Physicochemical and Molecular Properties of Spelt and Wheat Starches Illuminated with UV Light
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Irradiation of Starches with Ultraviolet (UV) Radiation
2.3. Molecular Weight Distribution
2.4. Determining the Size of the Structural Units of Amylopectin
2.5. ATR-FTIR Spectroscopy
2.6. Morphology
2.7. X-ray Diffraction (XRD)
2.8. Susceptibility to α-Amylolysis
2.9. Wavelength of Maximum Absorption
2.10. Statistical Analysis
3. Results and Discussion
3.1. Molecular Weight Distribution
3.2. Determining the Size of the Structural Units of Amylopectin
3.3. ATR-FTIR Spectroscopy
3.4. Morphology
3.5. X-ray Diffraction (XRD)
3.6. Susceptibility to α-Amylolysis
3.7. Wavelength of Maximum Absorption
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Starch ** | λmax [nm] | BV | E640/E525 |
---|---|---|---|
Spelt | 604.0 ± 0.5 | 0.363 ± 0.004 | 1.40 |
Spelt-5 | 604.0 ± 0.5 | 0.396 ± 0.005 | 1.49 |
Spelt-15 | 604.0 ± 0.4 | 0.379 ± 0.005 | 1.36 |
Spelt-25 | 604.0 ± 0.5 | 0.381 ± 0.010 | 1.37 |
Spelt-50 | 603.0 ± 0.6 | 0.396 ± 0.005 | 1.43 |
Wheat | 605.0 ± 0.5 | 0.348 ± 0.005 | 1.47 |
Wheat-5 | 604.0 ± 0.5 | 0.327 ± 0.004 | 1.43 |
Wheat-15 | 604.0 ± 0.6 | 0.369 ± 0.005 | 1.46 |
Wheat-25 | 606.0 ± 0.5 | 0.371 ± 0.006 | 1.45 |
Wheat-50 | 606.0 ± 0.5 | 0.363 ± 0.005 | 1.45 |
References
- Shahabi-Ghahfarrokhi, I.; Goudarzi, V.; Babaei-Ghazvini, A. Production of starch based biopolymer by green photochemical reaction at different UV region as a food packaging material: Physicochemical characterization. Int. J. Biol. Macromol. 2019, 122, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Bertolini, A.C.; Mestres, C.; Colonna, P.; Raffi, J. Free radical formation in UV- and gamma-irradiated cassava starch. Carbohydr. Polym. 2001, 44, 269–271. [Google Scholar] [CrossRef]
- Kurdziel, M.; Łabanowska, M.; Pietrzyk, S.; Pająk, P.; Krolikowska, K.; Szwengiel, A. The effect of UV-B irradiation on structural and functional properties of corn and potato starches and their components. Carbohydr. Polym. 2022, 289, 119439. [Google Scholar] [CrossRef]
- Vatanasuchart, N.; Naivikul, O.; Charoenrein, S.; Sriroth, K. Molecular properties of cassava starch modified with different UV irradiations to enhance baking expansion. Carbohydr. Polym. 2005, 61, 80–87. [Google Scholar] [CrossRef]
- Takahashi, T.; Kihara, Y. Effects of far-ultraviolet radiation on potato starch. Nippon Nogei Kagaku Kaishi. 1965, 34, 88. [Google Scholar] [CrossRef]
- Gholap, A.V.; Marondeze, L.H.; Tomasik, P. Dextrinization of starch with nitrogen laser. Starch/Stärke 1993, 45, 430–432. [Google Scholar] [CrossRef]
- Azuma, J.; Hosobushi, T.; Katada, T. A method and apparatus for decomposition of polysaccharides by carbon dioxide laser beam. Jpn. Kokai Tokkyo Koho 1990, 224, 836. [Google Scholar]
- Zucca, C. Mucinolytic action of ultraviolet rays on some polysaccharides. 1st Botan. Univ. Lab. Crittoge. Pavia Atti. 1953, 10, 85. [Google Scholar]
- Merlin, A.; Fouassier, J.P. Etude de radic aux libres formés par irradiation ultaviolette de l’amidon: Application aux reactions de photodegradation et de photogreffage. Macromol. Chem. Macromol. Symp. 1981, 182, 3053–3068. [Google Scholar] [CrossRef]
- Phillips, G.O.; Rickards, T. Photodegradation of carbohydrates. Part IV. Direct photolysis of D-glucose in aqueous solution. J. Chem. Soc. B Phys. Org. 1969, 4, 445–461. [Google Scholar] [CrossRef]
- Kurdziel, M.; Filek, M.; Łabanowska, M. The impact of short-term UV irradiation on grains of sensitive and tolerant cereal genotypes studied by EPR. J. Sci. Food Agric. 2018, 98, 2607–2616. [Google Scholar] [CrossRef] [PubMed]
