Effects of Hydrolysates from Silkworms Fed Cudrania tricuspidata Leaves on Improvement of Memory in Rats with Impaired Memory Induced by Scopolamine
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE)
2.3. Animal Studies
2.4. Barnes Maze Test
2.5. Novel Object Recognition Test (NORT)
2.6. Y-Maze Test
2.7. ACh Content
2.8. AChE Activity
2.9. Statistical Analysis
3. Results
3.1. SDS-PAGE
3.2. Organ Weight
3.3. Barnes Maze
3.4. NORT
3.5. Y-Maze
3.6. ACh Content
3.7. AChE Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kim, E.J.; Lee, K.H. Knowledge, attitude, and performance of nurses in a tertiary hospital toward older adults. J. Korean Gerontol. Nurs. 2020, 22, 165–173. [Google Scholar] [CrossRef]
- Hwang, S.J. Population aging and generational conflict: Intergenerational equity over resource allocation. J. Soc. Sci. 2022, 33, 149–172. [Google Scholar] [CrossRef]
- Han, G.S.; Yan, E.J. Status of health and nutritional intake of the elderly in long-term care facilities: Focus on Gwangju Metropolitan City. J. Nutr. Health 2020, 53, 27–38. [Google Scholar] [CrossRef]
- Kim, Y.E.; Park, J.H. A study on risk factors for the prevalence of dementia: Geographically weighted regression. JKAIS 2021, 22, 662–670. [Google Scholar] [CrossRef]
- Livingston, G.; Sommerlad, A.; Orgeta, V.; Costafreda, S.G.; Huntley, J.; Ames, D.; Ballard, C.; Banerjee, S.; Burns, A.; Cohen-Mansfield, J. Dementia prevention, intervention, and care. Lancet 2017, 390, 2673–2734. [Google Scholar] [CrossRef]
- Livingston, G.; Huntley, J.; Sommerlad, A.; Ames, D.; Ballard, C.; Banerjee, S.; Brayne, C.; Burns, A.; Cohen-Mansfield, J.; Cooper, C.; et al. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020, 396, 413–446. [Google Scholar] [CrossRef]
- Latimer, C.S.; Keene, C.D.; Flanagan, M.E.; Hemmy, L.S.; Lim, K.O.; White, L.R.; Montine, K.S.; Montine, T.J. Resistance to Alzheimer disease neuropathologic changes and apparent cognitive resilience in the Nun and Honolulu-Asia Aging Studies. J. Neuropathol. Exp. Neurol. 2017, 76, 458–466. [Google Scholar] [CrossRef]
- Fiest, K.M.; Roberts, J.I.; Maxwell, C.J.; Hogan, D.B.; Smith, E.E.; Frolkis, A.; Cohen, A.; Kirk, A.; Pearson, D.; Pringsheim, T.; et al. The prevalence and incidence of dementia due to Alzheimer’s disease: A systematic review and meta-analysis. Can. J. Neurol. Sci. 2016, 43, S51–S82. [Google Scholar] [CrossRef]
- Verma, S.; Kumar, A.; Tripathi, T.; Kumar, A. Muscarinic and nicotinic acetylcholine receptor agonists: Current scenario in Alzheimer’s disease therapy. J. Pharm. Pharmacol. 2018, 70, 985–993. [Google Scholar] [CrossRef] [PubMed]
- Decker, A.L.; Duncan, K. Acetylcholine and the complex interdependence of memory and attention. Curr. Opin. Behav. Sci. 2020, 32, 21–28. [Google Scholar] [CrossRef]
- Hasselmo, M.E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 2006, 16, 710–715. [Google Scholar] [CrossRef]
