Study of the Relationship between Mode I Fracture Toughness and Rock Brittleness Indices
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Feng, G.; Wang, X.C.; Kang, Y.; Luo, S.G.; Hu, Y.Q. Effects of Temperature on the Relationship between Mode-I Fracture Toughness and Tensile Strength of Rock. Appl. Sci. 2019, 9, 1326. [Google Scholar] [CrossRef]
- Anderson, T.L. FRACTURE MECHANICS: Fundamentals and Applications, 4th ed.; Taylor & Francis Group: Abingdon, UK, 2017; ISBN 9781420058215. [Google Scholar]
- Bearman, R.A.; Briggs, C.A.; Kojovic, T. The Application of Rock Mechanics Parameters to the Prediction of Comminution Behaviour. Miner. Eng. 1997, 10, 255–264. [Google Scholar] [CrossRef]
- Arshadnejad, S.; Goshtasbi, K.; Aghazadeh, J. A Model to Determine Hole Spacing in the Rock Fracture Process by Non-Explosive Expansion Material. Int. J. Miner. Metall. Mater. 2011, 18, 509–514. [Google Scholar] [CrossRef]
- Arshadnejad, S. Analysis of the First Cracks Generating Between Two Holes Under Incremental Static Loading with an Innovation Method by Numerical Modelling. Math. Comput. Sci. 2017, 2, 120. [Google Scholar] [CrossRef]
- Feng, G.; Wang, X.; Wang, M.; Kang, Y. Experimental Investigation of Thermal Cycling Effect on Fracture Characteristics of Granite in a Geothermal-Energy Reservoir. Eng. Fract. Mech. 2020, 235, 107180. [Google Scholar] [CrossRef]
- Talukdar, M.; Guha Roy, D.; Singh, T.N. Correlating Mode-I Fracture Toughness and Mechanical Properties of Heat-Treated Crystalline Rocks. J. Rock Mech. Geotech. Eng. 2018, 10, 91–101. [Google Scholar] [CrossRef]
- Kang, P.; Hong, L.; Fazhi, Y.; Quanle, Z.; Xiao, S.; Zhaopeng, L. Effects of Temperature on Mechanical Properties of Granite under Different Fracture Modes. Eng. Fract. Mech. 2020, 226, 106838. [Google Scholar] [CrossRef]
- Xu, X.; Wu, S.; Jin, A.; Gao, Y. Review of the Relationships between Crack Initiation Stress, Mode I Fracture Toughness and Tensile Strength of Geo-Materials. Int. J. Geomech. 2018, 18, 04018136. [Google Scholar] [CrossRef]
- Tutluoglu, L.; Keles, C. Mode I Fracture Toughness Determination with Straight Notched Disk Bending Method. Int. J. Rock Mech. Min. Sci. 2011, 48, 1248–1261. [Google Scholar] [CrossRef]
- Ouchterlony, F. Suggested Methods for Determining the Fracture Toughness of Rock. Int. J. Rock Mech. Min. Sci. 1988, 25, 72–96. [Google Scholar] [CrossRef]
- Fowell, R.J.; Hudson, J.A.; Xu, C.; Chen, J.F.; Zhao, X. Suggested Method for Determining Mode I Fracture Toughness Using Cracked Chevron Notched Brazilian Disc (CCNBD) Specimens. Int. J. Rock Mech. Min. Sci. 1995, 32, 57–64. [Google Scholar] [CrossRef]
- Kuruppu, M.D.; Obara, Y.; Ayatollahi, M.R.; Chong, K.P.; Funatsu, T. ISRM-Suggested Method for Determining the Mode i Static Fracture Toughness Using Semi-Circular Bend Specimen. Rock Mech. Rock Eng. 2014, 47, 267–274. [Google Scholar] [CrossRef]
- Guha Roy, D.; Singh, T.N.; Kodikara, J.; Talukdar, M. Correlating the Mechanical and Physical Properties with Mode-I Fracture Toughness of Rocks. Rock Mech. Rock Eng. 2017, 50, 1941–1946. [Google Scholar] [CrossRef]
- Afrasiabiana, B.; Eftekharib, M. Prediction of Mode I Fracture Toughness of Rock Using Linear Multiple Regression and Gene Expression Programming. J. Rock Mech. Geotech. Eng. 2022, 14, 1421–1432. [Google Scholar] [CrossRef]
