# A Systematic Approach for Energy-Efficient Design of Rolling Bearing Cages

^{1}

^{2}

^{3}

^{4}

^{*}

## Abstract

**:**

## Featured Application

**This study proposes a heat generation model for selecting an energy-efficient design for a rolling bearing cage.**

## Abstract

## 1. Introduction

## 2. Materials and Methods

#### 2.1. Heat Generation Model

#### 2.2. An Energy Efficient Cage Design

## 3. Results and Discussion

## 4. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## Abbreviations

${K}_{T}$ | Cooling factor |

$n$ | Cage rotation frequency |

${W}_{c}$ | Cage weight |

${f}_{b}$ | Cage with the ring friction coefficient |

${f}_{c}$ | Cage with the rolling element friction coefficient |

${f}_{r}$ | Rolling element with the ring friction coefficient |

${D}_{w}$ | Rolling element diameter |

${d}_{o}$ | Rolling element center diameter |

${r}_{g}$ | Bearing ring groove radius |

${d}_{out}$ | Outer ring diameter |

${d}_{in}$ | Inner ring diameter |

${d}_{bs}$ | Base ring edge diameter |

${h}_{b}$ | Ring thickness |

$k$ | Rolling friction coefficient |

${\alpha}_{i}$ | Bearing contact angle |

${F}_{b}\left(\phi \right)$ | Force of the rolling element with ring interaction |

${F}_{r\mathrm{in}}\left(\phi \right)$ | Radial force component from the inner ring |

${F}_{r\mathrm{out}}\left(\phi \right)$ | Radial force component from the outer ring |

