# Plasma Accelerator Utilizing the Medium of Near-Earth Space for Orbital Transfer Vehicles

^{1}

^{2}

^{3}

^{4}

^{*}

^{†}

## Abstract

**:**

## 1. Introduction

## 2. Analysis of Astrophysical Data

## 3. Dynamics of Spacecraft Acceleration

## 4. Implementation of Spacecraft Using Interplanetary Medium

_{g}= 10

^{−16}cm

^{2}, we find that for the chosen value of ${n}_{0}$, the mean free path $\lambda \left({n}_{0}\right)~d$ is approximately equal to the chosen characteristic dimension of the discharge chamber, d. Hence, the collisionless regime may be maintained with the chosen geometric parameters of the discharge chamber.

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Sutton, G.P.; Biblarz, O. Rocket Propulsion Elements, 7th ed.; Wiley& Sons: New York, NY, USA, 2001. [Google Scholar]
- Ulrich, W. Astronautics: The Physics of Space Flight, 2nd ed.; Wiley& Sons: Hoboken, NJ, USA, 2012. [Google Scholar]
- Goebel, D.M.; Katz, I. Fundamentals of Electric Propulsion: Ion and Hall Thrusters; Wiley: New York, NY, USA, 2008. [Google Scholar]
- Bathgate, S.N.; Bilek, M.M.M.; Mckenzie, D.R. Electrodeless plasma thruster for spacecraft: A review. Plasma Sci. Technol.
**2017**, 19, 083001. [Google Scholar] [CrossRef] - Morozov, A.I.; Savelyev, V.V. Fundamentals of stationary plasma thruster theory. In Reviews of Plasma Physics; Kadomtsev, B.B., Shafranov, V.D., Eds.; Springer: Boston, MA, USA, 2000; Volume 21, pp. 203–291. [Google Scholar]
- Brown, N.P.; Walker, M.L.R. Review of Plasma-Induced Hall Thruster Erosion. Appl. Sci.
**2020**, 10, 3775. [Google Scholar] [CrossRef] - Smirnov, A.; Raitses, Y.; Fisch, N.J. Experimental and theoretical studies of cylindrical Hall thrusters. Phys. Plasmas
**2007**, 14, 057106. [Google Scholar] [CrossRef] - Karimov, A.R.; Yakovlev, O.V.; Murad, P.A. The use of interplanetary medium as fuel for plasma thrusters. J. Phys. Conf. Ser.
**2019**, 1238, 012063. [Google Scholar] [CrossRef] - Karimov, A.R.; Murad, P.A.; Terekhov, S.A.; Yamschikov, V.A. Electrophysical Means in Space Research and Applications for the Near-Earth Space. In Proceedings of the AIAA Propulsion and Energy Forum, Virtual Event, USA, 9–11 August 2021. [Google Scholar]
- Brady, P.; Ditmire, T.; Horton, W.; Mays, M.L.; Zakharov, Y. Laboratory experiments simulating solar wind driven magnetospheres. Phys. Plasmas
**2009**, 16, 043112. [Google Scholar] [CrossRef] - Podgorniy, I.M.; Sagdeev, R.Z. Physics of interplanetary plasma and laboratory experiments. Adv. Phys. Sci.
**1969**, 98, 410. [Google Scholar] [CrossRef] - Simpson, J.A.; Connell, J.J.; Lopate, C.; McKibben, R.B.; Zhang, M.; Anglin, J.D.; Ferrando, P.; Rastoin, C.; Raviart, A.; Heber, B.; et al. Cosmic ray and solar particle investigations over the south polar regions of the Sun. Science
**1995**, 268, 1019. [Google Scholar] [CrossRef] - Pikel’Ner, S.B. Structure and dynamics of the interstellar medium. Annu. Rev. Astron. Astrophys.
**1968**, 6, 165. [Google Scholar] [CrossRef] - Zook, H.A. Spacecraft Measurements of the Cosmic Dust Flux. In Accretion of Extraterrestrial Matter Throughout Earth’s History; Peucker-Ehrenbrink, B., Schmitz, B., Eds.; Kluwer Academic/Plenum Publishers: New York, NY, USA, 2001; pp. 75–92. [Google Scholar]
- Meyer-Vernet, N.; Mann, I.; Le Chat, G.; Schippers, P.; Belheouane, S.; Issautier, K.; Lecacheux, A.; Maksimovic, M.; Pantellini, F.; Zaslavsky, A. The physics and detection of nanodust in the solar system. Plasma Phys. Control. Fusion
**2015**, 57, 014015. [Google Scholar] [CrossRef] - Allen, C.W. Astrophysical Quantities, 3rd ed.; Athlone Press: London, UK, 1973. [Google Scholar]
- Mironova, E.N. Dust in the Solar System, Preprint No.10; Lebedev Physical Institute of RAS: Moscow, Russia, 2015. (In Russian) [Google Scholar]
- Mann, I.; Czechowski, A.; Meyer-Vernet, N.; Zaslavsky, A.; Lamy, H. Dust in interplanetary medium. Plasma Phys. Control. Fusion
**2010**, 52, 124012. [Google Scholar] [CrossRef] - Kivelson, M.; Russell, C. Introduction to Space Physics; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Gosling, J.T. The Solar Wind. In Encyclopedia of the Solar System, 2nd ed.; McFadden, L.-A., Johnson, T., Weissman, P., Eds.; Academic Press: San Diego, CA, USA, 2007; pp. 99–116. [Google Scholar]
- Makarova, E.A.; Kharitonov, A.V.; Kazachevskaya, T.V. Solar Radiation Flow; Nauka: Moscow, Russia, 1991. (In Russian) [Google Scholar]
