Characterization of Polyphenols and Volatile Compounds from Understudied Algerian Pallenis spinosa by HS-SPME-GC-MS, NMR and HPLC-MSn Approaches
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Reagents
2.2. Plant Material
2.3. HS-SPME-GC-MS Analysis of Volatile Compounds
2.4. Preparation of Extracts for NMR and HPLC-MSn Analyses
2.5. NMR Analysis
2.6. HPLC-MSn Analysis
3. Results and Discussion
3.1. HS-SPME-GC-MS Analysis of Volatile Compounds
3.2. NMR and HPLC-MSn Analysis of Secondary Metabolites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wu, Q.-X.; Shi, Y.-P.; Jia, Z.-J. Eudesmane sesquiterpenoids from the Asteraceae family. Nat. Prod. Rep. 2006, 23, 699–734. [Google Scholar] [CrossRef] [PubMed]
- Hegazy, A.K.; Boulos, L.; Kabiel, H.F.; Sharashy, O.S. Vegetation and species altitudinal distribution in Al-Jabal Al-Akhdar landscape, Libya. Pak. J. Bot 2011, 43, 1885–1898. [Google Scholar]
- Zareh, M.M. Systematic and anatomical studies of Inuleae and Plucheeae in Egypt. Feddes Repert. 2005, 116, 43–53. [Google Scholar] [CrossRef]
- Agelet, A.; Vallès, J. Studies on pharmaceutical ethnobotany in the region of Pallars (Pyrenees, Catalonia, Iberian Peninsula). Part II. New or very rare uses of previously known medicinal plants. J. Ethnopharmacol. 2003, 84, 211–227. [Google Scholar] [CrossRef]
- Chermat, S.; Gharzouli, R.; Quézel, P.; Santa, S. 1962–1963: Nouvelle flore de l’Algérie et des régions désertiques méridionales. Vol. 1, 2. CNRS, Paris, 566, 1170. J. Mater. Sci. Eng. A 2015. [Google Scholar]
- Benítez, G.; González-Tejero, M.R.; Molero-Mesa, J. Pharmaceutical ethnobotany in the western part of Granada province (southern Spain): Ethnopharmacological synthesis. J. Ethnopharmacol. 2010, 129, 87–105. [Google Scholar] [CrossRef] [PubMed]
- Bouabdelli, F.; Djelloul, A.; Kaid-Omar, Z.; Semmoud, A.; Addou, A. Antimicrobial Activity of 22 Plants Used in Urolithiasis Medicine in Western Algeria. Asian Pac. J. Trop. Dis. 2012, 2, S530–S535. [Google Scholar] [CrossRef]
- Karkanis, A.C.; Athanassiou, C.G. Natural insecticides from native plants of the Mediterranean basin and their activity for the control of major insect pests in vegetable crops: Shifting from the past to the future. J. Pest Sci. 2021, 94, 187–202. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Jakupovic, J.; Bohlmann, F. Dihydroxypallenone, a sesquiterpene with a new carbon skeleton from Pallenis spinosa. Phytochemistry 1990, 29, 3355–3358. [Google Scholar] [CrossRef]
- Al-Qudah, M.A.; Saleh, A.M.; Alhawsawi, N.L.; Al-Jaber, H.I.; Rizvi, S.A.; Afifi, F.U. Composition, Antioxidant, and Cytotoxic Activities of the Essential Oils from Fresh and Air-Dried Aerial Parts of Pallenis spinosa. Chem. Biodivers. 2017, 14, e1700146. [Google Scholar] [CrossRef]
- Appendino, G.; Cravotto, G.; Gariboldi, P.; Claudi, F.; Picci, V. A sesquiterpene alcohol from Pallenis spinosa. Phytochemistry 1989, 28, 849–850. [Google Scholar] [CrossRef]
- Sanz, J.F.; Marco, J.A. A germacrane derivative from Pallenis spinosa. Phytochemistry 1991, 30, 2788–2790. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Spaller, M.; Mabry, T.J. Flavonoids of Pallenis spinosa (Asteraceae). Biochem. Syst. Ecol. 1992, 20, 785–786. [Google Scholar] [CrossRef]
- Ascrizzi, R.; Cioni, P.L.; Amadei, L.; Maccioni, S.; Flamini, G. Geographical patterns of in vivo spontaneously emitted volatile organic compounds in Salvia species. Microchem. J. 2017, 133, 13–21. [Google Scholar] [CrossRef]
- Bendif, H.; Miara, M.D.; Peron, G.; Sut, S.; Dall’Acqua, S.; Flamini, G.; Maggi, F. NMR, HS-SPME-GC/MS, and HPLC/MSn Analyses of Phytoconstituents and Aroma Profile of Rosmarinus eriocalyx. Chem. Biodivers. 2017, 14, e1700248. [Google Scholar] [CrossRef]
- Adams, R.; Sparkman, O. Review of Identification of Essential Oil Components by Gas Chromatography/Mass Spectrometry. J. Am. Soc. Mass Spectrom. 2007, 16, 1902–1903. [Google Scholar]
- NIST/EPA/NIH Mass Spectral Library; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2014.