${I}_{r}$ | Second moment of inertia |

$\epsilon $ | Cage eccentricity |

## References

- Klitnoi, V.; Gaydamaka, A. On The Problem of Vibration Protection of Rotor Systems with Elastic Adaptive Elements of Quasi-Zero Stiffness. Diagnostyka
**2020**, 21, 69–75. [Google Scholar] [CrossRef] - Gaydamaka, A.; Muzikin, Y.; Klitnoi, V.; Basova, Y.; Dobrotvorskiy, S. Selecting the Method for Pre-tightening Threaded Connections of Heavy Engineering. Int. Conf. Reliab. Syst. Eng.
**2021**, 305, 69–77. [Google Scholar] [CrossRef] - Shevchenko, S.; Mukhovaty, A.; Krol, O. Geometric Aspects of Modifications of Tapered Roller Bearings. In Proceedings of the 2nd International Conference on Industrial Engineering, ICIE 2016, Chelyabinsk, Russia, 19–20 May 2016. [Google Scholar] [CrossRef]
- Gaydamaka, A.; Klitnoy, V.; Muzikin, Y.; Tat’kov, V.; Hrechka, I. Construction of a model for the distribution of radial load among the bearing’s rolling bodies. East.-Eur. J. Enterp. Technol.
**2018**, 6, 39–44. [Google Scholar] [CrossRef][Green Version] - Marchenko, A.; Grabovskiy, A.; Tkachuk, M.; Shut, O.; Tkachuk, M. Detuning of a supercharger rotor from critical rotational velocities. In Proceedings of the 4th International Conference on Design, Simulation, Manufacturing: The Innovation Exchange, DSMIE 2021, Lviv, Ukraine, 8–11 June 2021; pp. 137–145. [Google Scholar] [CrossRef]
- Prokopenko, D.; Shatskyi, I.; Vorobiov, M.; Ropyak, L. Cyclic deformation of separating tape in electromagnetic rolling pump. J. Phys. Conf. Ser.
**2021**, 1741, 012029. [Google Scholar] [CrossRef] - Jones, A.B. A General Theory for Elastically Constrained Ball and Radial Roller Bearings. Trans. ASME Ser. D J. Basic Eng.
**1960**, 82, 309–320. [Google Scholar] [CrossRef] - Yan, K.; Wang, Y.; Zhu, Y.; Hong, J.; Zhai, Q. Investigation on Heat Dissipation Characteristic of Ball Bearing Cage and Inside Cavity at Ultra High Rotation Speed. Tribol. Int.
**2016**, 93, 470–481. [Google Scholar] [CrossRef] - Walters, C.T. The Dynamics of Ball Bearings. ASME J. Lubr. Tech.
**1971**, 93, 1–10. [Google Scholar] [CrossRef] - Gupta, P.K. Dynamics of Rolling-Element Bearings—Part III: Ball Bearing Analysis. J. Lubr. Technol.
**1979**, 101, 312–318. [Google Scholar] [CrossRef] - Gupta, P.K.; Burton, P. Advanced Dynamics of Rolling Elements; Pringer-Verlag Press: New York, NY, USA, 1984. [Google Scholar]
- Kim, S.J. Analytical Consideration of the Radial Clearance to Reduce Cage Slip of the Turbo Engine Roller. Bear. J. Mech. Sci. Technol.
**2021**, 35, 2827–2839. [Google Scholar] [CrossRef] - Li, H.; Li, H.; Liu, Y.; Liu, H. Dynamic Characteristics of Ball Bearing with Flexible Cage Lintel and Wear. Eng. Fail. Anal.
**2020**, 117, 104956. [Google Scholar] [CrossRef] - Dahiwal, R.; Bernd, S. Investigation of Cage Pocket Wear in Solid-Lubricated Rolling Bearings. Tribol. Online Jpn. Soc. Tribol.
**2020**, 15, 25–35. [Google Scholar] [CrossRef][Green Version] - Bizarre, L.; Nonato, F.; Cavalca, K.L. Formulation of Five Degrees of Freedom Ball Bearing Model Accounting for the Nonlinear Stiffness and Damping of Elastohydrodynamic Point Contacts. Mech. Mach. Theory
**2018**, 124, 179–196. [Google Scholar] [CrossRef] - Kwak, W.; Lee, J.; Lee, Y.B. Theoretical and Experimental Approach to Ball Bearing Frictional Characteristics Compared with Cryogenic Friction Model and Dry Friction Model. Mech. Syst. Signal Process.
**2019**, 124, 424–438. [Google Scholar] [CrossRef] - Liu, Y.; Wang, W.; Qing, T.; Zhang, Y.; Liang, H.; Zhang, S. The Effect of Lubricant Temperature on Dynamic Behavior in Angular Contact Ball Bearings. Mech. Mach. Theory
**2020**, 149, 103832. [Google Scholar] [CrossRef] - Kalinin, Y.; Olexander, S.; Volodymyr, R.; Koliesnik, I.; Kozhushko, A. Determining the Stresses in Beams Due to Short-Term Effect on Their Supports. In Proceedings of the International Conference on Business and Technology, ICBT 2020, Istanbul, Turkey, 14–15 November 2020; pp. 617–628. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, X.; Gu, J.; Shen, X. Friction Moment Analysis of Space Gyroscope Bearing with Ribbon cage Under Ultra-Low Oscillatory Motion. Chin. J. Aeronaut.
**2014**, 27, 1301–1311. [Google Scholar] [CrossRef][Green Version] - Stammler, M.; Schwack, F.; Bader, N.; Reuter, A.; Poll, G. Friction Torque of Wind-Turbine Pitch Bearings–Comparison of Experimental Results with Available Models. Wind. Energy Sci.
**2018**, 5, 97–105. [Google Scholar] [CrossRef][Green Version] - Brecher, C.; Bäumler, S.; Rossaint, J. Calculation of Kinematics and Friction of a Spindle Bearing Using a Local EHL Friction Model. Tribol. Trans.
**2013**, 56, 245–254. [Google Scholar] [CrossRef] - Cousseau, T.; Graça, B.; Campos, A.; Seabra, J. Friction Torque in Grease Lubricated Thrust Ball Bearings. Tribol. Int.
**2011**, 44, 523–531. [Google Scholar] [CrossRef][Green Version] - Geonea, I.; Dumitru, N.; Dumitru, I. Experimental and Theoretical Study of Friction Torque From Radial Ball Bearings. IOP Conf. Ser. Mater. Sci. Eng.
**2017**, 252, 012048. [Google Scholar] [CrossRef][Green Version] - Yuwei, L.; Xingyu, F.; Jia, W.; Xiayi, L. An Investigation for the Friction Torque of a Tapered Roller Bearing Considering the Geometric Homogeneity of Rollers. Lubricants
**2022**, 10, 154. [Google Scholar] [CrossRef] - Gaydamaka, A. Models of Kinematics and Dynamics of Cylindrical Roller Bearings of Railway Transport. Sci. Transp. Prog.
**2014**, 3, 100–108. [Google Scholar] [CrossRef] [PubMed][Green Version] - Nosov, V.B. Bearing Units of Modern Machines and Devices: Handbook; Mashinostroenie: Moscow, Russia, 1997. [Google Scholar]
- The SKF Model for Calculating the Frictional Moment. 2017. Available online: http://www.skf.com/binary/110299767/The%20SKF%20model%20for%20calculating%20the%20frictional%20moment_tcm_12-299767.pdf (accessed on 6 November 2022).
- Abdan, S.; Stosic, N.; Kovacevic, C.; Smith, I.; Asati, N. Analysis of rolling bearing power loss models for twin screw oil injected compressor. IOP Conf. Ser.: Mater. Sci. Eng.
**2019**, 604, 012013. [Google Scholar] [CrossRef][Green Version] - Gaydamaka, A. Cylindrical Roller Bearing of the Maximum Load within the Specified Dimensions with a Polymer Separator of Onepiece Design. Ukraine Patent Number 91168, 25 June 2014. [Google Scholar]
- Baehr, H.D.; Stephan, K. Heat and Mass Transfer, 2nd ed.; Springer: New York, NY, USA, 2006; 688p. [Google Scholar] [CrossRef]