- Beirman, L. Solar corona and interplanetary space. Adv. Phys. Sci.
**1966**, 90, 163. [Google Scholar] - Pudovkin, M.I. Energy transfer in the solar-terrestrial system. Rep. Prog. Phys.
**1995**, 58, 929–976. [Google Scholar] [CrossRef] - Bussard, R.W. Galactic matter and interstellar flight. Acta Astronaut.
**1960**, 6, 179. [Google Scholar] - Cassenti, B.N. Conceptual designs for antiproton space propulsion systems. J. Propuls. Power
**1991**, 7, 368. [Google Scholar] [CrossRef] - Singh, L.A.; Walker, M.L.R. A review of research in low earth orbit propellant collection. Prog. Aerosp. Sci.
**2015**, 75, 15. [Google Scholar] [CrossRef] - Whitmire, D.P. Relativistic spaceflight and the catalytic nuclear ramjet. Acta Astronaut.
**1975**, 2, 497. [Google Scholar] [CrossRef] - Blatter, H.; Greber, T. Tau Zero: In the cockpit of a Bussard ramjet. Am. J. Phys.
**2017**, 85, 915. [Google Scholar] [CrossRef] - Schattschneider, P.; Jackson, A.A. The Fishback ramjet revisited. Acta Astronaut.
**2022**, 191, 227. [Google Scholar] [CrossRef] - Kosmodemyansky, A.A. Theoretical Mechanics Course, Part II; Prosveshchenie: Moscow, Russia, 1965. (In Russian) [Google Scholar]
- Karimov, A.R.; Terekhov, S.A.; Shikanov, A.E.; Yamschikov, V.A. Use of plasma flows to clean the near-Earth space. Plasma Phys. Rep.
**2021**, 47, 1038. [Google Scholar] [CrossRef] - Raizer, Y.P. Gas Discharge Physics; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Chapurin, O.; Smolyakov, A.I.; Hagelaar, G.; Raitses, Y. On the mechanism of ionization oscillations in Hall thrusters. J. Appl. Phys.
**2021**, 129, 233307. [Google Scholar] [CrossRef] - Tirila, V.-G.; Demaire, A.; Ryan, C.N. Review of alternative propellants in Hall thrusters. Acta Astronaut.
**2023**, 212, 284. [Google Scholar] [CrossRef] - Karimov, A.R.; Murad, P.A. Acceleration of rotating plasma flows in crossed magnetic fields. IEEE Trans. Plasma Sci.
**2017**, 45, 1710. [Google Scholar] [CrossRef] - Karimov, A.R.; Murad, P.A. Plasma thruster using momentum exchange in crossed magnetic fields. IEEE Trans. Plasma Sci.
**2018**, 46, 882. [Google Scholar] [CrossRef] - Karimov, A.R.; Terekhov, S.A.; Shikanov, A.E.; Murad, P.A. Acceleration of macroscopic clusters in crossed magnetic fields. IEEE Trans. Plasma Sci.
**2019**, 47, 1520. [Google Scholar] [CrossRef] - Karimov, A.R.; Terekhov, S.A.; Yamschikov, V. Pulsed plasma accelerator. Plasma
**2023**, 6, 3. [Google Scholar] [CrossRef] - Hall, S.J.; Jorns, B.A.; Cusson, S.E.; Gallimore, A.D.; Kamhawi, H.; Peterson, P.Y.; Haag, T.W.; Mackey, J.A.; Baird, M.J.; Gilland, J.H. Performance and high-speed characterization of a 100-kW nested Hall thruster. J. Propuls. Power
**2022**, 38, 40. [Google Scholar] [CrossRef] - Mazouffre, S. Electric propulsion for satellites and spacecraft: Established technologies and novel approaches. Plasma Sources Sci. Technol.
**2016**, 25, 033002. [Google Scholar] [CrossRef] - Bathgate, S.N.; Bilek, M.M.M.; Cairns, I.H.; Mckenzie, D.R. A thruster using magnetic reconnection to create a high-speed plasma jet. EPJ Appl. Phys.
**2018**, 84, 20801. [Google Scholar] [CrossRef] - Lev, D.R.; Mikellides, I.G.; Pedrini, D.; Goebel, D.M.; Jorns, B.A.; McDonald, M.S. Recent progress in research and development of hollow cathodes for electric propulsion. Rev. Mod. Plasma Phys.
**2019**, 3, 1. [Google Scholar] [CrossRef] - Borisevich, V.; Potanin, E.; Whichello, J.V. Plasma centrifuge with crossed E × B fields and thermally driven countercurrent flow. IEEE Trans. Plasma Sci.
**2020**, 48, 3472. [Google Scholar] [CrossRef] - Gueroult, R.; Zweben, S.J.; Fisch, N.J.; Rax, J.-M. E × B configurations for high-throughput plasma mass separation: An outlook on possibilities and challenges. Phys. Plasmas
**2019**, 26, 043511. [Google Scholar] [CrossRef] - M’Guire, T.J.; Sedwick, R.J. Aero-assisted orbital transfer vehicles utilizing atmosphere ingestion. In Proceedings of the 39th Aerospace Sciences Meeting and Exhibit, Hampton, VA, USA, 8–11 January 2001; p. 102856. [Google Scholar]
- Popel, S.I.; Kopnin, S.I.; Yu, M.Y.; Ma, J.X.; Huang, F. The effect of microscopic charged particulates in space weather. J. Phys. D Appl. Phys.
**2011**, 44, 174036. [Google Scholar] [CrossRef] - Chen, F. Introduction to Plasma Physics and Controlled Fusion; Plenum: New York, NY, USA, 1984. [Google Scholar]