- Zhang, Z.X. An Empirical Relation between Mode I Fracture Toughness and the Tensile Strength of Rock. Int. J. Rock Mech. Min. Sci. 2002, 39, 401–406. [Google Scholar] [CrossRef]
- Chang, S.H.; Lee, C.I.; Jeon, S. Measurement of Rock Fracture Toughness under Modes I and II and Mixed-Mode Conditions by Using Disc-Type Specimens. Eng. Geol. 2002, 66, 79–97. [Google Scholar] [CrossRef]
- Bearman, R.A. The Use of the Point Load Test for the Rapid Estimation of Mode I Fracture Toughness. Int. J. Rock Mech. Min. Sci. 1999, 36, 257–263. [Google Scholar] [CrossRef]
- Shi, X.; Zhao, Y.; Danesh, N.N.; Zhang, X.; Tang, T. Role of Bedding Plane in the Relationship between Mode-I Fracture Toughness and Tensile Strength of Shale. Bull. Eng. Geol. Environ. 2022, 81, 81. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, Y.; Zhao, G.; Jin, P.; Zhao, Z.; Li, C. Experimental Investigation of the Relationships Among P-Wave Velocity, Tensile Strength, and Mode-I Fracture Toughness of Granite After High-Temperature Treatment. Nat. Resour. Res. 2022, 31, 801–816. [Google Scholar] [CrossRef]
- Guha Roy, D.; Singh, T.N.; Kodikara, J. Predicting Mode-I Fracture Toughness of Rocks Using Soft Computing and Multiple Regression. Meas. J. Int. Meas. Confed. 2018, 126, 231–241. [Google Scholar] [CrossRef]
- Kahraman, S.; Altindag, R. A Brittleness Index to Estimate Fracture Toughness. Int. J. Rock Mech. Min. Sci. 2004, 41, 343–348. [Google Scholar] [CrossRef]
- Saeidi, O.; Torabi, S.R.; Ataei, M.; Hoseinie, S.H. Prediction of Rock Fracture Toughness Modes I and II Utilising Brittleness Indexes. Int. J. Min. Miner. Eng. 2012, 4, 163–173. [Google Scholar] [CrossRef]
- Nejati, H.R.; Moosavi, S.A. A New Brittleness Index for Estimation of Rock Fracture Toughness. J. Min. Environ. 2017, 8, 83–91. [Google Scholar] [CrossRef]
- Cai, M. Prediction and Prevention of Rockburst in Metal Mines—A Case Study of Sanshandao Gold Mine. J. Rock Mech. Geotech. Eng. 2016, 8, 204–211. [Google Scholar] [CrossRef]
- Wang, S.M.; Zhou, J.; Li, C.Q.; Armaghani, D.J.; Li, X.B.; Mitri, H.S. Rockburst Prediction in Hard Rock Mines Developing Bagging and Boosting Tree-Based Ensemble Techniques. J. Cent. South Univ. 2021, 28, 527–542. [Google Scholar] [CrossRef]
- Sepehri, M.; Apel, D.B.; Adeeb, S.; Leveille, P.; Hall, R.A. Evaluation of Mining-Induced Energy and Rockburst Prediction at a Diamond Mine in Canada Using a Full 3D Elastoplastic Finite Element Model. Eng. Geol. 2020, 266, 105457. [Google Scholar] [CrossRef]
- Mikaeil, R.; Ataei, M.; Yousefi, R. Correlation of Production Rate of Ornamental Stone with Rock Brittleness Indexes. Arab. J. Geosci. 2013, 6, 115–121. [Google Scholar] [CrossRef]
- Kahraman, S. Correlation of TBM and Drilling Machine Performances with Rock Brittleness. Eng. Geol. 2002, 65, 269–283. [Google Scholar] [CrossRef]
- Jamshidi, A. Prediction of TBM Penetration Rate from Brittleness Indexes Using Multiple Regression Analysis. Model. Earth Syst. Environ. 2018, 4, 383–394. [Google Scholar] [CrossRef]
