A Preliminary Study and Implementing Algorithm Using Finite State Automaton for Remote Identification of Drones
Abstract
:1. Introduction
2. RF Communication Devices
2.1. Bluetooth and Wi-Fi
2.2. 4G/5G Mobile Technology
2.3. IoT Technology
2.4. Satellites
2.5. ADS-B Technology
3. Wireless Network Controllers of Drones
4. Finite State Automaton in ER-ID
4.1. State Flow Parameters
4.2. Territorial Presentation
4.3. State Transition Diagram
5. Case Study
6. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Abdalla, A.S.; Marojevic, V. Communications Standards for Unmanned Aircraft Systems: The 3GPP Perspective and Research Drivers. IEEE Commun. Stand. Mag. 2021, 5, 70–77. [Google Scholar] [CrossRef]
- Hall, O.; Wahab, I. The Use of Drones in the Spatial Social Sciences. Drones 2021, 5, 112. [Google Scholar] [CrossRef]
- Alwateer, M.; Loke, S.W. Emerging Drone Services: Challenges and Societal Issues. Technol. Soc. Mag. IEEE 2020, 39, 47–51. [Google Scholar] [CrossRef]
- UAS Remote Identification Federal Aviation Administration. Available online: www.faa.gov/uas/getting_started/remote_id (accessed on 21 January 2023).
- Bassi, E. European Drones Regulation: Today’s Legal Challenges. In Proceedings of the IEEE International Conference on Unmanned Aircraft Systems (ICUAS), Atlanta, GA, USA, 11–14 June 2019; pp. 443–450. [Google Scholar] [CrossRef]
- Mobility and Transport. Keeping Drones Safe, Secure and Green: Commission Launches the European Network of U-space Demonstrators. Available online: Transport.ec.europa.eu/news/keeping-drones-safe-secure-and-green-commission-launches-european-network-u-space-demonstrators-2018-10-19_en (accessed on 21 January 2023).
- Tomaszewski, L.; Kołakowski, R.; Kukliński, S. Integration of U-space and 5GS for UAV services. In Proceedings of the 2020 IFIP Networking Conference (Networking), Paris, France, 22–26 June 2020; pp. 767–772. [Google Scholar]
- Zivilluftfahrt BAZL, Bundesamt für. Bundesamt Für Zivilluftfahrt (BAZL). Available online: www.bazl.admin.ch/bazl/de/home.html (accessed on 21 January 2023).
- Lieb; Volkert, A. Unmanned Aircraft Systems Traffic Management: A comparsion on the FAA UTM and the European CORUS ConOps based on U-space. In Proceedings of the IEEE AIAA/IEEE 39th Digital Avionics Systems Conference (DASC), San Antonio, TX, USA, 11–15 October 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Boekholt, A. Switzerland Launches First Nationwide Network Remote Identification Service for Drones—SUSI. 18 August 2021. Available online: susi.swiss/2021/08/18/switzerland-launches-first-nationwide-network-remote-identification-service-for-drones (accessed on 21 January 2023).
- Rokhsaritalemi, S.; Sadeghi-Niaraki, A.; Choi, S. Drone Trajectory Planning Based on Geographic Information System for 3D Urban Modeling. In Proceedings of the IEEE International Conference on Information and Communication Technology Convergence (ICTC), Jeju, Republic of Korea, 17–19 October 2018; pp. 1080–1083. [Google Scholar] [CrossRef]
- Network Remote Identification Service—SUSI. Available online: susi.swiss/network-remote-identification-service (accessed on 21 January 2023).
