3D Digital Image Correlation Analysis of Local Deformation Field of Different Endodontic Calcium Silicate Cements
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Reda, R.; Zanza, A.; Bhandi, S.; Biase, A.; Testarelli, L.; Miccoli, G. Surgical-anatomical evaluation of mandibular premolars by CBCT among the Italian population. Dent. Med. Probl. 2022, 59, 209–216. [Google Scholar] [CrossRef] [PubMed]
- Ingle, J.I. A standardized endodontic technique utilizing newly designed instruments and filling materials. Oral Surg. Oral Med. Oral Pathol. 1961, 14, 83–91. [Google Scholar] [CrossRef]
- Pinheiro, L.S.; Kopper, P.M.P.; Quintana, R.M.; Scarparo, R.K.; Grecca, F.S. Does MTA provide a more favourable histological response than other materials in the repair of furcal perforations? A systematic review. Int. Endod. J. 2021, 54, 2195–2218. [Google Scholar] [CrossRef] [PubMed]
- Sarao, S.K.; Berlin-Broner, Y.; Levin, L. Occurrence and risk factors of dental root perforations: A systematic review. Int. Dent. J. 2020, 71, 96–105. [Google Scholar] [CrossRef] [PubMed]
- Mancino, D.; Meyer, F.; Haikel, Y. Improved single visit management of old infected iatrogenic root perforations using Biodentine®®. G. Ital. Di Endod. 2018, 32, 17–24. [Google Scholar]
- Estrela, C.; Decurcio, D.A.; Rossi-Fedele, G.; Silva, J.A.; Guedes, O.A.; Borges, Á.H. Root perforations: A review of diagnosis, prognosis and materials. Braz. Oral Res. 2018, 32 (Suppl. 1), e73. [Google Scholar] [CrossRef] [Green Version]
- Askerbeyli Örs, S.; Aksel, H.; Küçükkaya Eren, S.; Serper, A. Effect of perforation size and furcal lesion on stress distribution in mandibular molars: A finite element analysis. Int. Endod. J. 2019, 52, 377–384. [Google Scholar] [CrossRef]
- PalatyŃska-Ulatowska, A.; BuŁa, K.; Klimek, L. Influence of sodium hypochlorite and ultrasounds on surface features and chemical composition of Biodentine tricalcium silicate-based material. Dent. Mater. J. 2020, 39, 587–592. [Google Scholar] [CrossRef] [Green Version]
- Guneser, M.B.; Akbulut, M.B.; Eldeniz, A.U. Effect of various endodontic irrigants on the push-out bond strength of biodentine and conventional root perforation repair materials. J. Endod. 2013, 39, 380–384. [Google Scholar] [CrossRef]
- Torabinejad, M.; Parirokh, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part II: Other clinical applications and complications. Int. Endod. J. 2018, 51, 284–317. [Google Scholar] [CrossRef] [PubMed]
- Parirokh, M.; Torabinejad, M.; Dummer, P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: An updated overview—Part I: Vital pulp therapy. Int. Endod. J. 2018, 51, 177–205. [Google Scholar] [CrossRef] [PubMed]
- Grech, L.; Mallia, B.; Camilleri, J. Investigation of the physical properties of tricalcium silicate cement-based root-end filling materials. Dent. Mater. 2013, 29, e20–e28. [Google Scholar] [CrossRef]
- Kaur, M.; Singh, H.; Dhillon, J.S.; Batra, M.; Saini, M. MTA versus biodentine: Review of literature with a comparative analysis. J. Clin. Diagn. Res. 2017, 11, ZG01–ZG05. [Google Scholar] [CrossRef] [PubMed]
- Malkondu, Ö.; Karapinar Kazandağ, M.; Kazazoğlu, E. A review on biodentine, a contemporary dentine replacement and repair material. Biomed. Res. Int. 2014, 2014, 160951. [Google Scholar] [CrossRef] [Green Version]
