with diverse reflectance were selected
to generate the regression equation. To avoid point number weight effects, we chose the
same number of samples for each surface class in this process of radiometric normalization
based on pseudo-invariant point features.

3.2.1. Pseudo-Invariant Point Features with the Single Band (Point-Single)

The invariant features with single−band regression is:

Yi = aXi + b (4)

where Xi and Yi are the ith band of subject and reference image data. a and b are the
normalization coefficient and bias, respectively.

Fifty spectra from each surface type in Landsat-8 OLI images (reference) and Senitnel-
2A images were selected. Band data were used to calculate the least square fitting equation
and calibrate the radiation data from Sentinel-2A at the reference image’s scale (Figure 4).
These analyses indicate that the fitting coefficients are less than 1, meaning that all band
reflectance from Sentinel-2A are higher than the reference of Landsat-8 OLI data. Among the
spectra from eight surface types, all except for man-made, artificial surfaces are clustered.
The complexity of artificial pixels, their geometrical location, and spatial resolution increases
the difficulty of accurately matching these point features from two different sensor images.
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3.2.2. Pseudo−Invariant Point Features with Multiple Bands (Point−Multi)

To account for the effects of adjacent bands, all bands in the reference images were com-
pared using multivariate regression. The equation for invariant features with multiple−band
regression is expressed as:

Yi = ∑n
i=1 aiXi + b (5)

where ai is the ith band normalization coefficient and n is the band number of the subject image.
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The coefficient and fitting error were estimated from invariant point features using
multivariate regression (Table 3). R2 and RMSE show that the fitting accuracy of the red,
green, and blue bands is not the same as for bands 4–6. This appears to be because the
first three bands have low reflectance in both Landsat−8 OLI and Sentinel−2A images.
Fit using multiple bands was consistently more accurate than fit using single bands, but
with low fluctuation (Figure 3). Except for band 4, all bands are significantly affected by
adjacent bands, some with negative influences.

Table 3. Transfer coefficients and error of point−multi between Sentinel−2A and Landsat−8 OLI.

Sentinel−2A

Landsat8
Band−1 Band−2 Band−3 Band−4 Band−5 Band−6

Band−1 0.6386 0.5386 0.5773 −0.0735 0.5868 1.0106
Band−2 −0.5458 −0.3355 −0.8125 0.0166 −1.2052 −1.4804
Band−3 0.1608 0.1515 0.7489 −0.1694 0.0999 0.1242
Band−4 0.0768 0.1005 0.0639 0.9756 0.1713 0.1599
Band−5 −0.5442 −0.5553 −0.5363 −0.3156 0.1266 −0.6149
Band−6 0.6779 0.6665 0.6427 0.4385 0.8774 1.5224

Bias 0.0286 0.0443 0.0432 0.0182 0.0440 0.0412
R2 0.2982 0.3356 0.4222 0.7169 0.7733 0.6855

RMSE 0.0441 0.0445 0.0486 0.0460 0.0497 0.0535

3.3. Pseudo−Invariant Polygon Features−Based Normalization

Due to spatial resolution differences, the true geometrical position of each pixel covers
a unique range. This may result in very different data for the same locations from different
sensors. To mitigate this effect, we expanded pseudo−invariant features from polygon
points using the mean reflectance of selected areas to replace reflectance from selected
pixels. This has the effect of lowering the geometrical error, thus, reducing the uncertainty
that may be caused by non−corresponding points.

3.3.1. Pseudo−Invariant Polygon Features with the Single Band (Polygon−Single)

To avoid the influence of noncorresponding scatter points, the mean reflectance of
selected areas was substituted for pixel reflectance in regression analyses. When fitting
a single band, a much more precise equation is generated than that obtained from point
features. Correlation coefficients are all greater than 0.9, except for band 3 (Figure 5).

3.3.2. Pseudo−Invariant Polygon Features with Multiple Bands (Polygon−Multi)

Multivariate regression equations have similar high accuracy as single−band regres-
sion, even obtaining more precise correlations (Table 4). Bands 4, 5, and 6 are strongly
and positively influenced by corresponding bands while the others are greatly affected by
adjacent bands.

Table 4. Transfer coefficient and error of polygon−multi between Sentinel−2A and Landsat8−OLI.

