Chemical Mechanisms Involved in the Coupled Attack of Sulfate and Chloride Ions on Low-Carbon Cementitious Materials: An In-Depth Study
Abstract
:1. Introduction
1.1. Literature Review and Research Significance
1.2. Objectives and Scope of the Work
2. Materials and Methods
2.1. Materials
2.2. Design of Cementitious Material Blends
2.3. Sampling and Exposure
2.4. Experimental Methods
2.4.1. Chemical Characterizations
2.4.2. Microstructural Characterizations
3. Results
3.1. pH Variations
3.2. Thermogravimetric Analysis
3.3. Raman Spectroscopy
3.4. Fourier Transform Infrared Spectroscopy
3.5. Mercury Intrusion Porosimetry
- Micropores or gel pores, spanning from 1 nm to around 10 nm, emerge as a result of the hydration process. These pores are influenced by factors such as the interlayer spacing of calcium hydroxide and calcium–silicate–hydrate, the type of binders employed, curing conditions, water-to-binder ratio, and the age of the specimens.
- Pores ranging from 10 nm to 100 nm are referred to as small to medium capillary pores. These pores originate from water-filled spaces and are notably impacted by the w/b ratio and the degree of hydration.
- Large capillary pores, spanning between 100 nm and 10 µm, are water-filled and also filled due to C-S-H particle aggregation.
- Macropores have a diameter exceeding 10 µm in size and typically contain entrapped air within the paste. The characteristics of these pores are influenced by the presence of additives, the w/b ratio, the workability of the mixture, and the fabrication process.
4. Discussion
5. Conclusions
- In the sole presence of sulfate, a substantial reduction in portlandite and AFm content was observed, accompanied by a notable formation of ettringite. Furthermore, a marked increase in porosity was observed, and the complete depletion of sulfate ions from the solution was detected (Mix1) by Raman spectroscopy.
- The simultaneous presence of chloride and sulfate ions had a mitigating effect on the sulfate attack on the cementitious materials.
- The FTIR analysis method detected the formation of Friedel’s salt and the consumption of portlandite in the presence of chloride ions alone. However, this phenomenon was not observed when sulfate and chloride ions were coupled.
- The presence of sulfate ions accelerates the attack of chloride ions by inhibiting the binding of free chloride ions.
- The incorporation of multiple SCM resulted in a lesser pH increase, a delay in ettringite formation, and a reduction in crack generation. This led to an enhancement of the materials’ resistance to attacks.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, S.; Yao, Y.; Andrade, C.; Li, Z. Recent durability studies on concrete structure. Cem. Concr. Res. 2015, 78, 143–154. [Google Scholar] [CrossRef]
- Al-Kheetan, M.J.; Rahman, M.M. Integration of Anhydrous Sodium Acetate (ASAc) into Concrete Pavement for Protection against Harmful Impact of Deicing Salt. JOM 2019, 71, 4899–4909. [Google Scholar] [CrossRef]
- Mehta, P.K.; Monteiro, P.J. Concrete: Microstructure, Properties, and Materials; McGraw-Hill Education: New York, NY, USA, 2014. [Google Scholar]
- Li, Z.; Zhou, X.; Ma, H.; Hou, D. Advanced Concrete Technology; Wiley: Hoboken, NJ, USA, 2022; ISBN 9780470437438. [Google Scholar]
- El Inaty, F.; Baz, B.; Aouad, G. Long-term durability assessment of 3D printed concrete. J. Adhes. Sci. Technol. 2022, 37, 1921–1936. [Google Scholar] [CrossRef]
- Sun, W.; Mu, R.; Luo, X.; Miao, C. Effect of chloride salt, freeze–thaw cycling and externally applied load on the performance of the concrete. Cem. Concr. Res. 2002, 32, 1859–1864. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Y.; Yan, H.; Mu, R. Damage and damage resistance of high strength concrete under the action of load and freeze-thaw cycles. Cem. Concr. Res. 1999, 29, 1519–1523. [Google Scholar] [CrossRef]