- Choi, M.R.; Lee, M.Y.; Kim, J.E.; Hong, J.E.; Jang, K.H.; Lee, J.Y.; Chun, J.W.; Kim, T.H.; Shin, H.K.; Kim, E.J. Rubus Coreanus Miquel Improves on Impairment of Memory in Senescence-Accelerated Mouse (SAM). J. Korean Soc. Food Sci. Nutr. 2022, 41, 1253–1258. [Google Scholar] [CrossRef]
- Rastegar-Moghaddam, S.H.; Hosseini, M.; Alipour, F.; Rajabian, A.; Bideskan, A.E. The effects of vitamin D on learning and memory of hypothyroid juvenile rats and brain tissue acetylcholinesterase activity and oxidative stress indicators. Naunyn Schmiedebergs Arch. Pharmacol. 2022, 395, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.Y. Past and Future of Drug Treatments for Alzheimer’s Disease. J. Korean Neuropsychiatr. Assoc. 2018, 57, 30–42. [Google Scholar] [CrossRef]
- Cagnin, A.; Brooks, D.J.; Kennedy, A.M.; Gunn, R.N.; Myers, R.; Turkheimer, F.E.; Jones, T.; Banati, D.R.B. In-vivo measurement of activated microglia in dementia. Lancet 2001, 358, 461–467. [Google Scholar] [CrossRef]
- Sano, M.; Bell, K.L.; Galasko, D.; Galvin, J.E.; Thomas, R.G.; van Dyck, C.H.; Aisen, P.S. A randomized, double-blind, placebo-controlled trial of simvastatin to treat Alzheimer disease. Neurology 2011, 77, 556–563. [Google Scholar] [CrossRef]
- Feldman, H.H.; Doody, R.S.; Kivipelto, M.; Sparks, D.L.; Waters, D.D.; Jones, R.W.; Schwam, E.; Schindler, R.; Hey-Hadavi, J.; Demicco, D.A.; et al. Randomized controlled trial of atorvastatin in mild to moderate Alzheimer disease: LEADe. Neurology 2010, 74, 956–964. [Google Scholar] [CrossRef]
- Bentham, P.; Gray, R.; Sellwood, E.; Hills, R.; Crome, P.; Raftery, J. Aspirin in Alzheimer’s disease (AD2000): A randomised open-label trial. Lancet Neurol. 2008, 7, 41–49. [Google Scholar] [CrossRef] [PubMed]
- Jaturapatporn, D.; Isaac, M.G.; McCleery, J.; Tabet, N. Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database Syst. Rev. 2012, 15, CD006378. [Google Scholar] [CrossRef]
- Banday, M.T.; Adil, S.; Sheikh, I.U.; Hamadani, H.; Qadri, F.I.; Sahfi, M.E.; Sait, H.S.A.W.; Abd El-Mageed, T.A.; Salem, H.M.; Taha, A.E.; et al. The use of silkworm pupae (Bombyx mori) meal as an alternative protein source for poultry. Worlds Poult. Sci. J. 2023, 79, 119–134. [Google Scholar] [CrossRef]
- Cermeno, M.; Bascon, C.; Amigo-Benavent, M.; Felix, M.; FitzGerald, R.J. Identification of peptides from edible silkworm pupae (Bombyx mori) protein hydrolysates with antioxidant activity. J. Funct. Foods 2022, 92, 105052. [Google Scholar] [CrossRef]
- Yoon, J.W.; Rhee, S.K.; Lee, K.B. Effects of Silkworm Extract Powder on Plasma Lipids and Glucose in Rats. J. Korean Soc. Food Sci. Nutr. 2005, 18, 140–145. [Google Scholar]
- Ji, S.D.; Shin, K.H.; Ahn, D.K.; Cho, S.Y. The mass production technology and pharmaceutical effect of silkworm cordyceps (Peacilomyces tenuipes). Food Sci. Ind. 2003, 36, 38–48. [Google Scholar] [CrossRef]