- Kot, K.; Kucharski, Ł.; Marek, E.; Safranow, K.; Lipski, M. Alkalizing Properties of Six Calcium-Silicate Endodontic Biomaterials. Mater. (Basel) 2022, 15, 6482. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, J. Classification of Hydraulic Cements Used in Dentistry. Front. Dent. Med. 2020, 1, 9. [Google Scholar] [CrossRef]
- Ashi, T.; Mancino, D.; Hardan, L.; Bourgi, R.; Zghal, J.; Macaluso, V.; Al-Ashkar, S.; Alkhouri, S.; Haikel, Y.; Kharouf, N. Physicochemical and Antibacterial Properties of Bioactive Retrograde Filling Materials. Bioengineering 2022, 9, 624. [Google Scholar] [CrossRef] [PubMed]
- Ballal, V.; Marques, J.N.; Campos, C.N.; Lima, C.O.; Simão, R.A.; Prado, M. Effects of chelating agent and acids on Biodentine. Aust. Dent. J. 2018, 63, 170–176. [Google Scholar] [CrossRef]
- Rahimi, S.; Ghasemi, N.; Shahi, S.; Lotfi, M.; Froughreyhani, M.; Milani, A.S.; Bahari, M. Effect of blood contamination on the retention characteristics of two endodontic biomaterials in simulated furcation perforations. J. Endod. 2013, 39, 697–700. [Google Scholar] [CrossRef]
- Rebolloso de Barrio, E.; Gancedo-Caravia, L.; García-Barbero, E.; Pérez-Higueras, J.J. Effect of exposure to root canal irrigants on the push-out bond strength of calcium silicate-based cements. Clin. Oral Investig. 2021, 25, 3267–3274. [Google Scholar] [CrossRef]
- Elnaghy, A.M. Influence of acidic environment on properties of biodentine and white mineral trioxide aggregate: A comparative study. J. Endod. 2014, 40, 953–957. [Google Scholar] [CrossRef] [PubMed]
- Jovanović, L.Z.; Bajkin, B.V. Scanning electron microscopy analysis of marginal adaptation of mineral trioxide aggregate, tricalcium silicate cement, and dental amalgam as a root end filling materials. Microsc. Res. Tech. 2021, 84, 2068–2074. [Google Scholar] [CrossRef] [PubMed]
- Amoroso-Silva, P.A.; Marciano, M.A.; Guimarães, B.M.; Duarte, M.A.; Sanson, A.F.; Moraes, I.G. Apical adaptation, sealing ability and push-out bond strength of five root-end filling materials. Braz. Oral Res. 2014, 28, S1806–S83242014000100252. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Refaei, P.; Jahromi, M.Z.; Moughari, A.A.K. Comparison of the microleakage of mineral trioxide aggregate, calcium-enriched mixture cement, and Biodentine orthograde apical plug. Dent. Res. J. 2020, 17, 66–72. [Google Scholar]
- Toia, C.C.; Teixeira, F.B.; Cucco, C.; Valera, M.C.; Cavalcanti, B.N. Volumetric Evaluation of Voids and Gaps of Different Calcium-Silicate Based Materials Used in Furcal Perforations: A Micro-CT Study. Dent. J. 2022, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, J.; Mallia, B. Evaluation of the dimensional changes of mineral trioxide aggregate sealer. Int. Endod. J. 2011, 44, 416–424. [Google Scholar] [CrossRef]
- Zanza, A.; Reda, R.; Vannettelli, E.; Donfrancesco, O.; Relucenti, M.; Bhandi, S.; Patil, S.; Mehta, D.; Krithikadatta, J.; Testarelli, L. The influence of Thermomechanical Compaction on the Marginal Adaptation of 4 Different Hydraulic Sealers: A Comparative Ex Vivo Study. J. Compos. Sci. 2023, 7, 10. [Google Scholar] [CrossRef]
- Torres, F.F.E.; Guerreiro-Tanomaru, J.M.; Bosso-Martelo, R.; Espir, C.G.; Camilleri, J.; Tanomaru-Filho, M. Solubility, Porosity, Dimensional and Volumetric Change of Endodontic Sealers. Braz. Dent. J. 2019, 30, 368–373. [Google Scholar] [CrossRef] [Green Version]