Sentinel−2A

Landsat8
Band−1 Band−2 Band−3 Band−4 Band−5 Band−6

Band−1 0.6945 −0.0268 −0.0758 0.2168 −0.1613 0.1875
Band−2 0.2421 1.2244 0.7760 0.1973 1.0132 0.5372
Band−3 −0.1027 −0.1630 0.4461 −0.0332 −0.4453 −0.3343
Band−4 −0.0455 −0.0540 −0.0878 0.9290 0.0004 0.0350
Band−5 0.1315 0.1467 0.1451 0.2432 0.8925 −0.0506
Band−6 −0.1596 −0.1671 −0.1581 −0.3065 0.0135 0.8808

Bias −0.0070 −0.0113 −0.0123 −0.0240 −0.0368 −0.0293
R2 0.9667 0.9743 0.9785 0.9956 0.9977 0.9972

RMSE 0.0020 0.0021 0.0028 0.0043 0.0035 0.0029
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3.4. Histogram Matching

Histogram matching is one of the most common distribution−based radiation nor-
malization methods [35]. It can avoid subjectivity in the selection of pseudo point features
as well as image misregistration [36]. One simple way to conduct histogram matching is
to plot the histogram of the reference and subject images and use the mean differences
between the two to shift, or normalize, the subject histogram to the master [7]. The principle
of histogram matching is to calculate the frequency of image brightness accounting for
frequency variation. This approach has the clear advantage of using all pixels from images.
Here, reference and subject images are manually geospatially calibrated, and histogram
matching is applied to obtain a normalized comparison object.

4. Evaluation of Normalization Results

The Sentinel−2A data were calibrated using regression equations (above) and then
compared to the reference image. We use three perspectives to represent the accuracy of
calibrated results: band comparison, pixel comparison, and reflectance frequency.

4.1. Comparisons among Bands

To compare evaluation methods among bands, scatter analysis was applied to the
normalized subjects and reference images. The coefficient and bias of fitting equation results
are shown in Figure 6; normalization is much more precise when the fitting coefficient is
closer to 1 and the bias is closer to 0. Except for band 2 of point−multi, coefficients obtained
from polygon−multi are much closer to 0, which means the reflectance of the two images
has better radiometric consistency. The polygon−single method follows closely, and then,
in order, SpecLib−single and SpecLib−multi that only consider bandwidth. The fitting
coefficients are less than 1, which is counter to results from other methods. The bias results
show that the polygon−single and polygon−multi methods are relatively more accurate
for most bands. As indicated by R2 and RMSE evaluation (Figure 7), polygon−multi has
the best fit and point−multi the worst, indicating that the calibrated subject image has
satisfactory radiometric consistency with the reference image.
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Figure 7. Evaluation of scatter−fitting results.

4.2. Comparison of Each Pixel Normalization

The ultimate purpose of radiometric normalization is to obtain spectral curve con-
sistency at each pixel. In both R2 and RMSE maps, hyperspectral library−based nor-
malization methods have the lowest R2 and the highest RMSE (Figure 8). Among the
other methods, point−single and histogram matching have similar accuracy compared
to polygon−single and polygon−multi. Except for pixels in the water spectrum (blue
and dark blue in the R2 histogram matching map) and artificial (brightly colored areas in
the RMSE point−multi map), the pseudo−invariant polygon features−based normaliza-
tion has significantly greater accuracy than other methods. Pseudo−invariant polygon
features−based normalization has larger R2 and smaller RMSE (Table 5). As the study area
is an agricultural planting region, artificial pixels are few, slightly improving the accuracy
of polygon−based normalization.

4.3. Comparison of Image Frequency Distribution

After determining single and multivariate regression to the subject image, the re-
flectance frequency of each band was generated to compare with the frequency from the
reference image (Figure 9). The more the frequency curves overlap, the better the radiomet-
ric normalization result. The subject image frequency curves from all methods, except for
hyperspectral library−based normalization, are nearly identical to those of the reference
image reflectance frequency in bands 4, 5, and 6. Curve peaks are much closer between
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two images in all bands compared with the original frequency. Polygon−multi, histogram
matching, point−multi, and polygon−single perform better, matching the frequency peak
position. However, within bands 2 and 3, the frequency peak of subject images from
point−multi and polygon−single appear to be offset from the frequency peaks of reference
images. Point−multi, polygon−single, and polygon−multi methods provide the nearest
matching frequency peaks between two images. In these two areas, polygon−multi has the
highest radiometric normalization accuracy.
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5. Discussion
5.1. Variation of Pseudo−Invariant Point Features