- Hu, Y.; Shi, Q.; Ying, S.; Zhu, D.; Chen, H.; Yang, X.; Xu, J.; Xu, F.; Tao, F.; Xu, B. Effects of compound Caoshi silkworm granules on stable COPD patients and their relationship with gut microbiota. A randomized controlled trial. Medicine 2020, 99, e20511. [Google Scholar] [CrossRef] [PubMed]
- Baek, S.Y.; Li, F.Y.; Kim, J.H.; Ahn, C.W.; Kim, H.J.; Kim, M.R. Protein hydrolysate of silkworm pupa prevents memory impairment induced by oxidative stress in scopolamine-induced mice via modulating the cholinergic nervous system and antioxidant defense system. Prev. Nutr. Food Sci. 2020, 25, 389–399. [Google Scholar] [CrossRef]
- Zhou, Y.; Zhou, S.; Duan, H.; Wang, H.; Yan, W. Silkworm pupae: A functional food with health benefits for humans. Foods 2022, 11, 1594. [Google Scholar] [CrossRef]
- Lee, Y.S.; Rho, J.O. A study on quality characteristics of Kimchi with added mulberry leaves extracts. J. East Asian Soc. Diet. Life 2014, 24, 827–836. [Google Scholar] [CrossRef]
- Son, H.K.; Han, J.H.; Lee, J.J. Anti-diabetic effect of the mixture of mulberry leaf and green tea powder in rats with streptozotocin-induced diabetes. Korean J. Food Preserv. 2014, 21, 549–559. [Google Scholar] [CrossRef][Green Version]
- Yamamoto, K.; Yamada, N.; Endo, S.; Kurogi, K.; Sakakibara, Y.; Suiko, M. Novel silkworm (Bombyx mori) sulfotransferase SWSULT ST3 is involved in metabolism of polyphenols from mulberry leaves. PLoS ONE 2022, 17, e0270804. [Google Scholar] [CrossRef]
- Do, G.P.; Lee, H.J.; Do, J.R.; Kim, H.K. Inhibition of adipogenesis in 3T3-L1 adipocytes with water and ethanol extracts of Cudrania tricuspidata Leaves. Korean J. Food Preserv. 2011, 18, 244–249. [Google Scholar] [CrossRef]
- Lee, H.J.; Do, J.R.; Kwon, J.H.; Kim, H.K. Physiological activities of extracts from different parts of Cudrania tricuspidata. J. Korean Soc. Food Sci. Nutr. 2011, 40, 942–948. [Google Scholar] [CrossRef]
- Cuong, T.V.; Chin, K.B. Evaluation of Cudrania tricuspidata leaves on antioxidant activities and physicochemical properties of pork patties. Korean J. Food Sci. Anim. Resour. 2018, 38, 889–900. [Google Scholar] [CrossRef]
- Choi, J.H.; Nam, M.J.; Ryu, G.H.; Jeon, J.W.; Yun, S.S. Quantitative analysis of chemical components of hydrolysate from silkworm fed with Cudrania tricuspidata Leaves. Biomed. Sci. Lett. 2022, 28, 322–326. [Google Scholar] [CrossRef]
- Azm, N.A.E.; Fleita, D.; Rifaat, D.; Mpingirika, E.Z.; Amleh, A.; El-Sayed, M.M.H. Production of bioactive compounds from the sulfated polysaccharides extracts of ulva lactuca: Post-extraction enzymatic hydrolysis followed by ion-exchange chromatographic fractionation. Molecules 2019, 24, 2132. [Google Scholar] [CrossRef]
- You, L.; Zhao, M.; Cui, C.; Zhao, H.; Yang, B. Effect of degree of hydrolysis on the antioxidant activity of loach (Misgurnus anguillicaudatus) protein hydrolysates. Innov. Food Sci. Emerg. Technol. 2009, 10, 235–240. [Google Scholar] [CrossRef]