- Le Bellégo, C.; Pijaudier-Cabot, G.; Gérard, B.; Dubé, J.-F.; Molez, L. Coupled Mechanical and Chemical Damage in Calcium Leached Cementitious Structures. J. Eng. Mech. 2003, 129, 333–341. [Google Scholar] [CrossRef]
- Metalssi, O.O.; Touhami, R.R.; Barberon, F.; de Lacaillerie, J.-B.D.; Roussel, N.; Divet, L.; Torrenti, J.-M. Understanding the degradation mechanisms of cement-based systems in combined chloride-sulfate attack. Cem. Concr. Res. 2023, 164, 107065. [Google Scholar] [CrossRef]
- Lee, S.-T.; Park, D.-W.; Ann, K.-Y. Mitigating effect of chloride ions on sulfate attack of cement mortars with or without silica fume. Can. J. Civ. Eng. 2008, 35, 1210–1220. [Google Scholar] [CrossRef]
- Ramezanianpour, A.A.; Riahi Dehkordi, E. Effect of Combined Sulfate-Chloride Attack on Concrete Durability-A Review. AUT J. Civ. Eng. 2017, 1, 103–110. [Google Scholar] [CrossRef]
- Jabbour, M.; Metalssi, O.O.; Quiertant, M.; Baroghel-Bouny, V. A Critical Review of Existing Test-Methods for External Sulfate Attack. Materials 2022, 15, 7554. [Google Scholar] [CrossRef]
- Ragoug, R.; Metalssi, O.O.; Barberon, F.; Torrenti, J.-M.; Roussel, N.; Divet, L.; de Lacaillerie, J.-B.D. Durability of cement pastes exposed to external sulfate attack and leaching: Physical and chemical aspects. Cem. Concr. Res. 2019, 116, 134–145. [Google Scholar] [CrossRef]
- Metalssi, O.O.; Ragoug, R.; Barberon, F.; de Lacaillerie, J.-B.D.; Roussel, N.; Divet, L.; Torrenti, J.-M. Effect of an Early-Age Exposure on the Degradation Mechanisms of Cement Paste under External Sulfate Attack. Materials 2023, 16, 6013. [Google Scholar] [CrossRef] [PubMed]
- Neville, A. Chloride attack of reinforced concrete: An overview. Mater. Struct. 1995, 28, 63–70. [Google Scholar] [CrossRef]
- Al-Kheetan, M.J.; Rahman, M.M.; Chamberlain, D.A. Fundamental interaction of hydrophobic materials in concrete with different moisture contents in saline environment. Constr. Build. Mater. 2019, 207, 122–135. [Google Scholar] [CrossRef]
- Lothenbach, B.; Bary, B.; Le Bescop, P.; Schmidt, T.; Leterrier, N. Sulfate ingress in Portland cement. Cem. Concr. Res. 2010, 40, 1211–1225. [Google Scholar] [CrossRef]
- Yu, C.; Sun, W.; Scrivener, K. Mechanism of expansion of mortars immersed in sodium sulfate solutions. Cem. Concr. Res. 2013, 43, 105–111. [Google Scholar] [CrossRef]
- Gu, Y.; Metalssi, O.O.; Martin, R.-P.; Fen-Chong, T.; Dangla, P. Locating ettringite due to DEF at the pore scale of cement paste by heat-based dissolution tests. Constr. Build. Mater. 2020, 258, 120000. [Google Scholar] [CrossRef]
- Cherif, R.; Hamami, A.E.A.; Aït-Mokhtar, A.; Bosschaerts, W. Thermodynamic equilibria-based modelling of reactive chloride transport in blended cementitious materials. Cem. Concr. Res. 2022, 156, 106770. [Google Scholar] [CrossRef]
- Wilson, W.; Gonthier, J.N.; Georget, F.; Scrivener, K.L. Insights on chemical and physical chloride binding in blended cement pastes. Cem. Concr. Res. 2022, 156, 106747. [Google Scholar] [CrossRef]
- Stroh, J.; Meng, B.; Emmerling, F. Deterioration of hardened cement paste under combined sulphate-chloride attack investigated by synchrotron XRD. Solid State Sci. 2016, 56, 29–44. [Google Scholar] [CrossRef]
- Mavropoulou, N.; Katsiotis, N.; Giannakopoulos, J.; Koutsodontis, K.; Papageorgiou, D.; Chaniotakis, E.; Katsioti, M.; Tsakiridis, P. Durability evaluation of cement exposed to combined action of chloride and sulphate ions at elevated temperature: The role of limestone filler. Constr. Build. Mater. 2016, 124, 558–565. [Google Scholar] [CrossRef]