- Sellali, B.B.M.; Allali, A. Neuro—Fuzzy methods coupled to operational PID, to improve the flight parameters of a drone. In Proceedings of the IEEE 18th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Monastir, Tunisia, 21–23 December 2017; pp. 314–319. [Google Scholar] [CrossRef]
- Tedeschi, P.; Sciancalepore, S.; Di Pietro, R. ARID: Anonymous Remote IDentification of Unmanned Aerial Vehicles. In Proceedings of the Annual Computer Security Applications Conference, Online, 6–10 December 2021. [Google Scholar]
- Ezuma, M.; Erden, F.; Anjinappa, C.K.; Ozdemir, O.; Guvenc, I.; Matolak, D. UAV Detection and Identification. In UAV Communications for 5G and Beyond, Wiley-IEEE Press; Zeng, Y., Guvenc, I., Zhang, R., Geraci, G., Matolak, D.W., Eds.; 2020; Available online: https://onlinelibrary.wiley.com/doi/10.1002/9781119575795.ch3 (accessed on 21 November 2022).
- Kadil, V.V.; Adane, D.S. Maximizing range of signal strength by homemade Wi-Fi booster antenna. In Proceedings of the 2012 World Congress on Information and Communication Technologies, Trivandrum, India, 30 October–2 November 2012. [Google Scholar]
- Qi, W.; Zhen, J. Fusion positioning based on WiFi and Bluetooth for the area around the corner of stairs. In Proceedings of the IEEE 18th International Conference on Mobile Ad Hoc and Smart Systems (MASS), Denver, CO, USA, 4–7 October 2021; pp. 162–163. [Google Scholar] [CrossRef]
- Preetha, K.G. A Novel Solution to the Short Range Bluetooth Communication. arXiv 2011, arXiv:1111.2097. [Google Scholar]
- Bharath, S. IoT Based Smart Switch with Bluetooth Speaker Using MQTT Protocol: Node-red Framework. In Proceedings of the IEEE 2nd International Conference on Advances in Computing, Communication, Embedded and Secure Systems (ACCESS), Ernakulam, India, 2–4 September 2021; pp. 61–64. [Google Scholar] [CrossRef]
- Vyas, S.; Chaudhari, U.; Nandini, V.C.; Thakare, B. State of the Art Literature Survey 2015 on Bluetooth. Int. J. Comput. Appl. 2015, 131, 7–10. [Google Scholar] [CrossRef]
- Shan, G.; Roh, B.-H. Maximized Effective Transmission Rate Model for Advanced Neighbor Discovery Process in Bluetooth Low Energy 5.0. IEEE Internet Things J. 2022, 9, 16272–16283. [Google Scholar] [CrossRef]
- Available online: https://airccse.org/journal/ijcseit/papers/0811ijcseit06.pdf (accessed on 21 January 2023).
- Fourty, N.; Val, T.; Fraisse, P.; Mercier, J.J. Comparative analysis of new high data rate wireless communication technologies “From Wi-Fi to WiMAX. In Proceedings of the IEEE Joint International Conference on Autonomic and Autonomous Systems and International Conference on Networking and Services—(icas-isns’05), Papeete, France, 23–28 October 2005; p. 66. [Google Scholar] [CrossRef]
- Al-Alawi, A.I. WiFi Technology: Future Market Challenges and Opportunities. J. Comput. Sci. 2006, 2, 13–18. [Google Scholar] [CrossRef]
- Abdelgader, A.M.S.; Wu, L. Official IEEE 802.11 Working group project timelines—21 April 2022. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 22–24 October 2014; Volume 2, pp. 1–8. [Google Scholar]
- Salkinzis, A.K.; Chamzas, C. Mobile packet data technology: An insight into MOBITEX architecture. IEEE Pers. Commun. 1997, 4, 10–18. [Google Scholar] [CrossRef]
- Rumney, M. Looking Towards 4G: LTE-Advanced. In LTE and the Evolution to 4G Wireless-Design and Measurement Challenges; Wiley: Hoboken, NJ, USA, 2013; pp. 567–600. [Google Scholar] [CrossRef]
- Yu, C.; Chen, S.; Wang, F.; Wei, Z. Improving 4G/5G air interface security: A survey of existing attacks on different LTE layers. Comput. Netw. 2021, 201, 108532. [Google Scholar] [CrossRef]
