Investigations on Pressure Broadening Coefficients of NO Lines in the 1←0 Band for N2, CO2, Ar, H2, O2 and He
Abstract
:1. Introduction
2. Methodology
3. Technical Details of the Experiments
4. Results and Discussion
4.1. CO2 Broadening Coefficient
4.2. N2 Broadening Coefficient
4.3. Broadening Coefficient, Ar
4.4. Broadening Coefficient, O2
4.5. Broadening Coefficient, He
4.6. Broadening Coefficient, H2
4.7. Literature Comparison
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lu, X.; Ye, X.; Zhou, M.; Zhao, Y.; Weng, H.; Kong, H.; Li, K.; Gao, M.; Zheng, B.; Lin, J.; et al. The Underappreciated Role of Agricultural Soil Nitrogen Oxide Emissions in Ozone Pollution Regulation in North China. Nat. Commun. 2021, 12, 5021. [Google Scholar] [CrossRef] [PubMed]
- Logan, J.A. Nitrogen oxides in the troposphere: Global and regional budgets. J. Geophys. Res. Atmos. 1983, 88, 10785–10807. [Google Scholar] [CrossRef]
- Price, C.; Penner, J.; Prather, M. NOx from lightning: 1. Global distribution based on lightning physics. J. Geophys. Res. Atmos. 1997, 102, 5929–5941. [Google Scholar] [CrossRef] [Green Version]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominant ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yienger, J.J.; Levy, H. Empirical model of global soil-biogenic NOχ emissions. J. Geophys. Res. Atmos. 1995, 100, 11447–11464. [Google Scholar] [CrossRef]
- Steinfeld, J.K. Atmospheric chemistry and physics: From air pollution to climate change. Environ. Sci. Policy Sustain. Dev. 1998, 40, 26. [Google Scholar] [CrossRef]
- Delmas, R.; Serça, D.; Jambert, C. Global inventory of NOx sources. Nutr. Cycl. Agroecosys. 1997, 48, 51–60. [Google Scholar] [CrossRef]
- Aithal, S.M. Modeling of NOx Formation in Diesel Engines Using Finite-Rate Chemical Kinetics. Appl. Energy 2010, 87, 2256–2265. [Google Scholar] [CrossRef]
- Miller, J.A.; Bowman, C.T. Mechanism and Modeling of Nitrogen Chemistry in Combustion. Prog. Energy Combust. Sci. 1989, 15, 287–338. [Google Scholar] [CrossRef]
- Menzel, L.; Kosterev, A.; Curl, R.; Tittel, F.; Gmachl, C.; Capasso, F.; Sivco, D.; Baillargeon, J.; Hutchinson, A.; Cho, A.; et al. Spectroscopic detection of biological NO with a quantum cascade laser. Appl. Phys. B Laser Opt. 2001, 72, 859–863. [Google Scholar] [CrossRef]
- Almodovar, C.A.; Spearrin, R.M.; Hanson, R.K. Two-Color Laser Absorption near 5 Μm for Temperature and Nitric Oxide Sensing in High-Temperature Gases. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 572–581. [Google Scholar] [CrossRef]
- Chao, X.; Jeffries, J.B.; Hanson, R.K. Wavelength-Modulation-Spectroscopy for Real-Time, in Situ absorption sensor for NO in Combustion Gases with a 5.2 µm Quantum-Cascade Laser. Proc. Comb. Inst. 2011, 33, 725–733. [Google Scholar] [CrossRef]
- Qu, Z.; Schmidt, F.M. In Situ H2O and Temperature Detection Close to Burning Biomass Pellets Using Calibration-Free Wavelength Modulation Spectroscopy. Appl. Phys. B 2015, 119, 45–53. [Google Scholar] [CrossRef] [Green Version]
- Qu, Z.; Ghorbani, R.; Valiev, D.; Schmidt, F.M. Calibration-Free Scanned Wavelength Modulation Spectroscopy—Application to H_2O and Temperature Sensing in Flames. Opt. Express 2015, 23, 16492. [Google Scholar] [CrossRef] [PubMed]