- Kim, D.W.; Park, K.; Ha, G.; Jung, J.R.; Chang, O.; Ham, J.S.; Jeong, S.G.; Park, B.Y.; Song, J.; Jang, A.R. Anti-oxidative and neuroprotective activities of pig skin gelatin hydrolysates. Korean J. Food Sci. Anim. Resour. 2013, 33, 258–267. [Google Scholar] [CrossRef]
- Kuhl, D.E.; Koeppe, R.A.; Minoshima, S.; Snyder, S.E.; Ficaro, E.P.; Foster, N.L.; Frey, K.A.; Kilbourn, M.R. In vivo mapping od cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 1999, 52, 691–699. [Google Scholar] [CrossRef]
- Kasa, P.; Papp, H.; Kasa, P.; Torok, I. Donepezil dose dependently inhibits acetylcholinesterase activity in various areas and in the presynaptic cholinergic and the postsynaptic cholinoceptive enzyme-positive structures in the human and rat brain. Neuroscience 2000, 101, 89–100. [Google Scholar] [CrossRef]
- Bartus, R.T. On neurodegenerative diseases, models, and treatment strategies: Lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 2000, 163, 495–529. [Google Scholar] [CrossRef]
- Ebert, U.; Kirch, W. Scopolamine model of dementia: Electroencephalogram findings and cognitive performance. Eur. J. Clin. Investig. 1998, 28, 944–949. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.J.; Noh, B.W.; Pang, Q.Q.; Lee, S.H.; Kim, J.H.; Cho, E.J. Protective mechanism of cirsium japonicum var. maackii against scopolamine-induced cognitive impairment. J. Agric. Life Environ. Sci. 2022, 34, 73–87. [Google Scholar] [CrossRef]
- Morris, R. Developments of a water-maze procedure for studying spatial learning in the rat. J. Neurosci. Methods 1984, 11, 47–60. [Google Scholar] [CrossRef]
- Sun, N.; Wang, H.; Wang, X.Y.; Yu, Q.; Han, J.Y.; Huang, Y.; Zhou, W.X. Deletion of AhR attenuates fear memory leaving other types of memory intact. Behav. Brain Res. 2023, 451, 114505. [Google Scholar] [CrossRef] [PubMed]
- Gawei, K.; Gibula, E.; Marszalek-Grabska, M.; Fliarowska, J.; Kotlinska, J.H. Assessment of spatial learning and memory in the Barnes maze task in rodents—Methodological consideration. Naunyn. Schmiedebergs Arch. Pharmacol. 2018, 392, 1–18. [Google Scholar] [CrossRef]
- Mihaylova, A.; Doncheva, N.; Zlatanova, H.; Delev, D.; Ivanovska, M.; Koeva, Y.; Murdjeva, M.; Kostadinov, L. Dopaminergic agonist pramipexole improves memory and increases IL-10 production in LPS-challenged rats. Iran. J. Basic Med. Sci. 2021, 24, 577–585. [Google Scholar] [CrossRef]
- Lee, J.H.; Park, S.H.; Lee, C.H.; Kim, H.J.; Jung, C.J.; Beik, G.Y.; Shin, J.G.; Jung, J.W. Investigating the effect of Crataegus pinnatifida, a functional food, on cognition and memory deficit. Korean J. Food Preserv. 2019, 26, 238–245. [Google Scholar] [CrossRef]
- Farlow, M.R.; Salloway, S.; Tariot, P.N.; Yardley, J.; Moline, M.L.; Wang, Q.; Brand-Schieber, E.; Zou, H.; Hsu, T.; Satlin, A. Effectiveness and tolerability of high-dose (23 mg/d) versus standard dose (10 mg/d) donepezil in moderate to severe Alzheimer’s disease: A 24-week, randomized, double-blind study. Clin. Ther. 2010, 32, 1234–1251. [Google Scholar] [CrossRef]