- Wei, M.D.; Dai, F.; Xu, N.W.; Zhao, T. Experimental and Numerical Investigation of Cracked Chevron Notched Brazilian Disc Specimen for Fracture Toughness Testing of Rock. Fatigue Fract. Eng. Mater. Struct. 2017, 41, 197–211. [Google Scholar] [CrossRef]
- Vavro, L.; Malíková, L.; Frantík, P.; Kubeš, P.; Keršner, Z.; Vavro, M. An Advanced Assessment of Mechanical Fracture Parameters of Sandstones Depending on the Internal Rock Texture Features. Acta Geodyn. Geomater. 2019, 16, 157–168. [Google Scholar] [CrossRef]
- Pakdaman, A.M.; Moosavi, M.; Mohammadi, S. Experimental and Numerical Investigation into the Methods of Determination of Mode I Static Fracture Toughness of Rocks. Theor. Appl. Fract. Mech. 2019, 100, 154–170. [Google Scholar] [CrossRef]
- Chandler, M.R.; Meredith, P.G.; Brantut, N.; Crawford, B.R.; Sciences, E.; Urc, E. Fracture Toughness Anisotropy in Shale. J. Geophys. Res. Solid Earth 2016, 121, 1706–1729. [Google Scholar] [CrossRef]
- Ghamgosar, M.; Erarslan, N.; Tehrani, K. Laboratory Investigations of Fracture Toughness and Tensile Strength for Various Rock Types. In Proceedings of the ISRM International Symposium—EUROCK 2016, Ürgüp, Turkey, 29–31 August 2016; pp. 223–228. [Google Scholar] [CrossRef]
- Bažant, Z.P.; Kazemi, M.T. Determination of Fracture Energy, Process Zone Length and Brittleness Number from Size Effecteffect, with Application to Rock and Concrete. Int. J. Fract. 1990, 44, 111–131. [Google Scholar] [CrossRef]
- Carpinteri, A. Size-Scale Transition from Ductile to Brittle Failure: Structural Response vs. Crack Growth Resistance Curve. Int. J. Fract. 1991, 51, 175–186. [Google Scholar] [CrossRef]
- Bažant, Z.P. Size Effect in Blunt Fracture: Concrete, Rock, Metal. J. Eng. Mech. 1984, 110, 518–535. [Google Scholar] [CrossRef]
- Spagnoli, A.; Carpinteri, A.; Ferretti, D.; Vantadori, S. An Experimental Investigation on the Quasi-Brittle Fracture of Marble Rocks. Fatigue Fract. Eng. Mater. Struct. 2016, 39, 956–968. [Google Scholar] [CrossRef]
- Gettu, R.; Bažant, Z.P.; Karr, M.E. Fracture Properties and Brittleness of High-Strength Concrete. ACI Mater. J. 1990, 87, 608–618. [Google Scholar] [CrossRef]
- Carpinteri, A. Size Effects in Material Strength Due to Crack Growth and Material Non-Linearity. Theor. Appl. Fract. Mech. 1984, 2, 39–45. [Google Scholar] [CrossRef]
- Xia, Y.; Zhou, H.; Zhang, C.; He, S.; Gao, Y.; Wang, P. The Evaluation of Rock Brittleness and Its Application: A Review Study. Eur. J. Environ. Civ. Eng. 2019, 26, 239–279. [Google Scholar] [CrossRef]
- Meng, F.; Wong, L.N.Y.; Zhou, H. Rock Brittleness Indices and Their Applications to Different Fields of Rock Engineering: A Review. J. Rock Mech. Geotech. Eng. 2021, 13, 221–247. [Google Scholar] [CrossRef]
- Carpinteri, A. Static and Energetic Fracture Parameters for Rocks and Concretes. Matér. Constr. 1981, 14, 151–162. [Google Scholar] [CrossRef]
- Sabri, M.; Ghazvinian, A.; Nejati, H.R. Effect of Particle Size Heterogeneity on Fracture Toughness and Failure Mechanism of Rocks. Int. J. Rock Mech. Min. Sci. 2016, 81, 79–85. [Google Scholar] [CrossRef]
- Team, R.C. R: A Language and Environment for Statistical Computing. 2022. Available online: https://www.scirp.org/(S(lz5mqp453ed%20snp55rrgjct55))/reference/referencespapers.aspx?referenceid=3456808 (accessed on 5 August 2023).
- Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.D.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al. Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [Google Scholar] [CrossRef]
- Kassambara, A. “Ggpubr: ‘Ggplot2” Based Publication Ready Plots", R Package Version 0.6.0. Available online: https://cran.rproject.org/web/packages/ggpubr/ (accessed on 5 August 2023).
- Wickham, H. “Modelr: Modelling Functions That Work with the Pipe”, R Package Version 0.1.10. Available online: https://CRAN.R-project.org/package=modelr/ (accessed on 5 August 2023).
- Li, X.; Zhang, Z.; Chen, W.; Yin, T.; Li, X. Mode I and Mode II Granite Fractures after Distinct Thermal Shock Treatments. J. Mater. Civ. Eng. 2019, 31, 06019001. [Google Scholar] [CrossRef]
- Xiao, P.; Li, D.; Zhao, G.; Liu, M. Experimental and Numerical Analysis of Mode i Fracture Process of Rock by Semi-Circular Bend Specimen. Mathematics 2021, 9, 1769. [Google Scholar] [CrossRef]
- Yin, T.; Wu, Y.; Wang, C.; Zhuang, D.; Wu, B. Mixed-Mode I + II Tensile Fracture Analysis of Thermally Treated Granite Using Straight-through Notch Brazilian Disc Specimens. Eng. Fract. Mech. 2020, 234, 107111. [Google Scholar] [CrossRef]
- Yin, T.; Wu, Y.; Li, Q.; Wang, C.; Wu, B. Determination of Double-K Fracture Toughness Parameters of Thermally Treated Granite Using Notched Semi-Circular Bending Specimen. Eng. Fract. Mech. 2020, 226, 106865. [Google Scholar] [CrossRef]
- Zuo, J.P.; Yao, M.H.; Li, Y.J.; Zhao, S.K.; Jiang, Y.Q.; Li, Z.D. Investigation on Fracture Toughness and Micro-Deformation Field of SCB Sandstone Including Different Inclination Angles Cracks. Eng. Fract. Mech. 2019, 208, 27–37. [Google Scholar] [CrossRef]
- Lim, I.L.; Johnston, I.W.; Choi, S.K.; Boland, J.N. Fracture Testing of a Soft Rock with Semi-Circular Specimens under Three-Point Bending. Part 1-Mode I. Int. J. Rock Mech. Min. Sci. 1994, 31, 185–197. [Google Scholar] [CrossRef]
- Erarslan, N.; Williams, D.J. The Damage Mechanism of Rock Fatigue and Its Relationship to the Fracture Toughness of Rocks. Int. J. Rock Mech. Min. Sci. 2012, 56, 15–26. [Google Scholar] [CrossRef]
- Funatsu, T.; Seto, M.; Shimada, H.; Matsui, K.; Kuruppu, M. Combined Effects of Increasing Temperature and Confining Pressure on the Fracture Toughness of Clay Bearing Rocks. Int. J. Rock Mech. Min. Sci. 2004, 41, 927–938. [Google Scholar] [CrossRef]
- Funatsu, T.; Shimizu, N.; Kuruppu, M.; Matsui, K. Evaluation of Mode I Fracture Toughness Assisted by the Numerical Determination of K-Resistance. Rock Mech. Rock Eng. 2015, 48, 143–157. [Google Scholar] [CrossRef]