- Ghosh, A.; Maeder, A.; Baker, M.; Chandramouli, D. 5G Evolution: A View on 5G Cellular Technology Beyond 3GPP Release 15. IEEE Access 2019, 7, 127639–127651. [Google Scholar] [CrossRef]
- Hao, Y. Investigation and Technological Comparison of 4G and 5G Networks. J. Comput. Commun. 2021, 9, 36–43. [Google Scholar] [CrossRef]
- Elayoubi, S.E.; Fallgren, M.; Spapis, P.; Zimmermann, G.; Martín-Sacristán, D.; Yang, C.; Jeux, S.; Agyapong, P.; Campoy, L.; Singh, S.; et al. 5G service requirements and operational use cases: Analysis and METIS II vision. In Proceedings of the IEEE European Conference on Networks and Communications (EuCNC), Athens, Greece, 27–30 June 2016; pp. 158–162. [Google Scholar] [CrossRef]
- Dangi, R.; Lalwani, P.; Choudhary, G.; You, I.; Pau, G. Study and Investigation on 5G Technology: A Systematic Review. Sensors 2022, 22, 26. [Google Scholar] [CrossRef]
- Hiramoto, T.; Takeuchi, K.; Mizutani, T.; Ueda, A.; Saraya, T.; Kobayashi, M.; Yamamoto, Y.; Makiyama, H.; Yamashita, T.; Oda, H.; et al. Ultra-low power and ultra-low voltage devices and circuits for IoT applications. In Proceedings of the IEEE Silicon Nanoelectronics Workshop (SNW), Honolulu, HI, USA, 12–13 June 2016; pp. 146–147. [Google Scholar] [CrossRef]
- Ghubaish, A.; Salman, T.; Jain, R. Experiments with a LoRaWAN-Based Remote ID System for Locating Unmanned Aerial Vehicles (UAVs). Wirel. Commun. Mob. Comput. 2019, 2019, 9060121. [Google Scholar] [CrossRef]
- Senadeera, S.D.A.P.; Kyi, S.; Sirisung, T.; Pongsupan, W.; Taparugssanagorn, A.; Dailey, M.N.; Wai, T.A. Cost-Effective and Low Power IoT-Based Paper Supply Monitoring System: An Application Modeling Approach. J. Low Power Electron. Appl. 2021, 11, 46. [Google Scholar] [CrossRef]
- Henkel, J.; Pagani, S.; Amrouch, H.; Bauer, L.; Samie, F. Ultra-low power and dependability for IoT devices (Invited paper for IoT technologies). In Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 954–959. [Google Scholar] [CrossRef]
- Noreen, U.; Bounceur, A.; Clavier, L. A study of LoRa low power and wide area network technology. In Proceedings of the 2017 International Conference on Advanced Technologies for Signal and Image Processing (ATSIP), Fez, Morocco, 22–24 May 2017; pp. 1–6. [Google Scholar] [CrossRef]
- Yuta, M.; Zhang, H.; Shin, K.; Hajime, N. High-Precision/Throughput Growth Measurement of Crops by Drone with Stereo Matching Based on RTK-GNSS and Single Camera. In Proceedings of the IEEE 9th Global Conference on Consumer Electronics (GCCE), Kobe, Japan, 13–16 October 2020; pp. 936–939. [Google Scholar] [CrossRef]
- Al-Darraji, I.; Derbali, M.; Jerbi, H.; Khan, F.Q.; Jan, S.; Piromalis, D.; Tsaramirsis, G. A technical framework for selection of autonomous uav navigation technologies and sensors. Comput. Mater. Contin. 2021, 68, 2771–2790. [Google Scholar] [CrossRef]
- Rupar, M.A. Airborne Beyond Line-of-Sight Communication Networks. IEEE Commun. Mag. 2020, 58, 34–39. [Google Scholar] [CrossRef]
- Hosseini, N.; Jamal, H.; Haque, J.; Magesacher, T.; Matolak, D.W. UAV Command and Control, Navigation and Surveillance: A Review of Potential 5G and Satellite Systems. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–10. [Google Scholar] [CrossRef]
- Tao, Z.; Xiaoming, T. High-accuracy radar calibration based on ADS-B. In Proceedings of the IET International Radar Conference 2015, Hangzhou, China, 14–16 October 2015; pp. 1–6. [Google Scholar] [CrossRef]
- Wu, Z.; Shang, T.; Guo, A. Security Issues in Automatic Dependent Surveillance—Broadcast (ADS-B): A Survey. IEEE Access 2020, 8, 122147–122167. [Google Scholar] [CrossRef]
- DJI Official. Available online: www.dji.com/flysafe/airsense (accessed on 21 January 2023).