- Küçükkaya Eren, S.; Aksel, H.; Askerbeyli Örs, S.; Serper, A.; Koçak, Y.; Ocak, M.; Çelik, H.H. Obturation quality of calcium silicate-based cements placed with different techniques in teeth with perforating internal root resorption: A micro-computed tomographic study. Clin. Oral Investig. 2019, 23, 805–811. [Google Scholar] [CrossRef]
- Mitrović, N.; Milošević, M.; Momčilović, N.; Petrović, A.; Mišković, Ž.; Sedmak, A.; Popović, P. Local strain and stress analysis of globe valve housing subjected to external axial loading. Key Eng. Mater. 2013, 586, 214–217. [Google Scholar] [CrossRef]
- Travica, M.; Mitrovic, N.; Petrovic, A.; Trajkovic, I.; Milosevic, M.; Sedmak, A.; Berto, F. Experimental Evaluation of Hoop Stress–Strain State of 3D-Printed Pipe Ring Tensile Specimens. Metals 2022, 12, 1560. [Google Scholar] [CrossRef]
- Trajković, I.; Milošević, M.; Travica, M.; Rakin, M.; Mladenović, G.; Kudrjavceva, L.J.; Medjo, B. Novel method for measurement of pipeline materials fracture resistance-examination on selective laser sintered cylindrical specimens. Sci. Sinter. 2022, 54, 373–386. [Google Scholar] [CrossRef]
- Tanasić, I.; Tihaček-Sojić, L.J.; Mitrović, N.; Milić Lemić, A.; Vukadinović, M.; Marković, A.; Milošević, M. An attempt to create a standardized (reference) model for experimental investigations on implant’s sample. Measurement 2015, 72, 37–42. [Google Scholar] [CrossRef]
- Tanasić, I.; Tihaček-Sojić, L.J.; Milić Lemić, A.; Djurić, M.; Mitrović, N.; Milošević, M.; Sedmak, A. Optical aspect of deformation analysis in the bone-denature complex. Coll. Antropol. 2012, 36, 173–178. [Google Scholar]
- Lezaja, M.; Veljovic, D.; Manojlovic, D.; Milosevic, M.; Mitrovic, N.; Janackovic, D.; Miletic, V. Bond strength of restorative materials to hydroxyapatite inserts and dimensional changes of insert-containing restorations during polymerization. Dent. Mater. 2015, 31, 171–181. [Google Scholar] [CrossRef]
- Mitrović, A.; Antonović, D.; Tanasić, I.; Mitrović, N.; Bakić, G.; Popović, D.; Milošević, M. 3D Digital Image Correlation Analysis of the Shrinkage Strain in Four Dual Cure Composite Cements. Biomed. Res. Int. 2019, 2019, 2041348. [Google Scholar] [CrossRef]
- Ya, S.; Bin, P.; Yan, Y.; Ma, J.; Markus, H. What do different tests tell about the mechanical and biological properties of bioceramic materials? Endod. Topics. 2015, 32, 47–85. [Google Scholar] [CrossRef]
- Bansal, K.; Jain, A.; Aggarwal, N.; Jain, A.; Biodentine, V.S. MTA: A comparitive analysis. Int. J. Oral Health Dent. 2020, 6, 201–208. [Google Scholar] [CrossRef]
- Stefaneli Marques, J.H.; Silva-Sousa, Y.T.C.; Rached-Júnior, F.J.A.; Macedo, L.M.D.; Mazzi-Chaves, J.F.; Camilleri, J.; Sousa-Neto, M.D. Push-out bond strength of different tricalcium silicate-based filling materials to root dentin. Braz. Oral Res. 2018, 32, e18. [Google Scholar] [CrossRef] [Green Version]
- Al Tuwirqi, A.A.; El Ashiry, E.A.; Alzahrani, A.Y.; Bamashmous, N.; Bakhsh, T.A. Tomographic Evaluation of the Internal Adaptation for Recent Calcium Silicate-Based Pulp Capping Materials in Primary Teeth. Biomed. Res. Int. 2021, 2021, 5523145. [Google Scholar] [CrossRef]
- Formosa, L.M.; Mallia, B.; Camilleri, J. The effect of curing conditions on the physical properties of tricalcium silicate cement for use as a dental biomaterial. Int. Endod. J. 2012, 45, 326–336. [Google Scholar] [CrossRef] [PubMed]