- Qu, Z.; Steinvall, E.; Ghorbani, R.; Schmidt, F.M. Tunable Diode Laser Atomic Absorption Spectroscopy for Detection of Potassium under Optically Thick Conditions. Anal. Chem. 2016, 88, 3754–3760. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Lin, J.; Guo, Y. Measurement of the Pressure-Broadening Coefficient of NO by Saturation Spectroscopy of LMR. Can. J. Phys. 2000, 78, 989–995. [Google Scholar] [CrossRef]
- Lundqvist, S.; Margolis, J.; Reid, J. Measurements of Pressure-Broadening Coefficients of NO and O_3 Using a Computerized Tunable Diode Laser Spectrometer. Appl. Opt. 1982, 21, 3109. [Google Scholar] [CrossRef]
- Spencer, M.N.; Chackerian, C.; Giver, L.P.; Brown, L.R. Temperature Dependence of Nitrogen Broadening of the NO Fundamental Vibrational Band. J. Mol. Spectrosc. 1997, 181, 307–315. [Google Scholar] [CrossRef]
- Pine, A.S.; Maki, A.G.; Chou, N.Y. Pressure Broadening, Lineshapes, and Intensity Measurements in the 2 ← 0 Band of NO. J. Mol. Spectrosc. 1985, 114, 132–147. [Google Scholar] [CrossRef]
- Pope, R.S.; Wolf, P.J. Rare Gas Pressure Broadening of the NO Fundamental Vibrational Band. J. Mol. Spectrosc. 2001, 208, 153–160. [Google Scholar] [CrossRef]
- Vyrodov, A.O.; Heinze, J.; Meier, U.E. Collisional Broadening of Spectral Lines in the A-X System of NO. J. Quant. Spectrosc. Radiat. Transf. 1995, 53, 277–287. [Google Scholar] [CrossRef]
- Chang, A.Y.; DiRosa, M.D.; Hanson, R.K. Temperature Dependence of Collision Broadening and Shift in the NO A ← X (0, 0) Band in the Presence of Argon and Nitrogen. J. Quant. Spectrosc. Radiat. Transf. 1992, 47, 375–390. [Google Scholar] [CrossRef]
- Qu, Z.; Nwaboh, J.A.; Li, G.; Werhahn, O.; Ebert, V. Measurements of N2, CO2, Ar, O2 and Air Pressure Broadening Coefficients of the HCL p(5) Line in the 1–0 Band Using an Interband Cascade Laser. Appl. Sci. 2021, 11, 5190. [Google Scholar] [CrossRef]
- Qu, Z.; Werhahn, O.; Ebert, V. Thermal Boundary Layer Effects on Line-of-Sight Tunable Diode Laser Absorption Spectroscopy (TDLAS) Gas Concentration Measurements. Appl. Spectrosc. 2018, 72, 853–862. [Google Scholar] [CrossRef] [PubMed]
- Gordon, I.E.; Rothman, L.S.; Hargreaves, R.J.; Hashemi, R.; Karlovets, E.V.; Skinner, F.M.; Conway, E.K.; Hill, C.; Kochanov, R.V.; Tan, Y.; et al. The HITRAN2020 Molecular Spectroscopic Database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Qu, Z.; Nwaboh, J.; Werhahn, O.; Ebert, V. Towards a DTDLAS-Based Spectrometer for Absolute HCl Measurements in Combustion Flue Gases and a Better Evaluation of Thermal Boundary Layer Effects. Flow. Turbul. Combust. 2021, 106, 533–546. [Google Scholar] [CrossRef]
- Zhu, D.; Qu, Z.; Li, M.; Agarwal, S.; Fernandes, R.; Shu, B. Investigation on the NO formation of ammonia oxidation in a shock tube applying tunable diode laser absorption spectroscopy. Combust. Flame 2022, 246, 112389. [Google Scholar] [CrossRef]
- Spencer, M.N.; Chackerian, C.; Giver, L.P.; Brown, L.R. The Nitric Oxide Fundamental Band: Frequency and Shape Parameters for Rovibrational Lines. J. Mol. Spectrosc. 1994, 165, 506–524. [Google Scholar] [CrossRef]
- Ballard, J.; Johnston, W.B.; Kerridge, B.J.; Remedios, J.J. Experimental Spectral Line Parameters in the 1-0 Band of Nitric Oxide. J. Mol. Spectrosc. 1988, 127, 70–82. [Google Scholar] [CrossRef]
- Chackerian, C.; Freedman, R.S.; Giver, L.P.; Brown, L.R. The NO Vibrational Fundamental Band: O2-Broadening Coefficients. J. Mol. Spectrosc. 1998, 192, 215–219. [Google Scholar] [CrossRef]
