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The trade-offs between wetland and cropland generate new challenges in understand-
ing the balance between humanity and nature regarding the global carbon cycle, biological
diversity, and food supplies [1]. Effective monitoring techniques can be used to acquire
valuable information to improve the accuracy, efficiency, and decision making of system
construction via bio–physical–chemical interconversion [2]. Moreover, large, curved, and
diverse data sets involved in the monitoring process require high-level intelligence and
visualization to process [3]. In addition, the fast development of high-quality sensors leads
to the dramatic enrichment of a field monitoring data source. Therefore, effective, accurate,
and comprehensive information from varied sensors becomes crucial in figuring out the
constitutive mechanism of wetland and cropland systems.

Field observation sensors are commonly deployed in the field to automatically acquire
data from various physical, chemical, or biological parameters of the environment [4]. Such
devices can be either active or passive, depending on whether they provide their own
source of energy or detect energy from the environment, such as wave samplers, current
meters, water quality sensors, fiber optic sensors, etc. [5]. Field observation sensors can be
used to monitor the environmental dynamics and changes over time and space, supporting
the research and management of natural resources and ecosystems and, more importantly,
providing validation data for remote sensing and modeling [6].

Using sufficient data from various sensors, monitoring platforms and techniques are
widely investigated to accomplish the complex monitoring process. Satellite remote sensing
is a commonly used method that exploits sensors on satellites, aircrafts, or drones to collect
real-time or near-real-time data on the Earth’s surface without direct contact [7]. Remote
sensing provides information from large-scale Earth observations, producing regional-,
continental-, and even global-scale visions on environmental change and responses to
human activities [8], and further supports various applications, such as environmental
monitoring, agricultural development, geological exploration, etc. [9]. However, the limita-
tions of spatial, spectral, and temporal resolutions hinder the practice of mature satellite
remote sensing techniques for small-scale targets, e.g., a specific parcel [10]. Benefiting
from the efficient acquisition of high-resolution images of small targets or areas at low
altitude, UAVs (unmanned aerial vehicles) have various applications such as 3D modeling,
terrain surveying, ecological monitoring, geological hazard monitoring, search and rescue,
etc. [11,12]. Hence, UAVs are an effective additional platform for small-scale monitoring
missions, effectively enhancing the monitoring accuracy of remote sensing despite the lack
of continuous observation [13]. Moreover, a ground-based monitoring platform employ
sensors and cameras attached to the ground or a fixed structure to comprehensively mea-
sure the deformation or movement of the targeted field [14]. Ground-based monitoring
techniques, such as hyperspectral detecting, IoT-supported continuous photography, and
soil parameter monitoring, can be used for monitoring landslides, volcanoes, bridges,
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dams, and other significant civil infrastructures in current crop and wetland monitoring
missions [15,16].

Technical accuracy and efficacy require sufficient data to support potential practical
and theoretical studies. Sensors with different targets and at various distances supply multi-
sourced large-scale data sets, which are critical for achieving the effective and depictive
models as theoretical guidance. Hence, proper techniques facilitate comprehensive data
utilization in formulating the predicted models. Verdugo-Vásquez et al. [17] developed a
climate-based model to estimate grapevine phenology, taking into account meteorological
data and microclimate data at the plant level. Cooper et al. [18] proposed a predictive mod-
eling framework that integrates genetic, environmental, management, and phenotype data
to predict crop performance across diverse scenarios. Furbank and Tester [19] reviewed the
advanced mathematical and statistical methods for predicting plant development perfor-
mance using multiple traits, as well as the integration of experimental metadata within data
schemas. Such traditional statistical models effectively estimate plant phenotype factors
and water quality.

Nevertheless, theoretical derivations among multi-source data still require in-depth
studies. Theoretical inversion models can be significantly developed using multi-source
data, in terms of the analyzed information, to reduce the uncertainty and error of the
inversion results. Wang et al. [20] used multi-source data fusion of near-surface spectral re-
flectance, vegetation index, and soil moisture to estimate the growth parameters of summer
maize, such as leaf area index and chlorophyll content. Zhang et al. [21] proposed a data
integration method that combines the time series monitoring of satellite-based synthetic
aperture radar interferometry and leveling data to extract fine subsidence information.
Sun et al. [22] developed a multi-source, multi-scale, source-independent full waveform
inversion method that uses both surface and borehole seismic data to invert the velocity
distribution of the subsurface.

Deep learning techniques are capable of integrating large multi-source data in crop
growth and hydrodynamic models to develop in situ monitoring equipment to detect
fast-changing phenomena, as they can extract complex features and patterns from remote
sensing data, such as spectral, spatial, temporal, and contextual information. Li et al. [23]
used a deep neural network (DNN), recursive neural network (RNN), and convolutional
neural network (CNN) to classify crops based on remote sensing data, and achieved a
higher accuracy than traditional methods. Liu et al. [24] reviewed data fusion techniques
that employ multi-source satellite data sets to monitor the hydrological, vegetation, and
topographic characteristics of wetlands, which are important indicators of wetland health
and function. Alsharif et al. [25] presented object-based and pixel-based deep learning
techniques to classify agricultural crops via unmanned aerial vehicle (UAV) imagery,
showing that these can improve agricultural field management and productivity.

In summary, the comprehensive monitoring of croplands and wetlands is has potential
but is also a huge challenge. This Special Issue is a collection of reviews and original research
articles related to space-, aerial-, and ground-based monitoring techniques, which are used
to orient crops, wetlands, freshwater areas and their complex interactions, including both
algorithms, theoretical models, applications, and hardware development.
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