- Dehwah, H.; Maslehuddin, M.; Austin, S. Long-term effect of sulfate ions and associated cation type on chloride-induced reinforcement corrosion in Portland cement concretes. Cem. Concr. Compos. 2002, 24, 17–25. [Google Scholar] [CrossRef]
- Geng, J.; Easterbrook, D.; Li, L.-Y.; Mo, L.-W. The stability of bound chlorides in cement paste with sulfate attack. Cem. Concr. Res. 2015, 68, 211–222. [Google Scholar] [CrossRef]
- De Weerdt, K.; Orsáková, D.; Geiker, M. The impact of sulphate and magnesium on chloride binding in Portland cement paste. Cem. Concr. Res. 2014, 65, 30–40. [Google Scholar] [CrossRef]
- Shaheen, F.; Pradhan, B. Influence of sulfate ion and associated cation type on steel reinforcement corrosion in concrete powder aqueous solution in the presence of chloride ions. Cem. Concr. Res. 2017, 91, 73–86. [Google Scholar] [CrossRef]
- Tumidajski, P.; Chan, G. Effect of sulfate and carbon dioxide on chloride diffusivity. Cem. Concr. Res. 1996, 26, 551–556. [Google Scholar] [CrossRef]
- Ran, B.; Omikrine-Metalssi, O.; Fen-Chong, T.; Dangla, P.; Li, K. Pore crystallization and expansion of cement pastes in sulfate solutions with and without chlorides. Cem. Concr. Res. 2023, 166, 107099. [Google Scholar] [CrossRef]
- Al-Amoudi, O.S.B.; Maslehuddin, M.; Abdul-Al, Y.A. Role of chloride ions on expansion and strength reduction in plain and blended cements in sulfate environments. Constr. Build. Mater. 1995, 9, 25–33. [Google Scholar] [CrossRef]
- Xu, J.; Zhang, C.; Jiang, L.; Tang, L.; Gao, G.; Xu, Y. Releases of bound chlorides from chloride-admixed plain and blended cement pastes subjected to sulfate attacks. Constr. Build. Mater. 2013, 45, 53–59. [Google Scholar] [CrossRef]
- Habert, G.; Miller, S.A.; John, V.M.; Provis, J.L.; Favier, A.; Horvath, A.; Scrivener, K.L. Environmental impacts and decarbonization strategies in the cement and concrete industries. Nat. Rev. Earth Environ. 2020, 1, 559–573. [Google Scholar] [CrossRef]
- Bojana, B.; Julian, M.A.; Jonathan, M.C. Designing Climate Change Mitigation Plans That Add Up. Environ. Sci. Technol. 2013, 47, 8062–8069. [Google Scholar] [CrossRef]
- Marey, H.; Kozma, G.; Szabó, G. Effects of Using Green Concrete Materials on the CO2 Emissions of the Residential Building Sector in Egypt. Sustainability 2022, 14, 3592. [Google Scholar] [CrossRef]
- Bogue, R.H. The Chemistry of Portland Cement. Second Edition. Soil Sci. 1955, 79, 322. [Google Scholar] [CrossRef]
- EN 197-1:2011; Cement—Part 1: Composition, Specifications and Conformity Criteria for Common Cements. European Committee for Standardization: Brussels, Belgium, 2011.
- NF EN 196-1:2016; Methods of Testing Cement—Part 1: Determination of Strength. Available online: https://www.boutique.afnor.org/en-gb/standard/nf-en-1961/methods-of-testing-cement-part-1-determination-of-strength/fa184622/57803 (accessed on 27 September 2023).
- Mehta, P.K. Evaluation of Sulfate-Resisting Cements by a New Test Method. J. Proc. 1975, 72, 573–575. [Google Scholar]
- Brown, P.W. An evaluation of the sulfate resistance of cements in a controlled environment. Cem. Concr. Res. 1981, 11, 719–727. [Google Scholar] [CrossRef]
- Delagrave, A.; Pigeon, M.; Marchand, J.; Revertégat, É. Influence of chloride ions and pH level on the durability of high performance cement pastes (Part II). Cem. Concr. Res. 1996, 26, 749–760. [Google Scholar] [CrossRef]
- Behnood, A.; Van Tittelboom, K.; De Belie, N. Methods for measuring pH in concrete: A review. Constr. Build. Mater. 2016, 105, 176–188. [Google Scholar] [CrossRef]
- Bhatty, J.; Taylor, P. Sulfate Resistance of Concrete Using Blended Cements or Supplementary Cementitious Materials (PCA R&D Serial No. 2916a). Article PCA R&D Serial No. 2916a. 2006. Available online: https://trid.trb.org/view/795858 (accessed on 23 August 2023).