- Dall’Acqua, S.; Maggi, F.; Minesso, P.; Salvagno, M.; Papa, F.; Vittori, S.; Innocenti, G. Identification of non-alkaloid acetylcholinesterase inhibitors from Ferulago campestris (Besser) Grecescu (Apiaceae). Fitoterapia 2010, 81, 1208–1212. [Google Scholar] [CrossRef]
- Senatore, F.; Bruno, M. Composition of the essential oil of Pallenis spinosa (L.) Cass. (Asteraceae). Flavour Fragr. J. 2003, 18, 195–197. [Google Scholar] [CrossRef]
- da Silva Rivas, A.C.; Lopes, P.M.; de Azevedo Barros, M.M.; Costa Machado, D.C.; Alviano, C.S.; Alviano, D.S. Biological Activities of a-Pinene and β-Pinene Enantiomers. Molecules 2012, 17, 6305–6316. [Google Scholar]
- Francomano, F.; Caruso, A.; Barbarossa, A.; Fazio, A.; La Torre, C.; Ceramella, J.; Mallamaci, R.; Saturnino, C.; Iacopetta, D.; Sinicropi, M.S. β-Caryophyllene: A Sesquiterpene with Countless Biological Properties. Appl. Sci. 2019, 9, 5420. [Google Scholar] [CrossRef]
- Balahbib, A.; El Omari, N.; Hachlafi, N.E.L.; Lakhdar, F.; El Menyiy, N.; Salhi, N.; Mrabti, H.N.; Bakrim, S.; Zengin, G.; Bouyahya, A. Health beneficial and pharmacological properties of p-cymene. Food Chem. Toxicol. 2021, 153, 112259. [Google Scholar] [CrossRef] [PubMed]
- Chandra, M.; Prakash, O.; Kumar, R.; Bachheti, R.K.; Bhushan, B.; Kumar, M.; Pant, A.K. β-Selinene-Rich Essential Oils from the Parts of Callicarpa macrophylla and Their Antioxidant and Pharmacological Activities. Medicines 2017, 4, 52. [Google Scholar] [CrossRef]
- Khettaf, A.; Dridi, S. Chemical Composition Analysis andIn Vivo Anti-diabetic Activity of Aqueous Extract of Aerial Part of Pallenis spinosa in Diabetic Rats. Curr. Bioact. Compd. 2022, 18, e010921191723. [Google Scholar] [CrossRef]
- Amrani-Allalou, H.; Boulekbache-Makhlouf, L.; Izzo, L.; Arkoub-Djermoune, L.; Freidja, M.L.; Mouhoubi, K.; Madani, K.; Tenore, G.C. Phenolic compounds from an Algerian medicinal plant (Pallenis spinosa): Simulated gastrointestinal digestion, characterization, and biological and enzymatic activities. Food Funct. 2021, 12, 1291–1304. [Google Scholar] [CrossRef]
- Bumrungpert, A.; Lilitchan, S.; Tuntipopipat, S.; Tirawanchai, N.; Komindr, S. Ferulic Acid Supplementation Improves Lipid Profiles, Oxidative Stress, and Inflammatory Status in Hyperlipidemic Subjects: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2018, 10, 713. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Pan, X.; Jiang, L.; Chu, Y.; Gao, S.; Jiang, X.; Zhang, Y.; Chen, Y.; Luo, S.; Peng, C. The Biological Activity Mechanism of Chlorogenic Acid and Its Applications in Food Industry: A Review. Front. Nutr. 2022, 9, 943911. [Google Scholar] [CrossRef]