**Figure 2.**The scheme of force interactions in zone A: 1, 2—outer ring and a rib; 3, 4—inner ring and a rib; 5—rolling body; 6—cage.

**Figure 4.**The temperature gradients diagrams for a typical design of a cylindrical roller bearing (region R, z = 14) and a modernized one (region E, z = 16): curve 1—${F}_{r}=50\mathrm{kN},V=200\mathrm{km}/\mathrm{h};\mathrm{curve}$2—${F}_{r}=30\mathrm{kN},V=100\mathrm{km}/\mathrm{h}$.

**Figure 5.**Graphs of generalized temperature functions T °C depending on the distance L of the passenger car of the Kharkiv-Odesa and Odesa-Kharkiv trains in forward and reverse directions, obtained during a month of research (curve 1—for the typical design of a cylindrical roller bearing; 2—for the modernized design; 3—environment (air); 4—the temperature gradient of the typical design and the environment; 5—the temperature gradient of the modernized design and the environment.

**Table 1.**The temperature gradient in the rolling bearings, caused by structural changes in the cage and corresponding to various operating conditions.

${\mathit{F}}_{\mathit{r}}\mathbf{kN}$ | ${\mathit{F}}_{\mathit{a}}\mathbf{kN}$ | ${\mathit{F}}_{\mathit{c}}{\left(\mathit{\phi}\right)}^{\ast}\mathbf{N}$ | ${{\mathit{F}}^{\prime}}_{\mathit{c}}{\left(\mathit{\phi}\right)}^{\ast}\mathbf{N}$ | ${\mathit{M}}_{\mathit{c}}{}^{\ast}\mathbf{N}\xb7\mathbf{mm}$ | $\mathbf{\Delta}{\mathit{T}}^{\ast}{}^{\mathbf{\circ}}\mathbf{C}$ $(\mathit{V}=27.8)$ | $\mathbf{\Delta}{\mathit{T}}^{\ast}{}^{\mathbf{\circ}}\mathbf{C}$ $(\mathit{V}=55.6)$ | $\mathbf{\Delta}{\mathit{T}}^{\ast}{}^{\mathbf{\circ}}\mathbf{C}$ $(\mathit{V}=83.4)$ |
---|---|---|---|---|---|---|---|