- Iqbal, M.J.; Mohanty, B. Experimental Calibration of ISRM Suggested Fracture Toughness Measurement Techniques in Selected Brittle Rocks. Rock Mech. Rock Eng. 2007, 40, 453–475. [Google Scholar] [CrossRef]
- Alkiliçgil, Ç. Development of Specimen Geometries for Mode I Fracture Toughness Testing with Disc Type Rock Specimens; Middle East Technical University: Ankara, Turkey, 2010. [Google Scholar]
- Alpay, C. Investigation of Geometrical Factors for Determining Fracture Toughness with the Modified Ring Test; Middle East Technical University: Ankara, Turkey, 2008. [Google Scholar]
- Yarali, O.; Soyer, E. The Effect of Mechanical Rock Properties and Brittleness on Drillability. Sci. Res. Essays 2011, 6, 1077–1088. [Google Scholar] [CrossRef]
- Safari Farrokhad, S.; Lashkaripour, G.R.; Hafezi Moghaddas, N.; Aligholi, S.; Sabri, M.M.S. The Effect of the Petrography, Mineralogy, and Physical Properties of Limestone on Mode I Fracture Toughness under Dry and Saturated Conditions. Appl. Sci. 2022, 12, 9237. [Google Scholar] [CrossRef]
- Peck, R.; Olsen, C.; Devore, J. Introduction to Statistics and Data Analysis, 3rd ed.; Thomson Higher Education: Belmont, CA, USA, 2008; ISBN 9780495118732. [Google Scholar]
- Hauke, J.; Kossowski, T. Comparison of Values of Pearson’s and Spearman’s Correlation Coefficients on the Same Sets of Data. Quaest. Geogr. 2011, 30, 87–93. [Google Scholar] [CrossRef]
- Mishra, P.; Pandey, C.M.; Singh, U.; Gupta, A.; Sahu, C.; Keshri, A. Descriptive Statistics and Normality Tests for Statistical Data. Ann. Card. Anaesth. 2019, 22, 67–72. [Google Scholar] [CrossRef]
- Rani Das, K. A Brief Review of Tests for Normality. Am. J. Theor. Appl. Stat. 2016, 5, 5. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S. Normality Tests for Statistical Analysis: A Guide for Non-Statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef]
- Gunsallus, K.L.; Kulhawy, F.H. A Comparative Evaluation of Rock Strength Measures. Int. J. Rock Mech. Min. Sci. 1984, 21, 233–248. [Google Scholar] [CrossRef]
- Wei, M.D.; Dai, F.; Xu, N.W.; Zhao, T.; Xia, K.W. Experimental and Numerical Study on the Fracture Process Zone and Fracture Toughness Determination for ISRM-Suggested Semi-Circular Bend Rock Specimen. Eng. Fract. Mech. 2016, 154, 43–56. [Google Scholar] [CrossRef]
- Guo, H.; Aziz, N.I.; Schmidt, L.C. Rock Fracture-Toughness Determination by the Brazilian Test. Eng. Geol. 1993, 33, 177–188. [Google Scholar] [CrossRef]
- Xu, S.; Malik, M.A.; Li, Q.; Wu, Y. Determination of Double-K Fracture Parameters Using Semi-Circular Bend Test Specimens. Eng. Fract. Mech. 2016, 152, 58–71. [Google Scholar] [CrossRef]
- Khan, K.; Al-Shayea, N.A. Effect of Specimen Geometry and Testing Method on Mixed Mode I-II Fracture Toughness of a Limestone Rock from Saudi Arabia. Rock Mech. Rock Eng. 2000, 33, 179–206. [Google Scholar] [CrossRef]