- Mehta, P.; Pirtz, D.; Polivka, M. Properties of alite cements. Cem. Concr. Res. 1979, 9, 439–450. [Google Scholar] [CrossRef]
- Raghav, M.; Park, T.; Yang, H.-M.; Lee, S.-Y.; Karthick, S.; Lee, H.-S. Review of the Effects of Supplementary Cementitious Materials and Chemical Additives on the Physical, Mechanical and Durability Properties of Hydraulic Concrete. Materials 2021, 14, 7270. [Google Scholar] [CrossRef]
- Dehwah, H.A.F. Influence of Cement Composition on Concrete Durability in Chloride–Sulfate Environments. Ph.D. Thesis, Loughborough University, Loughborough, UK, 1999. Available online: https://repository.lboro.ac.uk/articles/thesis/Influence_of_cement_composition_on_concrete_durability_in_chloride_sulfate_environments/9454499/1 (accessed on 20 August 2023).
- Gu, Y. Experimental Pore Scale Analysis and Mechanical Modeling of Cement-Based Materials Submitted to Delayed Ettringite Formation and External Sulfate Attacks. Ph.D. Thesis, Université Paris-Est, Champs-sur-Marne, France, 2018. Available online: https://theses.hal.science/tel-02384366 (accessed on 28 July 2023).
- Gao, Y.; Cui, X.; Lu, N.; Hou, S.; He, Z.; Liang, C. Effect of recycled powders on the mechanical properties and durability of fully recycled fiber-reinforced mortar. J. Build. Eng. 2022, 45, 103574. [Google Scholar] [CrossRef]
- Nochaiya, T.; Sekine, Y.; Choopun, S.; Chaipanich, A. Microstructure, characterizations, functionality and compressive strength of cement-based materials using zinc oxide nanoparticles as an additive. J. Alloys Compd. 2015, 630, 1–10. [Google Scholar] [CrossRef]
- Skaropoulou, A.; Sotiriadis, K.; Kakali, G.; Tsivilis, S. Use of mineral admixtures to improve the resistance of limestone cement concrete against thaumasite form of sulfate attack. Cem. Concr. Compos. 2013, 37, 267–275. [Google Scholar] [CrossRef]
- Santhanam, M.; Cohen, M.D.; Olek, J. Mechanism of sulfate attack: A fresh look: Part 1: Summary of experimental results. Cem. Concr. Res. 2002, 32, 915–921. [Google Scholar] [CrossRef]
- Lothenbach, B.; Scrivener, K.; Hooton, R. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Matschei, T.; Lothenbach, B.; Glasser, F. The AFm phase in Portland cement. Cem. Concr. Res. 2007, 37, 118–130. [Google Scholar] [CrossRef]
- Jabbour, M. Multi-Scales Study for the External Sulfatic Attack in Reinforced Concrete Structures. Ph.D. Thesis, Université Paris-Est, Champs-sur-Marne, France, 2019. Available online: https://tel.archives-ouvertes.fr/tel-02956401 (accessed on 21 July 2023).
- Tang, C.; Ling, T.-C.; Mo, K.H. Raman spectroscopy as a tool to understand the mechanism of concrete durability—A review. Constr. Build. Mater. 2021, 268, 121079. [Google Scholar] [CrossRef]
- Water Molecule Vibrations with Raman Spectroscopy. (n.d.). PhysicsOpenLab. Available online: https://physicsopenlab.org/2022/01/08/water-molecule-vibrations-with-raman-spectroscopy/ (accessed on 19 October 2023).
- Farcas, F.; Touzé, P. La spectrométrie infrarouge à transformée de Fourier (IRTF). Une méthode intéressante pour la caractérisation des ciments (in French). Bull. Lab. Ponts Chaussées 2001, 230, 77–88. Available online: http://www.ifsttar.fr/collections/BLPCpdfs/blpc_230_77-88.pdf (accessed on 27 September 2023).