- Dy, L.R.I.; Borgen, K.B.; Mott, J.H.; Sharma, C.; Marshall, Z.A.; Kusz, M.S. Validation of ADS-B Aircraft Flight Path Data Using Onboard Digital Avionics Information. In Proceedings of the IEEE Systems and Information Engineering Design Symposium (SIEDS), Charlottesville, VA, USA, 29–30 April 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Automatic Dependent Surveillance—Broadcast (ADS-B)|Federal Aviation Administration. Available online: www.faa.gov/about/office_org/headquarters_offices/avs/offices/afx/afs/afs400/afs410/ads-b (accessed on 21 January 2023).
- Saputro, J.A.; Hartadi, E.E.; Syahral, M. Implementation of GPS Attacks on DJI Phantom 3 Standard Drone as a Security Vulnerability Test. In Proceedings of the IEEE 1st International Conference on Information Technology, Advanced Mechanical and Electrical Engineering (ICITAMEE), Yogyakarta, Indonesia, 13–14 October 2020; pp. 95–100. [Google Scholar] [CrossRef]
- French, S. Mavic Air 2 ADS-B Is the New Drone Feature Every Should Be Talking About. The Drone Girl. 28 April 2020. Available online: www.thedronegirl.com/2020/04/28/mavic-air-2-ads-b (accessed on 21 January 2023).
- Arbuckle, P.D. U.S. activities in ADS-B systems implementation. In Proceedings of the IEEE Tyrrhenian International Workshop on Digital Communications—Enhanced Surveillance of Aircraft and Vehicles, Capri, Italy, 12–14 September 2011; pp. 41–46. [Google Scholar]
- Equip ADS-B|Federal Aviation Administration. Available online: https://www.faa.gov/nextgen/equipadsb/research/airspace/ (accessed on 21 January 2023).
- Swinney, C.J.; Woods, J.C. RF Detection and Classification of Unmanned Aerial Vehicles in Environments with Wireless Interference. In Proceedings of the IEEE International Conference on Unmanned Aircraft Systems (ICUAS), Athens, Greece, 15–18 June 2021; pp. 1494–1498. [Google Scholar] [CrossRef]
- Um, J.-S. Drones as Cyber-Physical Systems Concepts and Applications for the Fourth Industrial Revolution; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
- ADS-B Technology|Drone Tracking Transponders|ADS-B Receivers. Unmanned Systems Technology, 20 January 2023. Available online: www.unmannedsystemstechnology.com/company/aerobits (accessed on 21 January 2023).
- Casals, L.; Mir, B.; Vidal, R.; Gomez, C. Modeling the Energy Performance of LoRaWAN. Sensors 2017, 17, 2364. [Google Scholar] [CrossRef]
- What Is LoRaWAN&Reg; Specification—LoRa Alliance®. LoRa Alliance®. Available online: hz1.37b.myftpupload.com/about-lorawan (accessed on 21 January 2023).
- LoRa and LoRaWAN: Technical Overview|DEVELOPER PORTAL. Available online: Documentation/tech-papers-and-guides/lora-and-lorawan (accessed on 21 January 2023).
- Understanding Bluetooth Range|Bluetooth® Technology Website. Available online: www.bluetooth.com/learn-about-bluetooth/key-attributes/range (accessed on 21 January 2023).