- Houdeau, J.P.; Boulet, C.; Bonamy, J.; Khayar, A.; Guelachvili, G. Air Broadened NO Linewidths in a Temperature Range of Atmospheric Interest. J. Chem. Phys. 1983, 79, 1634–1640. [Google Scholar] [CrossRef]
Peak | Wavenumber (cm−1) | Line Strength (cm−2 atm−1) | Line Number |
---|---|---|---|
Peak 1 Ω1/2 | 1914.984827 | 1.474 × 10−20 | R11.5e |
1914.984833 | 1.597 × 10−20 | R11.5e | |
1914.984854 | 1.731 × 10−20 | R11.5e | |
1914.986297 | 1.029 × 10−22 | R11.5e | |
1914.986307 | 1.029 × 10−22 | R11.5e | |
1914.992367 | 1.028 × 10−22 | R11.5f | |
1914.992494 | 1.028 × 10−22 | R11.5f | |
1914.994619 | 1.730 × 10−20 | R11.5f | |
1914.994622 | 1.473 × 10−20 | R11.5f | |
Peak 2 Ω3/2 | 1915.767290 | 9.245 × 10−21 | R11.5e |
1915.767318 | 5.494 × 10−23 | R11.5e | |
1915.767321 | 5.494 × 10−23 | R11.5e | |
1915.767342 | 8.530 × 10−21 | R11.5e | |
1915.767384 | 7.869 × 10−21 | R11.5e | |
1915.769033 | 5.494 × 10−23 | R11.5f | |
1915.769214 | 9.244 × 10−21 | R11.5f | |
1915.769217 | 5.494 × 10−23 | R11.5f | |
1915.769246 | 8.529 × 10−21 | R11.5f |
R11.5 Ω3/2 | R11.5 Ω1/2 | |
---|---|---|
γCO2 [103 cm−1/atm] | 79.99 ± 0.44 | 72.92 ± 0.52 |
Pressure range [atm] | 0.1–0.7 | 0.1–0.7 |
Relative error [%] | 0.55% | 0.71% |
γN2 [103 cm−1/atm] | 58.13 ± 0.31 | 50.8 ± 0.27 |
Pressure range [atm] | 0.1–0.9 | 0.1–0.9 |
Relative error [%] | 0.53% | 0.53% |
Ref. [28] | 57.16(40) | 54.57(54) |
Ref. [29] | 61.4(8) | 58.1(9) |
γAr [103 cm−1/atm] | 42.64 ± 0.22 | 37.67 ± 0.19 |
Pressure range [atm] | 0.1–1.0 | 0.1–1.0 |
Relative error [%] | 0.52% | 0.50% |
Ref. [20] | 47.88(1.5) | 49.4(1.5) |
γO2 [103 cm−1/atm] | 57.68 ± 0.66 | 50.88 ± 0.53 |
Pressure range [atm] | 0.1–0.3 | 0.1–0.4 |
Relative error [%] | 1.14% | 1.04% |
Ref. [30] | 49.00(30) | 47.50(67) |
γH2 [103 cm−1/atm] | 71.67 ± 0.43 | 62.77 ± 0.38 |
Pressure range [atm] | 0.1–0.7 | 0.1– 0.7 |
Relative error [%] | 0.60% | 0.61% |
γHe [103 cm−1/atm] | 44.17 ± 0.23 | 37.79 ± 0.20 |
Pressure range [atm] | 0.1–1.0 | 0.1–1.0 |
Relative error [%] | 0.52% | 0.53% |
Ref. [20] | 51.86(0.76) | 48.64(1.5) |
γAir [103 cm−1/atm] | 58.04 ± 0.71 | 50.82 ± 0.63 |
Pressure range [atm] | 0.1–0.9 | 0.1–0.9 |
Relative error [%] | 1.23% | 1.23% |
Ref. [31] | 59 | |
Ref. [25] | 56.1(2.8) | 53.7(2.7) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agarwal, S.; Seifert, L.; Zhu, D.; Shu, B.; Fernandes, R.; Qu, Z. Investigations on Pressure Broadening Coefficients of NO Lines in the 1←0 Band for N2, CO2, Ar, H2, O2 and He. Appl. Sci. 2023, 13, 1370. https://doi.org/10.3390/app13031370
Agarwal S, Seifert L, Zhu D, Shu B, Fernandes R, Qu Z. Investigations on Pressure Broadening Coefficients of NO Lines in the 1←0 Band for N2, CO2, Ar, H2, O2 and He. Applied Sciences. 2023; 13(3):1370. https://doi.org/10.3390/app13031370
Chicago/Turabian StyleAgarwal, Sumit, Leopold Seifert, Denghao Zhu, Bo Shu, Ravi Fernandes, and Zhechao Qu. 2023. "Investigations on Pressure Broadening Coefficients of NO Lines in the 1←0 Band for N2, CO2, Ar, H2, O2 and He" Applied Sciences 13, no. 3: 1370. https://doi.org/10.3390/app13031370
APA StyleAgarwal, S., Seifert, L., Zhu, D., Shu, B., Fernandes, R., & Qu, Z. (2023). Investigations on Pressure Broadening Coefficients of NO Lines in the 1←0 Band for N2, CO2, Ar, H2, O2 and He. Applied Sciences, 13(3), 1370. https://doi.org/10.3390/app13031370