- Fiedorowicz, M.; Tomasik, P.; You, S.; Lim, S.T. Molecular Distribution and Pasting Properties of UV-Irradiated Corn Starches. Starch/Stärke 1999, 51, 126–131. [Google Scholar] [CrossRef]
- Bertolini, A.C.; Mestres, C.; Raffi, J.; Buleon, A.; Lerner, D.; Colonna, P. Photodegradation of cassava and corn starches. J. Agric. Food Chem. 2001, 49, 675–682. [Google Scholar] [CrossRef]
- Bhat, R.; Karim, A.A. Impact of radiation processing on starch. Compr. Rev. Food Sci. Food Saf. 2009, 8, 45–48. [Google Scholar] [CrossRef]
- Richter, M.; Augustat, S.; Schierbaum, F. Ausgewählte Methoden der Stärkechemie. Leipz. VEB Fachb. 1968, 254. [Google Scholar] [CrossRef]
- Nowak, E.; Krzeminska-Fiedorowicz, L.; Khachatryan, G.; Fiedorowicz, M. Comparison of molecular structure and selected physicochemical properties of spelt wheat and common wheat starches. J. Food Nutr. Res. 2014, 53, 31–38. [Google Scholar]
- Nowak, E.; Khachatryan, G.; Wisła-Świder, A. Structural changes of different starches illuminated with linearly polarised visible light. Food Chem. 2021, 344, 128693. [Google Scholar] [CrossRef]
- Bello-Pérez, L.A.; Paredes-Lopez, O.; Roger, P.; Colonna, P. Molecular characterization of some amylopectins. Cereal Chem. 1996, 73, 12–17. [Google Scholar]
- Gerard, C.; Colonna, P.; Buleon, A.; Planchot, V. Amylolysis of maize mutant starches. J. Sci. Food Agric. 2001, 81, 1281–1287. [Google Scholar] [CrossRef]
- Morrison, W.R.; Lainglet, B. An improved colorimetric procedure for determining apparent and total amylose in cereal and other starches. J. Cereal Sci. 1983, 1, 9–20. [Google Scholar] [CrossRef]
- Sriburi, P.; Hill, S.E.; Barclay, F. Depolymerisation of cassava starch. Carbohydr. Polym. 1999, 38, 2111–2118. [Google Scholar] [CrossRef]
- Kurdziel, M.; Łabanowska, M.; Pietrzyk, S.; Sobolewska-Zielińska, J.; Michalec, M. Changes in the physicochemical properties of barley and oat starches upon the use of environmentally friendly oxidation methods. Carbohydr. Polym. 2019, 210, 339–349. [Google Scholar] [CrossRef] [PubMed]
- Bajer, D.; Kaczmarek, H.; Bajer, K. The structure and properties of different types of starch exposed to UV radiation: A comparative study. Carbohydr. Polym. 2013, 98, 477–482. [Google Scholar] [CrossRef] [PubMed]
- Hizukuri, S. Polymodal distribution of the chain lengths of amylopectins, and its significance. Carbohydr. Res. 1986, 147, 342–347. [Google Scholar] [CrossRef]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure—A joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef]
- Capron, I.; Robert, P.; Colonna, P.; Brogly, M.; Planchot, V. Starch in rubbery and glassy states by FTIR spectroscopy. Carbohydr. Polym. 2007, 68, 249–259. [Google Scholar] [CrossRef]
- Lee, J.S.; Kumar, R.N.; Rozman, H.D.; Azemi, B.M.N. Pasting, swelling and solubility properties of UV initiated starch-graft-poly(AA). Food Chem. 2005, 91, 203–211. [Google Scholar] [CrossRef]
- Wilson, J.D.; Bechtel, D.B.; Wilson, G.W.T.; Seib, P.A. Bread Quality of Spelt Wheat and Its Starch. Cereal Chem. 2008, 85, 629–638. [Google Scholar] [CrossRef]
- Shevkani, K.; Singh, N.; Bajaj, R.; Kaur, A. Wheat starch production, structure, functionality and applications—A review. Int. J. Food Sci. Technol. 2017, 52, 38–58. [Google Scholar] [CrossRef]
- Fannon, J.E.; Hauber, R.J.; BeMiller, J.N. Surface Pores of Starch Granules. Cereal Chem. 1992, 69, 284. [Google Scholar]