- Tsira, V.; Nandi, G. Bluetooth Technology: Security Issues and Its Prevention. Int. J. Comput. Technol. Appl. 2014, 5, 1833. [Google Scholar]
- What Is the Range of a Typical Wi-Fi Network? Lifewire, 5 November 2020. Available online: www.lifewire.com/range-of-typical-wifi-network-816564 (accessed on 21 January 2023).
- Bhatia, R. Introduction & Features of 4G: A Review. Int. J. Eng. Res. Technol. (IJERT) 2015, 1–3. [Google Scholar] [CrossRef]
- Zou, L.; Javed, A.; Muntean, G.-M. Smart mobile device power consumption measurement for video streaming in wireless environments: WiFi vs. LTE. In Proceedings of the 2017 IEEE International symposium on broadband multimedia systems and broadcasting (BMSB), Cagliari, Italy, 7–9 June 2017; pp. 1–6. [Google Scholar] [CrossRef]
- A/S, Satlab. SRS-3 Full-Duplex S-Band Transceiver. Available online: www.satlab.com/products/srs-3 (accessed on 21 January 2023).
- 5G Speed Vs 5G range-What Is the Value of 5G Speed, 5G Range. Available online: www.rfwireless-world.com/Terminology/5G-Speed-Vs-5G-Range.html (accessed on 21 January 2023).
- Iridium 9603 Module. Iridium Satellite Communications. 29 July 2021. Available online: www.iridium.com/products/iridium-9603 (accessed on 21 January 2023).
System Name | Transmission Rate | Drone Energy Consumption (mW) | Transmission Distance | Cost Range (US $) |
---|---|---|---|---|
ADS-B [54] | Up to 27 kbps | 0.1 | 200 km | 160–300 |
LoRaWan IoT [55,56,57] | Up to 37.5 kbps | 0.15 | Up to 15 km | 12–20 |
Bluetooth [58,59] | Up to 24 Mbps | 56.7 | 10 m | 5–10 |
Wi-Fi [60] | Up 54 Mbps | 58.1 | 50 m indoors, 100 m outdoors | 2–10 |
4G [61,62] | Up 300 Mbps | 258.1 | 16 km | 40–60 |
Satellite [63] | Up to 500 Mbps for S-band. | 283.1 | From 400 km to 1000 km and inside the solar system | 200–1,000,000 |
5G [64] | Up 20 Gbps | 463.1 | Up to 1 km | 50–70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koulouris, C.; Dimitrios, P.; Al-Darraji, I.; Tsaramirsis, G.; Musa, M.J.; Papageorgas, P. A Preliminary Study and Implementing Algorithm Using Finite State Automaton for Remote Identification of Drones. Appl. Sci. 2023, 13, 2345. https://doi.org/10.3390/app13042345
Koulouris C, Dimitrios P, Al-Darraji I, Tsaramirsis G, Musa MJ, Papageorgas P. A Preliminary Study and Implementing Algorithm Using Finite State Automaton for Remote Identification of Drones. Applied Sciences. 2023; 13(4):2345. https://doi.org/10.3390/app13042345
Chicago/Turabian StyleKoulouris, Charalampos, Piromalis Dimitrios, Izzat Al-Darraji, Georgios Tsaramirsis, Mu’azu Jibrin Musa, and Panagiotis Papageorgas. 2023. "A Preliminary Study and Implementing Algorithm Using Finite State Automaton for Remote Identification of Drones" Applied Sciences 13, no. 4: 2345. https://doi.org/10.3390/app13042345
APA StyleKoulouris, C., Dimitrios, P., Al-Darraji, I., Tsaramirsis, G., Musa, M. J., & Papageorgas, P. (2023). A Preliminary Study and Implementing Algorithm Using Finite State Automaton for Remote Identification of Drones. Applied Sciences, 13(4), 2345. https://doi.org/10.3390/app13042345