- Youn, H.C.; Jeong, H.G. Pharmacotherapy for dementia. J. Korean Med. Assoc. 2018, 61, 758–764. [Google Scholar] [CrossRef]
- Lee, S.E.; Park, S.B.; Kweon, H.Y.; Park, J.Y.; Lee, J.Y.; Jo, Y.Y.; Lee, J.H.; Jang, G.Y.; Choi, S.J.; Kim, D.H. Cognition improving effect of the compositions prepared with extracts of Wongam, Sorghum bicolor (L.) Moench and pupae of Bombyx mori L. Korean J. Food Preserv. 2021, 28, 989–999. [Google Scholar] [CrossRef]
- Prieur, E.A.K.; Jadavii, N.M. Assessing spatial working memory using the spontaneous alternation Y-maze test in aged male mice. Bio Protoc. 2019, 9, e3162. [Google Scholar] [CrossRef]
- Botton, P.H.; Costa, M.S.; Ardais, A.P.; Mioranzza, S.; Souza, D.O.; da Rocha, J.B.T.; Porciuncula, L.O. Caffeine prevents disruption of memory consolidation in the inhibitory avoidance and novel object recognition tasks by scopolamine in adult mice. Behav. Brain Res. 2010, 214, 254–259. [Google Scholar] [CrossRef] [PubMed]
- Pisani, S.; Mueller, C.; Huntley, J.; Aarsland, D.; Kempton, M.J. A meta-analysis of randomised controlled trials of physical activity in people with Alzheimer’s disease and mild cognitive impairment with a comparison to donepezil. Int. J. Geriatr. Psychiatry 2021, 36, 1471–1487. [Google Scholar] [CrossRef] [PubMed]
Organ | Group (1) | p-Value | |||
---|---|---|---|---|---|
Control | Scopolamine | HSCT | Donepezil | ||
Brain | 1.80 ± 0.11 (2) | 1.83 ± 0.03 | 1.88 ± 0.03 | 1.87 ± 0.04 | NS (3) |
Heart | 1.62 ± 0.05 | 1.59 ± 0.03 | 1.58 ± 0.04 | 1.58 ± 0.04 | |
Liver | 11.93 ± 0.46 | 11.37 ± 0.25 | 11.54 ± 0.40 | 11.40 ± 0.53 | |
Kidney | 3.06 ± 0.10 | 2.95 ± 0.08 | 3.10 ± 0.11 | 2.93 ± 0.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, G.-M.; Jung, T.-H.; Yun, S.-S.; Choi, J.-H.; Nam, M.-J.; Han, K.-S. Effects of Hydrolysates from Silkworms Fed Cudrania tricuspidata Leaves on Improvement of Memory in Rats with Impaired Memory Induced by Scopolamine. Appl. Sci. 2023, 13, 11656. https://doi.org/10.3390/app132111656
An G-M, Jung T-H, Yun S-S, Choi J-H, Nam M-J, Han K-S. Effects of Hydrolysates from Silkworms Fed Cudrania tricuspidata Leaves on Improvement of Memory in Rats with Impaired Memory Induced by Scopolamine. Applied Sciences. 2023; 13(21):11656. https://doi.org/10.3390/app132111656
Chicago/Turabian StyleAn, Gyu-Mi, Tae-Hwan Jung, Sung-Seob Yun, Jae-Hwan Choi, Min-Ji Nam, and Kyoung-Sik Han. 2023. "Effects of Hydrolysates from Silkworms Fed Cudrania tricuspidata Leaves on Improvement of Memory in Rats with Impaired Memory Induced by Scopolamine" Applied Sciences 13, no. 21: 11656. https://doi.org/10.3390/app132111656
APA StyleAn, G.-M., Jung, T.-H., Yun, S.-S., Choi, J.-H., Nam, M.-J., & Han, K.-S. (2023). Effects of Hydrolysates from Silkworms Fed Cudrania tricuspidata Leaves on Improvement of Memory in Rats with Impaired Memory Induced by Scopolamine. Applied Sciences, 13(21), 11656. https://doi.org/10.3390/app132111656