Opportunities and Challenges in the Smart and Comprehensive Monitoring of Complex Surface Systems
Author Contributions
Funding
Conflicts of Interest
References
- Zhao, W.; Li, A. A Review on Land Surface Processes Modelling over Complex Terrain. Adv. Meteorol. 2015, 2015, 607181. [Google Scholar] [CrossRef]
- Nakanishi, Y.; Kaneta, T.; Nishino, S. A Review of Monitoring Construction Equipment in Support of Construction Project Management. Front. Built Environ. 2022, 7, 632593. [Google Scholar] [CrossRef]
- Qi, T.-F.; Fang, H.-R.; Chen, Y.-F.; He, L.-T. Research on digital twin monitoring system for large complex surface machining. J. Intell. Manuf. 2023, 1–14. [Google Scholar] [CrossRef]
- Takami, K.; Furukawa, T.; Kumon, M.; Kimoto, D.; Dissanayake, G. Estimation of a nonvisible field-of-view mobile target incorporating optical and acoustic sensors. Auton. Robot. 2016, 40, 343–359. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Y.j.; Song, S.; Li, F. Overview of Fibre Optic Sensing Technology in the Field of Physical Ocean Observation. Front. Phys. 2021, 9, 558. [Google Scholar] [CrossRef]
- Papa, F.; Crétaux, J.-F.; Grippa, M.; Robert, E.; Trigg, M.; Tshimanga, R.M.; Kitambo, B.; Paris, A.; Carr, A.; Fleischmann, A.S.; et al. Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surv. Geophys. 2023, 44, 43–93. [Google Scholar] [CrossRef] [PubMed]
- Elgy, J.; Jones, H.K. Use of Remote Sensing and GIS for Environmental Modelling and Monitoring. In Environmentally Devastated Areas in River Basins in Eastern Europe; Springer: Berlin/Heidelberg, Germany, 1998; pp. 155–168. [Google Scholar]
- Singh, R.N. Sensing diversifies into remote sensing. J. Indian Soc. Remote Sens. 2006, 34, 437–452. [Google Scholar] [CrossRef]
- Sinnhuber, B.-M. Frank S. Marzano and Guido Visconti: Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques. J. Atmos. Chem. 2004, 48, 105–106. [Google Scholar] [CrossRef]
- Pei, W.; Shi, Z.; Gong, K. Small target detection with remote sensing images based on an improved YOLOv5 algorithm. Front. Neurorobotics 2023, 16, 1074862. [Google Scholar] [CrossRef]
- Ren, H.; Zhao, Y.; Xiao, W.; Hu, Z. A review of UAV monitoring in mining areas: Current status and future perspectives. Int. J. Coal Sci. Technol. 2019, 6, 320–333. [Google Scholar] [CrossRef]
- Sun, W.; Dai, L.; Zhang, X.; Chang, P.; He, X. RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring. Appl. Intell. 2022, 52, 8448–8463. [Google Scholar] [CrossRef]
- Al-Ali, Z.M.; Abdullah, M.M.; Asadalla, N.B.; Gholoum, M. A comparative study of remote sensing classification methods for monitoring and assessing desert vegetation using a UAV-based multispectral sensor. Environ. Monit. Assess. 2020, 192, 389. [Google Scholar] [CrossRef] [PubMed]
- Pieraccini, M.; Miccinesi, L. Ground-Based Radar Interferometry: A Bibliographic Review. Remote Sens. 2019, 11, 1029. [Google Scholar] [CrossRef]
- Mu, X.; Hu, R.; Zeng, Y.; McVicar, T.R.; Ren, H.; Song, W.; Wang, Y.; Casa, R.; Qi, J.; Xie, D.; et al. Estimating structural parameters of agricultural crops from ground-based multi-angular digital images with a fractional model of sun and shade components. Agric. For. Meteorol. 2017, 246, 162–177. [Google Scholar] [CrossRef]