The fitting coefficient of the point−single (Figure 4) and point−multi (Table 3) methods
are close to their respective mean reflectance variation (Figure 5 and Table 4) at each band.
Their correspondence indirectly explains the stability of regression relationships obtained
for polygon features. Indeed, it is artificial surfaces (Figure 4) that appear to vary irregularly,
inducing variation in regression correlations, and resulting in inaccurate normalization
results. We selected non−adjacent artificial points in the study area and used them to
center the chosen polygon region, point variation, and mean value of 115 different rectangle
regions (each rectangle includes 5 × 5 pixels; Figures 10 and 11). All bands have pixels
greater than 0.5 and lower than 0.1 in reflectance, and the higher and lower reflectance
pixels are not located in the same place (pixel No. in x−axis). If those pixels are considered
as pairwise points, a regression analysis may vary and not be universal. Using the mean
reflectance of a 5 × 5 pixel area can reduce the influence of bright or dim pixels, increasing
the similarity of artificial pixel reflectance. By increasing the polygon size from 3 × 3 to
101 × 101 pixels, the variance of mean reflectance in each band is affected (Figure 12).
The lower the variance is, the fewer abnormal artificial points the image contains, and
with the increase in polygon size, the variance of mean artificial reflectance decreases. In
addition, we use all the image pixels in linear regression (Figure 13), compared with the
polygon−single (Figure 5), and found they were significantly affected by the artificial
points. When the polygon size is large, the proportion of abnormal pixels decreases, but
the area will contain more land cover types and weaken the effect of artificial features. To
keep artificial spectral features, setting a suitable polygon size is essential for automatically
selecting polygon features for radiometric normalization.
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5.2. Limitations of Polygon Feature−Based Normalization Algorithms

For the most widely used relative radiometric normalization algorithms, automatically
selecting pseudo−invariant point features is the most important step [37]. How to extract
pseudo−invariant polygon features effectively and precisely is, therefore, fundamental to
preprocessing. In Section 4.1, we discussed the influence of polygon size. Integrating the
pseudo−invariant points with a suitable polygon size, as demonstrated by Kim, Pyeon [38],
Zhou, Liu [24], and Lin, Wang [25], is a practical way to automatically select polygon
features and will be included in future research and monitoring.

In this study, we only considered contemporary remote sensing images. Due to
changing atmospheric conditions over time, regression relationships are not universal,
especially in temporal sequences. When normalizing temporal image radiation, it is
necessary to extract multiple invariant polygon characteristics and establish separate
regression equations for each. Over the history of remote image data collection, most
differences in radiation have been caused by atmospheric conditions. This kind of radiation
normalization usually relies on roads, developments, and other types of artificial surfaces
for georeferencing. However, different image resolutions and spatial mismatches may
result in the same pixel from two images containing different landcover types and different
endmember abundance. Unlike artificial surfaces, land cover types usually change with the
seasons, thus, image data across periods may not maintain radiation consistency at the pure
pixel scale. However, mixed pixel decomposition can extract pure artificial surface radiation
of invariant feature points and improve radiation normalization accuracy. Our study
highlights avenues to be explored in future research relying on polygon feature−based
normalization. We considered a variety of ground object types in a ground survey. PIFs
were determined by manual processing, which will affect the application in an area with or
without limited samples. Classification methods to automatically extract PIFs are active



Appl. Sci. 2023, 13, 2525 13 of 16

methods that will be discussed in future studies, as will the comparison to some classical
algorithms, such as IRMAD [28] and key−points−based RRN [18,39], to identify the
accuracy and efficiency of these algorithms.
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6. Conclusions

We propose novel relative radiometric normalization algorithms based on pseudo−invariant
polygon features with single−band and multiple−band regression, called polygon−single
and polygon−multi methods. In comparison to normalization algorithms based on
pseudo−invariant point features, hyperspectral features, and histogram matching, the
proposed methods are more accurate when using contemporaneous Sentinel−2A and
Landsat−8 OLI image radiometric normalization. They are followed by histogram match-
ing, pseudo−invariant point features−based normalization, and hyperspectral library−based
normalization. The comparative results in each band show that polygon−multi has the
best scatter fitting, especially for bands 2 and 3. Polygon−multi and polygon−single
are the most accurate (R2 = 0.9948, 0.9945 and RMSE = 0.0095, 0.0097, respectively) for
each pixel comparison. The reflectance frequency of the whole image also illustrates
that polygon−multi and polygon−single have the best shape fitting and are close to the
histogram matching algorithm. Our multiple−band regression analysis indicates that
the adjacent bands have a large influence and the fit of pseudo−invariant features using
multiple−band data achieved is higher and provides more accurate normalized reflectance
than that with a single band. Using the mean reflectance of selected polygons to replace
point reflectance can effectively eliminate the influence of abnormal (artificial) points,
making the regression equation more universal. The proposed algorithms have distinct
advantages over other methods, especially for the normalization of artificial surface pixels.
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