- Uyanik, M.O.; Nagas, E.; Sahin, C.; Dagli, F.; Cehreli, Z.C. Effects of different irrigation regimens on the sealing properties of repaired furcal perforations. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 107, e91–e95. [Google Scholar] [CrossRef]
- Reszka, P.; Nowicka, A.; Lipski, M.; Dura, W.; Droździk, A.; Woźniak, K. A Comparative Chemical Study of Calcium Silicate-Containing and Epoxy Resin-Based Root Canal Sealers. Biomed. Res. Int. 2016, 2016, 9808432. [Google Scholar] [CrossRef] [PubMed]
- Storm, B.; Eichmiller, F.C.; Tordik, P.A.; Goodell, G.G. Setting expansion of gray and white mineral trioxide aggregate and Portland cement. J. Endod. 2008, 34, 80–82. [Google Scholar] [CrossRef]
- Komabayashi, T.; Spångberg, L.S. Comparative analysis of the particle size and shape of commercially available mineral trioxide aggregates and Portland cement: A study with a flow particle image analyzer. J. Endod. 2008, 34, 94–98. [Google Scholar] [CrossRef]
- Gandolfi, M.G.; Iacono, F.; Agee, K.; Siboni, F.; Tay, F.; Pashley, D.H.; Prati, C. Setting time and expansion in different soaking media of experimental accelerated calcium-silicate cements and ProRoot MTA. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2009, 108, e39–e45. [Google Scholar] [CrossRef] [PubMed]
- Mustafa, R.; Alshali, R.Z.; Silikas, N. The effect of desiccation on water sorption, solubility and hygroscopic volumetric expansion of dentine replacement materials. Dent. Mater. 2018, 34, e205–e213. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Darvell, B.W.; Wu, R.C. “MTA”-an Hydraulic Silicate Cement: Review update and setting reaction. Dent. Mater. 2011, 27, 407–422. [Google Scholar] [CrossRef]
- Kelmendi, T.; Koçani, F.; Kurti, A.; Kamberi, B.; Kamberi, A. Comparison of Sealing Abilities Among Zinc Oxide Eugenol Root-Canal Filling Cement, Antibacterial Bioceramic Paste, and Epoxy Resin, using Enterococcus faecalis as a Microbial Tracer. Med. Sci. Monit. Basic Res. 2022, 28, e936319. [Google Scholar] [CrossRef]
- Camilleri, J.; Sorrentino, F.; Damidot, D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent. Mater. 2013, 29, 580–593. [Google Scholar] [CrossRef]
- Sheethal Dsouza, T.; Shetty, A.; Dsouza, N. Evaluation of pH, Calcium Ion Release, and Dimensional Stability of an Experimental Silver Nanoparticle-Incorporated Calcium Silicate-Based Cement. Bioinorg. Chem. Appl. 2021, 2021, 3919543. [Google Scholar] [CrossRef] [PubMed]
- Akinci, L.; Simsek, N.; Aydinbelge, H.A. Physical properties of MTA, BioAggregate and Biodentine in simulated conditions: A micro-CT analysis. Dent. Mater. J. 2020, 39, 601–607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Camilleri, J.; Grech, L.; Galea, K.; Keir, D.; Fenech, M.; Formosa, L.; Damidot, D.; Mallia, B. Porosity and root dentine to material interface assessment of calcium silicate-based root-end filling materials. Clin. Oral Investig. 2014, 18, 1437–1446. [Google Scholar] [CrossRef]
- Aksel, H.; Küçükkaya Eren, S.; Askerbeyli Õrs, S.; Karaismailoğlu, E. Surface and vertical dimensional changes of mineral trioxide aggregate and biodentine in different environmental conditions. J. Appl. Oral Sci. 2018, 27, e20180093. [Google Scholar] [CrossRef]
- Savić-Stanković, T.V. Analysis of Tricalcium Silicate (Biodentin) as a Dentin Substitute under Composite Restorations in Posteriorteeth (Doctoral dissertation). 2014. Available online: https://nardus.mpn.gov.rs/handle/123456789/5329 (accessed on 25 May 2016).