- Dutler, N.; Nejati, M.; Valley, B.; Amann, F.; Molinari, G. On the Link between Fracture Toughness, Tensile Strength, and Fracture Process Zone in Anisotropic Rocks. Eng. Fract. Mech. 2018, 201, 56–79. [Google Scholar] [CrossRef]
- Wong, L.N.Y.; Guo, T.Y. Microcracking Behavior of Two Semi-Circular Bend Specimens in Mode I Fracture Toughness Test of Granite. Eng. Fract. Mech. 2019, 221, 106565. [Google Scholar] [CrossRef]
- Wei, M.D.; Dai, F.; Xu, N.W.; Zhao, T.; Liu, Y. An Experimental and Theoretical Assessment of Semi-Circular Bend Specimens with Chevron and Straight-through Notches for Mode I Fracture Toughness Testing of Rocks. Int. J. Rock Mech. Min. Sci. 2017, 99, 28–38. [Google Scholar] [CrossRef]
- Nasseri, M.H.B.; Mohanty, B. Fracture Toughness Anisotropy in Granitic Rocks. Int. J. Rock Mech. Min. Sci. 2008, 45, 167–193. [Google Scholar] [CrossRef]
- Aliha, M.R.M.; Ayatollahi, M.R. Rock Fracture Toughness Study Using Cracked Chevron Notched Brazilian Disc Specimen under Pure Modes I and II Loading—A Statistical Approach. Theor. Appl. Fract. Mech. 2014, 69, 17–25. [Google Scholar] [CrossRef]
- Ghasemi, S.; Khamehchiyan, M.; Taheri, A.; Nikudel, M.R.; Zalooli, A. Crack Evolution in Damage Stress Thresholds in Different Minerals of Granite Rock. Rock Mech. Rock Eng. 2020, 53, 1163–1178. [Google Scholar] [CrossRef]
- Munoz, H.; Taheri, A.; Chanda, E.K. Fracture Energy-Based Brittleness Index Development and Brittleness Quantification by Pre-Peak Strength Parameters in Rock Uniaxial Compression. Rock Mech. Rock Eng. 2016, 49, 4587–4606. [Google Scholar] [CrossRef]
Reference | Rock Type | Test Method | (MPa⋅m0.5) | (MPa) | (MPa) | (GPa) | |
---|---|---|---|---|---|---|---|
[60] | Ankara andesite | SCB | 0.936 | 7.000 | 82.840 | 12.334 | 0.150 |
Ankara andesite | CCNBD | 1.446 | 7.000 | 82.840 | 12.334 | 0.150 | |
white Afyon marble | SCB | 0.561 | 5.130 | 52.320 | 34.294 | 0.120 | |
white Afyon marble | CCNBD | 1.088 | 5.130 | 52.320 | 34.294 | 0.120 | |
[61] | Pink Ankara andesite | SCB | 0.980 | 7.290 | 83.160 | 12.330 | 0.160 |
[18] | Middleton limestone | CB | 0.732 | 3.840 | 47.760 | 27.520 | 0.230 |
Harrycroft limestone | CB | 0.817 | 4.580 | 53.060 | 25.450 | 0.250 | |
Montclie sandstone | CB | 1.178 | 6.150 | 76.310 | 15.920 | 0.130 | |
Wredon limestone | CB | 1.695 | 10.150 | 156.730 | 57.170 | 0.280 | |
Penryn granite | CB | 1.829 | 10.580 | 132.360 | 39.100 | 0.290 | |
Pennant sandstone | CB | 2.097 | 14.020 | 162.190 | 39.070 | 0.310 | |
Whitwick andesite | CB | 2.174 | 14.490 | 139.200 | 63.600 | 0.230 | |
Bolton hill diorite | CB | 2.215 | 15.770 | 128.810 | 54.450 | 0.340 | |