- Chen, Y.-L.; Hwang, T.-L.; Yu, H.-P.; Fang, J.-Y.; Chong, K.Y.; Chang, Y.-W.; Chen, C.-Y.; Yang, H.-W.; Chang, W.-Y.; Hsieh, P.-W. Ilex kaushue and Its Bioactive Component 3,5-Dicaffeoylquinic Acid Protected Mice from Lipopolysaccharide-Induced Acute Lung Injury. Sci. Rep. 2016, 6, 34243. [Google Scholar] [CrossRef]
- Alcázar Magaña, A.; Kamimura, N.; Soumyanath, A.; Stevens, J.F.; Maier, C.S. Caffeoylquinic acids: Chemistry, biosynthesis, occurrence, analytical challenges, and bioactivity. Plant J. 2021, 107, 1299–1319. [Google Scholar] [CrossRef]
- Salehi, B.; Venditti, A.; Sharifi-Rad, M.; Kręgiel, D.; Sharifi-Rad, J.; Durazzo, A.; Lucarini, M.; Santini, A.; Souto, E.B.; Novellino, E.; et al. The Therapeutic Potential of Apigenin. Int. J. Mol. Sci. 2019, 20, 1305. [Google Scholar] [CrossRef]
- Aghababaei, F.; Hadidi, M. Recent Advances in Potential Health Benefits of Quercetin. Pharmaceuticals 2023, 16, 1020. [Google Scholar] [CrossRef]
- Jan, R.; Khan, M.; Asaf, S.; Lubna; Asif, S.; Kim, K.-M. Bioactivity and Therapeutic Potential of Kaempferol and Quercetin: New Insights for Plant and Human Health. Plants 2022, 11, 2623. [Google Scholar] [CrossRef] [PubMed]
- Yue, G.G.; Gao, S.; Lee, J.K.; Chan, Y.-Y.; Wong, E.C.; Zheng, T.; Li, X.-X.; Shaw, P.-C.; Simmonds, M.S.J.; Lau, C.B. A Natural Flavone Tricin from Grains Can Alleviate Tumor Growth and Lung Metastasis in Colorectal Tumor Mice. Molecules 2020, 25, 3730. [Google Scholar] [CrossRef] [PubMed]
- Imani, A.; Maleki, N.; Bohlouli, S.; Kouhsoltani, M.; Sharifi, S.; Maleki Dizaj, S. Molecular mechanisms of anticancer effect of rutin. Phyther. Res. 2021, 35, 2500–2513. [Google Scholar] [CrossRef] [PubMed]
Constituents | Class a | LRI b | RI Lit. c | % |
---|---|---|---|---|
α-pinene | MH | 941 | 939 | 1.0 |
β-pinene | MH | 982 | 979 | 10.6 |
α-phellandrene | MH | 1006 | 1003 | 0.3 |
p-cymene | MH | 1027 | 1025 | 5.0 |
cis-sabinene hydrate | MO | 1070 | 1070 | 0.2 |
nopinone | MO | 1139 | 1138 | 0.3 |
trans-pinocarveol | MO | 1141 | 1140 | 2.3 |
pinocarvone | MO | 1164 | 1164 | 1.5 |
4-terpineol | MO | 1179 | 1177 | 0.2 |
myrtenol | MO | 1195 | 1196 | 1.3 |
verbenone | MO | 1207 | 1205 | 0.7 |