- Chung, S.Y.; Kim, Y.H.; Chae, Y.K.; Jo, S.S.; Choi, S.C.; Nam, O.H. Void characteristics and tortuosity of calcium silicate-based cements for regenerative endodontics: A micro-computed tomography analysis. BMC Oral Health 2021, 21, 565. [Google Scholar] [CrossRef]
- Lu, H.Y.; Hou, J.; Takahashi, Y.; Tamura, Y.; Kasugai, S.; Kuroda, S.; Nakata, H. Periodontal Pathogen Adhesion, Cytotoxicity, and Surface Free Energy of Different Materials for an Implant Prosthesis Screw Access Hole. Medicina 2022, 58, 329. [Google Scholar] [CrossRef] [PubMed]
- Camilleri, J. Hydration mechanisms of mineral trioxide aggregate. Int. Endod. J. 2007, 40, 462–470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.R.; Nosrat, A.; Fouad, A.F. Interfacial characteristics of Biodentine and MTA with dentine in simulated body fluid. J. Dent. 2015, 43, 241–247. [Google Scholar] [CrossRef]
Trait | Source of Variation | Degrees of Freedom, dF | Mean Square, MS | F-Value | P-Value |
---|---|---|---|---|---|
SS | Material | 2 | 449.684 | 1422.34 | <0.0001 |
Disc (Material) | 12 | 6.291 | 19.90 | <0.0001 | |
SO | Material | 2 | 509.957 | 826.61 | <0.0001 |
Disc (Material) | 12 | 11.533 | 18.69 | <0.0001 |
Trait | Source of Variation | Degrees of Freedom, dF | Mean Square, MS | F-Value | P-Value |
---|---|---|---|---|---|
SS | Material | 2 | 35.044 | 287.94 | <0.0001 |
Disc (Material) | 15 | 1.698 | 13.96 | <0.0001 | |
SO | Material | 2 | 25.628 | 49.11 | <0.0001 |
Disc (Material) | 15 | 4.355 | 8.35 | <0.0001 |
Material | Difference | Degrees of Freedom, dF | t-Value | Pr > ItI |
---|---|---|---|---|
Biodentine–dentin | SS-SO | 276 | 14.76 | <0.0001 |
MTA–dentin | SS-SO | 265 | −0.96 | 0.3389 |
Well-Root PT–dentin | SS-SO | 248 | 11.62 | <0.0001 |
Biodentine–Teflon | SS-SO | 323 | 44.09 | <0.0001 |
MTA–Teflon | SS-SO | 340 | 3.460 | 0.0006 |
Well-Root PT–Telfon | SS-SO | 282 | 0.05 | 0.9633 |
Trait | Source of Variation | Degrees of Freedom, dF | Mean Square, MS | F-Value | P-Value |
---|---|---|---|---|---|
Biodentin SS | Dentin/Teflon | 1 | 376.120 | 720.15 | <0.0001 |
Biodentin SO | Dentin/Teflon | 1 | 517.951 | 501.16 | <0.0001 |
MTA SS | Dentin/Teflon | 1 | 12.266 | 65.55 | <0.0001 |
MTA SO | Dentin/Teflon | 1 | 27.120 | 50.70 | <0.0001 |
Well-Root PT SS | Dentin/Teflon | 1 | 2.756 | 43.27 | <0.0001 |
Well-Root PT SO | Dentin/Teflon | 1 | 41.560 | 133.22 | <0.0001 |
Material | Disc Type | Pearson’s Correlation Coefficient Between SS and SO | P-Value |
---|---|---|---|
Biodentin | Dentin | 0.85721 | <0.0001 |
Biodentin | Teflon | 0.86110 | <0.0001 |
MTA | Dentin | 0.85084 | <0.0001 |
MTA | Teflon | 0.83248 | <0.0001 |
Well Root PT | Dentin | 0.91626 | <0.0001 |
Well Root PT | Teflon | 0.40571 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikitović, A.; Pešić, D.; Kolak, V.; Lalović, M.; Milošević, M.; Trajković, I.; Melih, I. 3D Digital Image Correlation Analysis of Local Deformation Field of Different Endodontic Calcium Silicate Cements. Appl. Sci. 2023, 13, 1633. https://doi.org/10.3390/app13031633
Nikitović A, Pešić D, Kolak V, Lalović M, Milošević M, Trajković I, Melih I. 3D Digital Image Correlation Analysis of Local Deformation Field of Different Endodontic Calcium Silicate Cements. Applied Sciences. 2023; 13(3):1633. https://doi.org/10.3390/app13031633
Chicago/Turabian StyleNikitović, Ana, Dragana Pešić, Veljko Kolak, Marija Lalović, Miloš Milošević, Isaak Trajković, and Irena Melih. 2023. "3D Digital Image Correlation Analysis of Local Deformation Field of Different Endodontic Calcium Silicate Cements" Applied Sciences 13, no. 3: 1633. https://doi.org/10.3390/app13031633
APA StyleNikitović, A., Pešić, D., Kolak, V., Lalović, M., Milošević, M., Trajković, I., & Melih, I. (2023). 3D Digital Image Correlation Analysis of Local Deformation Field of Different Endodontic Calcium Silicate Cements. Applied Sciences, 13(3), 1633. https://doi.org/10.3390/app13031633