30 | 5 | 110/98 | 99/85 | 578/289 | 0.9/0.5 | 1.1/0.5 | 1.2/0.6 |

10 | 147/133 | 139/120 | 791/400 | 1.3/0.6 | 1.5/0.7 | 1.6/0.8 | |

15 | 182/167 | 175/156 | 987/510 | 1.6/0.8 | 1.8/0.9 | 1.9/1.0 | |

20 | 197/179 | 191/168 | 1073/548 | 1.7/0.9 | 2.0/1.0 | 2.2/1.1 | |

40 | 5 | 143/127 | 134/115 | 766/382 | 1.2/0.6 | 1.4/0.7 | 1.5/0.8 |

10 | 180/161 | 173/150 | 976/491 | 1.6/0.8 | 1.8/0.9 | 1.9/0.9 | |

15 | 215/196 | 210/186 | 1175/604 | 1.9/0.9 | 2.1/1.1 | 2.3/1.2 | |

20 | 230/210 | 226/200 | 1261/648 | 2.0/1.0 | 2.3/1.2 | 2.4/1.3 | |

50 | 5 | 177/155 | 170/143 | 959/471 | 1.5/0.8 | 1.8/0.9 | 1.9/0.9 |

10 | 213/191 | 208/181 | 1164/588 | 1.9/0.9 | 2.1/1.1 | 2.2/1.1 | |

15 | 248/224 | 245/214 | 1363/692 | 2.2/1.1 | 2.5/1.3 | 2.6/1.3 | |

20 | 263/239 | 261/230 | 1449/741 | 2.3/1.2 | 2.7/1.4 | 2.8/1.4 |

Typical Bearing | Modernized Bearing | $\mathit{\%}$ | |||
---|---|---|---|---|---|

$\mathbf{Mean}\mathbf{\Delta}{\mathit{T}}^{\ast}{}^{\mathbf{\circ}}\mathbf{C}$ | Standard Deviation | $\mathbf{Mean}\mathbf{\Delta}{\mathit{T}}^{\ast}{}^{\mathbf{\circ}}\mathbf{C}$ | Standard Deviation | ||

Poltava | 2.96 | 0.43 | 0.92 | 0.12 | 68.9 |

Kremenchuk | 4.12 | 0.45 | 1.97 | 0.16 | 52.2 |

Znamyanka | 4.94 | 0.89 | 3.08 | 0.36 | 37.6 |

Voznesensk | 5.92 | 0.69 | 3.02 | 0.5 | 48.9 |

Odesa | 4.98 | 0.45 | 1.81 | 0.14 | 63.6 |

Voznesensk | 2.12 | 0.29 | 0.81 | 0.11 | 61.8 |

Znamyanka | 3.57 | 0.6 | 2.8 | 0.52 | 21.5 |

Kremenchuk | 5.07 | 0.93 | 2.78 | 0.4 | 45.1 |

Poltava | 6.39 | 0.56 | 3.43 | 0.57 | 46.3 |

Kharkiv | 8.87 | 1.5 | 6.32 | 1.08 | 28.7 |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Gaydamaka, A.; Klitnoi, V.; Dobrotvorskiy, S.; Basova, Y.; Matos, D.; Machado, J. A Systematic Approach for Energy-Efficient Design of Rolling Bearing Cages. *Appl. Sci.* **2023**, *13*, 1144.
https://doi.org/10.3390/app13021144

**AMA Style**

Gaydamaka A, Klitnoi V, Dobrotvorskiy S, Basova Y, Matos D, Machado J. A Systematic Approach for Energy-Efficient Design of Rolling Bearing Cages. *Applied Sciences*. 2023; 13(2):1144.
https://doi.org/10.3390/app13021144

**Chicago/Turabian Style**

Gaydamaka, Anatoliy, Volodymyr Klitnoi, Sergey Dobrotvorskiy, Yevheniia Basova, Demétrio Matos, and José Machado. 2023. "A Systematic Approach for Energy-Efficient Design of Rolling Bearing Cages" *Applied Sciences* 13, no. 2: 1144.
https://doi.org/10.3390/app13021144