- Guo, L.; Cui, B. The Role of Chain Structures on Enzymatic Hydrolysis of Potato and Sweet Potato Amylopectins. Starch/Stärke 2018, 70, 1800003. [Google Scholar] [CrossRef]
- Guo, L.; Li, J.; Gui, Y.; Zhu, Y.; Yu, B.; Tan, C.; Fang, Y.; Cui, B. Porous starches modified with double enzymes: Structure and adsorption properties. Int. J. Biol. Macromol. 2020, 164, 1758–1765. [Google Scholar] [CrossRef] [PubMed]
- Pfanneműller, B.; Mayerhofer, B.H.; Schulz, R.G. Conformation of amylose in aqueous solution: Optical ratatory dispersion and circular dichroism of amylose-iodine complexes and dependence on chain length of retrogradation of amylose. Biopolymers 1971, 10, 243–261. [Google Scholar] [CrossRef]
Starch ** | Mw × 107 Whole Peak | Rg [nm] Whole Peak |
---|---|---|
Spelt | 0.82 ± 0.24 a,b | 66.8 ± 3.0 a |
Spelt-5 | 0.57 ± 0.03 a,b | 86.2 ± 5.7 b |
Spelt-15 | 1.27 ± 0.45 b,c | 78.1 ± 5.0 a,b |
Spelt-25 | 0.59 ± 0.07 a,b | 65.1 ± 4.8 a |
Spelt-50 | 1.68 ± 0.20 c | 87.8 ± 3.6 b |
Wheat | 2.31 ± 0.35 D | 77.4 ± 3.2 C |
Wheat-5 | 0.29 ± 0.04 A | 71.6 ± 2.8 B,C |
Wheat-15 | 1.58 ± 0.13 C | 96.1 ± 3.7 D |
Wheat-25 | 0.82 ± 0.04 B | 67.6 ± 3.0 A,B |
Wheat-50 | 0.70 ± 0.05 A,B | 68.4 ± 2.5 A,B |
Starch ** | Fraction I | Fraction II | Fraction III |
---|---|---|---|
Mw | Mw | Mw | |
Spelt | 3.42 × 103 ± 0.14 a | 6.81 × 103 ± 0.10 a | 3.55 × 105 ± 0.06 c |
Spelt-5 | 5.42 × 103 ± 0.11 c | 1.84 × 104 ± 0.06 c | 1.48 × 105 ± 0.09 b |
Spelt-15 | 4.48 × 103 ± 0.09 b | 2.91 × 104 ± 0.09 e | 1.17 × 105 ± 0.08 a |
Spelt-25 | 7.58 × 103 ± 0.14 d | 2.13 × 104 ± 0.05 d | 1.15 × 105 ± 0.05 a |
Spelt-50 | 4.52 × 103 ± 0.15 b | 1.29 × 104 ± 0.08 b | 1.36 × 105 ± 0.06 b |
Starch ** | Fraction I | Fraction II | Fraction III | Fraction IV | Fraction V |
---|---|---|---|---|---|
Mw | Mw | Mw | Mw | Mw | |
Wheat | 5.28 × 103 ± 0.12 d | 8.21 × 103 ± 0.10 b | 1.73 × 104 ± 0.09 b | 1.69 × 105 ± 0.04 d | n.m. |
Wheat-5 | 5.67 × 103 ± 0.10 e | 2.07 × 104 ± 0.08 d | 2.60 × 104 ± 0.09 d | 4.85 × 104 ± 0.08 b | 6.77 × 105 ± 0.08 b |
Wheat-15 | 1.71 × 103 ± 0.08 b | 8.42 × 103 ± 0.09 b | 1.45 × 103 ± 0.12 a | 2.63 × 104 ± 0.07 a | 9.63 × 104 ± 0.09 c |
Wheat-25 | 3.59 × 103 ± 0.12 c | 1.52 × 104 ± 0.06 c | 3.11 × 104 ± 0.08 e | 1.55 × 105 ± 0.10 c | n.m. |
Wheat-50 | 1.07 × 103 ± 0.15 a | 4.22 × 103 ± 0.11 a | 2.39 × 104 ± 0.07 c | 3.12 × 104 ± 0.10 a | 4.60 × 105 ± 0.10 a |
Starch ** | k1∙10−3 [mg × mL−1/min−1] |
---|---|
Spelt | 3.52 ± 0.1 |
Spelt-5 | 4.39 ± 0.2 |
Spelt-15 | 7.09 ± 0.2 |
Spelt-25 | 8.55 ± 0.1 |
Spelt-50 | 7.79 ± 0.4 |
Wheat | 4.32 ± 0.2 |
Wheat-5 | 5.48 ± 0.2 |
Wheat-15 | 6.01 ± 0.1 |
Wheat-25 | 6.70 ± 0.1 |
Wheat-50 | 8.41 ± 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nowak, E.; Wisła-Świder, A.; Leszczyńska, T.; Koronowicz, A. Physicochemical and Molecular Properties of Spelt and Wheat Starches Illuminated with UV Light. Appl. Sci. 2023, 13, 2360. https://doi.org/10.3390/app13042360
Nowak E, Wisła-Świder A, Leszczyńska T, Koronowicz A. Physicochemical and Molecular Properties of Spelt and Wheat Starches Illuminated with UV Light. Applied Sciences. 2023; 13(4):2360. https://doi.org/10.3390/app13042360
Chicago/Turabian StyleNowak, Ewelina, Anna Wisła-Świder, Teresa Leszczyńska, and Aneta Koronowicz. 2023. "Physicochemical and Molecular Properties of Spelt and Wheat Starches Illuminated with UV Light" Applied Sciences 13, no. 4: 2360. https://doi.org/10.3390/app13042360
APA StyleNowak, E., Wisła-Świder, A., Leszczyńska, T., & Koronowicz, A. (2023). Physicochemical and Molecular Properties of Spelt and Wheat Starches Illuminated with UV Light. Applied Sciences, 13(4), 2360. https://doi.org/10.3390/app13042360