**Figure 1.**Spacecraft diagram: 1—interplanetary dust; 2—particle trap; 3—the spacecraft’s movement direction; 4—discharge chamber; 5—ship; 6—solar panel; 7—plasma flow creating the ship’s thrust [9].

**Figure 4.**The characteristic accumulation time ${\tau}_{n}$ as a function of $\beta =v/c$ for different values of $\mathrm{\Gamma}$. Curve 1 corresponds $\mathrm{\Gamma}={10}^{-4}$; curve 2 corresponds $\mathrm{\Gamma}={10}^{-6};$ and curve 3 corresponds $\mathrm{\Gamma}={10}^{-8}$.

**Figure 5.**Schematic of acceleration section: (

**a**) accelerator design and (

**b**) acceleration zone with plasma containing electrons, dust particles, and ions.

**Figure 6.**The dependence of ${t}_{m}$ on $D$ for different conceivable values of spacecraft mass. Curve 1 corresponds ${m=10}^{4}$ $\mathrm{k}\mathrm{g}$; curve 2 corresponds to $m=2\times {10}^{4}$ $\mathrm{k}\mathrm{g};$ and curve 3 corresponds to $m={10}^{5}$ $\mathrm{k}\mathrm{g}$.

**Figure 7.**Thrust as a function of spacecraft velocity $v$ for different values of $D$. Curve 1 corresponds to ${D=2\times 10}^{2}$ $\mathrm{m}$, and curve 2 corresponds to ${D=2\times 10}^{3}$ $\mathrm{m}$.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Karimov, A.R.; Murad, P.A.; Yamschikov, V.A.; Baranov, D.S.
Plasma Accelerator Utilizing the Medium of Near-Earth Space for Orbital Transfer Vehicles. *Appl. Sci.* **2023**, *13*, 13195.
https://doi.org/10.3390/app132413195

**AMA Style**

Karimov AR, Murad PA, Yamschikov VA, Baranov DS.
Plasma Accelerator Utilizing the Medium of Near-Earth Space for Orbital Transfer Vehicles. *Applied Sciences*. 2023; 13(24):13195.
https://doi.org/10.3390/app132413195

**Chicago/Turabian Style**

Karimov, Alexander R., Paul A. Murad, Vladimir A. Yamschikov, and Dmitriy S. Baranov.
2023. "Plasma Accelerator Utilizing the Medium of Near-Earth Space for Orbital Transfer Vehicles" *Applied Sciences* 13, no. 24: 13195.
https://doi.org/10.3390/app132413195