Ingleton greywacke | CB | 2.382 | 15.190 | 226.260 | 57.040 | 0.170 | |
Nuneaton quartzite | CB | 2.440 | 12.990 | 138.580 | 36.400 | 0.240 | |
Clie hill diorite | CB | 2.770 | 18.420 | 274.820 | 64.180 | 0.280 | |
Cornish greywacke | CB | 3.149 | 15.390 | 165.360 | 49.620 | 0.250 | |
[56] | Brisbane tuff | CCNBD | 1.129 | 11.500 | 143.500 | 22.000 | 0.240 |
[6] | Suizhou Granite | SCB | 1.741 | 12.400 | 240.000 | 50.000 | 0.240 |
[57] | Kimachi sandstone | SECRBB | 0.460 | 4.820 | 59.000 | 8.230 | 0.220 |
[58] | Kimachi sandstone | SCB | 0.589 | 4.900 | 66.900 | 13.200 | 0.180 |
Kimachi sandstone | CB | 0.795 | 4.900 | 66.900 | 13.200 | 0.180 | |
[59] | Barre granite | CB | 1.890 | 12.700 | 212.000 | 82.000 | 0.160 |
Barre granite | CCNBD | 1.800 | 12.700 | 212.000 | 82.000 | 0.160 | |
Laurentian granite | CB | 1.800 | 12.790 | 259.000 | 92.000 | 0.210 | |
Laurentian granite | CCNBD | 1.830 | 12.790 | 259.000 | 92.000 | 0.210 | |
Stanstead granite | CB | 1.440 | 7.880 | 173.000 | 66.000 | 0.160 | |
Stanstead granite | CCNBD | 1.220 | 7.880 | 173.000 | 66.000 | 0.160 | |
[50] | Hunan Granite | CSTBD | 0.863 | 7.000 | 139.000 | 48.100 | 0.260 |
[55] | Johnstone | SCB | 1.950 | 0.420 | 2.000 | 200.000 | 0.300 |
[33] | Gabbro | SECRBB | 2.290 | 11.120 | 132.150 | 42.980 | 0.180 |
Gabbro | CB | 2.720 | 11.120 | 132.150 | 42.980 | 0.180 | |
Gabbro | SCB | 1.580 | 11.120 | 132.150 | 42.980 | 0.180 | |
Gabbro | SNSRB | 1.970 | 11.120 | 132.150 | 42.980 | 0.180 | |
Gabbro | BDT | 2.110 | 11.120 | 132.150 | 42.980 | 0.180 | |
[19] | Shizhu Shale | CCNBD | 1.240 | 8.010 | 118.100 | 24.957 | 0.328 |
Shizhu Shale | CCNBD | 1.280 | 8.243 | 54.200 | 20.687 | 0.251 | |
Shizhu Shale | CCNBD | 1.413 | 9.170 | 78.600 | 17.977 | 0.285 | |
Shizhu Shale | CCNBD | 1.593 | 9.638 | 105.900 | 16.803 | 0.309 | |
Shizhu Shale | CCNBD | 2.200 | 12.840 | 118.400 | 13.827 | 0.371 | |
[10] | Ankara andesite | SCB | 0.940 | 7.000 | 82.840 | 12.334 | 0.150 |
Ankara andesite | CCNBD | 1.450 | 7.000 | 82.840 | 12.334 | 0.150 | |
Afyon marble | SCB | 0.560 | 5.130 | 52.320 | 34.294 | 0.120 | |
Afyon marble | CCNBD | 1.090 | 5.130 | 52.320 | 34.294 | 0.120 | |
[51] | Fujian granite | SCB | 1.603 | 12.500 | 183.300 | 40.710 | 0.230 |
[52] | Fujian granite | CSTBD | 1.145 | 11.630 | 174.780 | 28.940 | 0.200 |
[53] | Fujian granite | SCB | 1.349 | 11.630 | 174.780 | 28.940 | 0.200 |
[54] | Bayan Sandstone | SCB | 0.441 | 2.850 | 43.110 | 12.240 | 0.170 |
Brittleness Index Equation | No. | Reference |
---|---|---|
(1) | [42,43] | |
(2) | [42,43] | |
(3) | [42,43] | |
(4) | [42,43] | |
(5) | [42] | |
(6) | [42,43] | |
(7) | [42,43] | |
(8) | [42,43] | |
(9) | [24] | |
(10) | [24] |