- Liu, P.; Chen, Y.; Wang, W.; Yu, Z. Effect of physical and chemical sulfate attack on performance degradation of concrete under different conditions. Chem. Phys. Lett. 2020, 745, 137254. [Google Scholar] [CrossRef]
- Yue, Y.; Wang, J.J.; Basheer, P.M.; Bai, Y. Raman spectroscopic investigation of Friedel’s salt. Cem. Concr. Compos. 2018, 86, 306–314. [Google Scholar] [CrossRef]
- Gong, F.; Zhang, D.; Sicat, E.; Ueda, T. Empirical Estimation of Pore Size Distribution in Cement, Mortar, and Concrete. J. Mater. Civ. Eng. 2013, 26, 04014023. [Google Scholar] [CrossRef]
- Mark, O.G.; Ede, A.N.; Olofinnade, O.; Bamigboye, G.; Okeke, C.; Oyebisi, S.O.; Arum, C. Influence of Some Selected Supplementary Cementitious Materials on Workability and Compressive Strength of Concrete—A Review. IOP Conf. Ser. Mater. Sci. Eng. 2019, 640, 012071. [Google Scholar] [CrossRef]
- Gollop, R.; Taylor, H. Microstructural and microanalytical studies of sulfate attack. I. Ordinary portland cement paste. Cem. Concr. Res. 1992, 22, 1027–1038. [Google Scholar] [CrossRef]
Components | CEM I (Wt%) 1 | Fly Ash (Wt%) 1 | Blast Furnace Slag (Wt%) 1 |
---|---|---|---|
SiO2 | 20.38 | 70.83 | 35.71 |
Al2O3 | 4.30 | 24.36 | 10.65 |
Fe2O3 | 3.80 | 2.24 | 0.45 |
TiO2 | 0.24 | 1.48 | 0.73 |
MnO | 0.08 | 0.05 | 0.23 |
CaO | 62.79 | 0.06 | 43.32 |
MgO | 1.25 | 0.23 | 3.97 |
SO3 | 3.46 | - | 3.06 |
K2O | 0.73 | 0.64 | 0.45 |
Na2O | 0.35 | 0.1 | 0.16 |
P2O5 | - | 0.05 | 0.02 |
S2− | Traces | - | - |
Cl− | 0.05 | - | - |
Loss of ignition | 2.54 | - | - |
Free lime | 1.39 | - | - |
CEMI | Blast Furnace Slag | Metakaolin | Fly Ash | |
---|---|---|---|---|
Mix1 (Reference) | 100% | - | - | - |
Mix2 | 55% | 45% | - | - |
Mix3 | 55% | 35% | 10% | - |
Mix4 | 55% | 20% | 10% | 15% |
Mixes | EXP | Day 1 | Day 2 | Day 5 | Day 11 | Day 18 | Day 25 | D25–D1 |
---|---|---|---|---|---|---|---|---|
Mix1 | 0 | 3.92 | 5.08 | 5.19 | 4.82 | 5.54 | 5.68 | 1.76 |
Mix1 | 1 | 3.90 | 4.69 | 3.82 | 3.96 | 4.40 | 4.89 | 0.99 |
Mix1 | 2 | 3.53 | 3.93 | 3.70 | 3.20 | 2.85 | 3.32 | −0.21 |
Mix1 | 3 | 3.50 | 3.79 | 3.35 | 3.62 | 3.04 | 3.44 | −0.06 |
Mix2 | 0 | 2.28 | 2.05 | 1.78 | 1.91 | 1.75 | 1.96 | −0.32 |
Mix2 | 1 | 2.01 | 1.79 | 1.72 | 1.64 | 1.56 | 1.87 | −0.14 |
Mix2 | 2 | 1.67 | 1.43 | 1.1 | 1.06 | 1.09 | 0.91 | −0.76 |
Mix2 | 3 | 1.60 | 1.41 | 1.12 | 1.12 | 1.21 | 1.02 | −0.58 |
Mix3 | 0, 1, 2, and 3 | Negligible | NA 1 | |||||
Mix4 | 0, 1, 2, and 3 | Negligible | NA 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Inaty, F.; Marchetti, M.; Quiertant, M.; Omikrine Metalssi, O. Chemical Mechanisms Involved in the Coupled Attack of Sulfate and Chloride Ions on Low-Carbon Cementitious Materials: An In-Depth Study. Appl. Sci. 2023, 13, 11729. https://doi.org/10.3390/app132111729
El Inaty F, Marchetti M, Quiertant M, Omikrine Metalssi O. Chemical Mechanisms Involved in the Coupled Attack of Sulfate and Chloride Ions on Low-Carbon Cementitious Materials: An In-Depth Study. Applied Sciences. 2023; 13(21):11729. https://doi.org/10.3390/app132111729
Chicago/Turabian StyleEl Inaty, François, Mario Marchetti, Marc Quiertant, and Othman Omikrine Metalssi. 2023. "Chemical Mechanisms Involved in the Coupled Attack of Sulfate and Chloride Ions on Low-Carbon Cementitious Materials: An In-Depth Study" Applied Sciences 13, no. 21: 11729. https://doi.org/10.3390/app132111729