- Wang, W.; Shi, K.; Zhang, Y.; Li, N.; Sun, X.; Zhang, D.; Zhang, Y.; Qin, B.; Zhu, G. A ground-based remote sensing system for high-frequency and real-time monitoring of phytoplankton blooms. J. Hazard. Mater. 2022, 439, 129623. [Google Scholar] [CrossRef]
- Carvalho, L.C.; Gonçalves, E.F.; Marques da Silva, J.; Costa, J.M. Potential Phenotyping Methodologies to Assess Inter- and Intravarietal Variability and to Select Grapevine Genotypes Tolerant to Abiotic Stress. Front. Plant Sci. 2021, 12, 718202. [Google Scholar] [CrossRef]
- Washburn, J.D.; Cimen, E.; Ramstein, G.; Reeves, T.; O’Briant, P.; McLean, G.; Cooper, M.; Hammer, G.; Buckler, E.S. Predicting phenotypes from genetic, environment, management, and historical data using CNNs. Theor. Appl. Genet. 2021, 134, 3997–4011. [Google Scholar] [CrossRef]
- Rahaman, M.M.; Chen, D.; Gillani, Z.; Klukas, C.; Chen, M. Advanced phenotyping and phenotype data analysis for the study of plant growth and development. Front. Plant Sci. 2015, 6, 619. [Google Scholar] [CrossRef]
- Zhao, J.; Pan, F.; Xiao, X.; Hu, L.; Wang, X.; Yan, Y.; Zhang, S.; Tian, B.; Yu, H.; Lan, Y. Summer Maize Growth Estimation Based on Near-Surface Multi-Source Data. Agronomy 2023, 13, 532. [Google Scholar] [CrossRef]
- Liu, H.; Li, M.; Yuan, M.; Li, B.; Jiang, X. A fine subsidence information extraction model based on multi-source inversion by integrating InSAR and leveling data. Nat. Hazards 2022, 114, 2839–2854. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, J.; Cui, C.; Li, Z.; Fu, L.; Li, Q. Multi-source multi-scale source-independent full waveform inversion. J. Geophys. Eng. 2019, 16, 479–492. [Google Scholar] [CrossRef]
- Yao, J.; Wu, J.; Xiao, C.; Zhang, Z.; Li, J. The Classification Method Study of Crops Remote Sensing with Deep Learning, Machine Learning, and Google Earth Engine. Remote Sens. 2022, 14, 2758. [Google Scholar] [CrossRef]
- Jafarzadeh, H.; Mahdianpari, M.; Gill, E.W.; Brisco, B.; Mohammadimanesh, F. Remote Sensing and Machine Learning Tools to Support Wetland Monitoring: A Meta-Analysis of Three Decades of Research. Remote Sens. 2022, 14, 6104. [Google Scholar] [CrossRef]
- Bouguettaya, A.; Zarzour, H.; Kechida, A.; Taberkit, A.M. Deep learning techniques to classify agricultural crops through UAV imagery: A review. Neural Comput. Appl. 2022, 34, 9511–9536. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Q.; Guo, Y. Opportunities and Challenges in the Smart and Comprehensive Monitoring of Complex Surface Systems. Appl. Sci. 2023, 13, 10571. https://doi.org/10.3390/app131910571
Yao Q, Guo Y. Opportunities and Challenges in the Smart and Comprehensive Monitoring of Complex Surface Systems. Applied Sciences. 2023; 13(19):10571. https://doi.org/10.3390/app131910571
Chicago/Turabian StyleYao, Qingyu, and Yulong Guo. 2023. "Opportunities and Challenges in the Smart and Comprehensive Monitoring of Complex Surface Systems" Applied Sciences 13, no. 19: 10571. https://doi.org/10.3390/app131910571
APA StyleYao, Q., & Guo, Y. (2023). Opportunities and Challenges in the Smart and Comprehensive Monitoring of Complex Surface Systems. Applied Sciences, 13(19), 10571. https://doi.org/10.3390/app131910571