Equation | No. | Figure No. | RMSE | p-Value (Pearson) | p-Value (Spearman) |
---|---|---|---|---|---|
(11) | Figure 4 | 0.3375 | 1.57 × 10−8 | N.A. | |
(12) | Figure 9 | 0.3385 | 1.81 × 10−8 | N.A. | |
(13) | 0.4543 | 1.64 × 10−8 | N.A. | ||
(14) | Figure 10 | 0.3174 | N.A. | 9.86 × 10−11 | |
(15) | 0.4209 | N.A. | 9.86 × 10−11 | ||
(16) | 0.4173 | N.A. | 9.86 × 10−11 | ||
(17) | 0.1307 | N.A. | 9.86 × 10−11 |
B4 | B9 | B10 | ||||||
---|---|---|---|---|---|---|---|---|
Statistic | 0.9789 | 0.97599 | 0.9542 | 0.762 | 0.9497 | 0.9755 | 0.9544 | 0.9348 |
p-value | 0.5351 | 0.4201 | 0.0589 | 1.98 × 10−7 | 0.0389 | 0.4071 | 0.06 | 0.0103 |
Equation | No. | Reference |
---|---|---|
(18) | [24] | |
(19) | ||
(20) | [22] | |
(21) | [23] | |
(22) |
Reference | Parameter | (MPa) | (MPa) | E (GPa) | |
---|---|---|---|---|---|
This paper | Mean | 9.42 | 125.88 | 41.31 | 0.21 |
Range | 0.42 to 18.42 | 2 to 274.82 | 8.23 to 200.00 | 0.12 to 0.37 | |
Standard deviation | 3.92 | 65.11 | 32.31 | 0.06 | |
Skewness | −0.0230 | 0.4782 | 2.7206 | 0.5499 | |
[18] | Mean | 11.8 | 141.79 | 44.13 | 0.25 |
Range | 3.84 to 18.42 | 47.76 to 274.82 | 15.92 to 64.18 | 0.13 to 0.34 | |
Standard deviation | 4.76 | 65.58 | 15.91 | 0.06 | |
Skewness | −0.6026 | 0.452 | −0.3654 | −0.6731 | |
[69] | Mean | 12.82 | 150.83 | ----- | ----- |
Range | 5.9 to 17 | 57.2 to 264 | ----- | ----- | |
Standard deviation | 3.61 | 58.84 | ----- | ----- | |
Skewness | −0.8834 | 0.3376 | ----- | ----- | |
[24] | Mean | 9.97 | 137.22 | 50.22 | ----- |
Range | 2.3 to 17.6 | 32.3 to 224 | 9.9 to 78 | ----- | |
Standard deviation | 4.61 | 56.26 | 20.21 | ----- | |
Skewness | −0.1017 | −0.1939 | −0.6577 | ----- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ameen, M.; Elwageeh, M.; Abdelaziz, A.; Bonduà, S.; Elkarmoty, M. Study of the Relationship between Mode I Fracture Toughness and Rock Brittleness Indices. Appl. Sci. 2023, 13, 10378. https://doi.org/10.3390/app131810378
Ameen M, Elwageeh M, Abdelaziz A, Bonduà S, Elkarmoty M. Study of the Relationship between Mode I Fracture Toughness and Rock Brittleness Indices. Applied Sciences. 2023; 13(18):10378. https://doi.org/10.3390/app131810378
Chicago/Turabian StyleAmeen, Mostafa, Mohamed Elwageeh, Ahmed Abdelaziz, Stefano Bonduà, and Mohamed Elkarmoty. 2023. "Study of the Relationship between Mode I Fracture Toughness and Rock Brittleness Indices" Applied Sciences 13, no. 18: 10378. https://doi.org/10.3390/app131810378
APA StyleAmeen, M., Elwageeh, M., Abdelaziz, A., Bonduà, S., & Elkarmoty, M. (2023). Study of the Relationship between Mode I Fracture Toughness and Rock Brittleness Indices. Applied Sciences, 13(18), 10378. https://doi.org/10.3390/app131810378