methyl thymol | MO | 1234 | 1235 | 0.2 |
(E)-anethole | PP | 1284 | 1284 | 0.5 |
trans-pinocarvylacetate | MO | 1298 | 1297 | 0.2 |
theaspirane II | AC | 1315 | 1315 | 0.1 |
myrtenyl acetate | MO | 1327 | 1327 | 0.7 |
δ-elemene | SH | 1340 | 1338 | 1.4 |
α-longipinene | SH | 1352 | 1353 | 0.5 |
cyclosativene | SH | 1369 | 1368 | 0.6 |
α-ylangene | SH | 1372 | 1372 | 0.4 |
α-copaene | SH | 1377 | 1376 | 1.2 |
geranyl acetate | MO | 1383 | 1381 | 0.3 |
β-elemene | SH | 1393 | 1391 | 2.6 |
longifolene | SH | 1403 | 1402 | 0.1 |
α-gurjunene | SH | 1410 | 1409 | 0.3 |
β-caryophyllene | SH | 1419 | 1419 | 9.2 |
β-copaene | SH | 1430 | 1431 | 0.3 |
γ-elemene | SH | 1434 | 1433 | 0.6 |
trans-α-bergamotene | SH | 1437 | 1435 | 0.7 |
epi-β-santalene | SH | 1449 | 1448 | 0.5 |
α-humulene | SH | 1456 | 1455 | 1.0 |
alloaromadendrene | SH | 1462 | 1460 | 4.4 |
β-chamigrene | SH | 1476 | 1475 | 16.2 |
germacrene D | SH | 1481 | 1481 | 4.3 |
β-selinene | SH | 1486 | 1485 | 1.4 |
α-selinene | SH | 1495 | 1494 | 12.8 |
α-muurolene | SH | 1499 | 1500 | 0.1 |
trans-γ-cadinene | SH | 1514 | 1515 | 5.2 |
δ-cadinene | SH | 1524 | 1523 | 1.5 |
α-cadinene | SH | 1538 | 1539 | 0.2 |
germacrene B | SH | 1557 | 1556 | 0.3 |
(E)-nerolidol | SO | 1564 | 1564 | 0.3 |
germacrene d-4-ol | SO | 1575 | 1576 | 1.4 |
spathulenol | SO | 1577 | 1578 | 1.1 |
caryophyllene oxide | SO | 1582 | 1581 | 0.7 |
geranyl 2-methylbutyrate | MO | 1600 | 1596 | 0.4 |
γ-eudesmol | SO | 1632 | 1632 | 0.4 |
τ-cadinol | SO | 1641 | 1640 | 2.6 |
Monoterpene hydrocarbons | 16.9 | |||
Oxygenated monoterpenes | 8.3 | |||
Sesquiterpene hydrocarbons | 65.8 | |||
Oxygenated sesquiterpenes | 6.5 | |||
Phenylpropanoids | 0.5 | |||
Apocarotenoids | 0.1 | |||
Total identified | 98.1 |
Signal Assignment | ppm |
---|---|
CH3 FA: All fatty acids except linolenic acid (-CH2-CH3) | 0.93 |
CH2 FA: Acyl chains [-(CH2)n-] | 1.31–1.35 |
CH2 FA1: Acyl chains (-CH2-CH2-COOH) | 1.63 |
CH2 FA2: Mono- and polyunsaturated fatty acids (-CH2-CH=CH-) | 2.10 |
CH2 COO: Acyl chains in unsaturated fatty acids (-CH2-COOH) | 2.35 |
CH2 FA CH: (-CH=CH-CH2-CH=CH-) | 2.80 |
TGL1: Triacylglycerols (-CH2-OCO-) | 4.23 |
TGL2: Triacylglycerols (-CH-OCO-) | 5.30 |
US: unsaturated fatty acids (-CH=CH-) | 5.40 |
N. | R.T. (min) | m/z * | MS2 Fragments (m/z) | Tentative Identification | Class ** | mg/g DW |
---|---|---|---|---|---|---|
1 | 2.56 | 539 | 503 341 281 251 221 179 | Caffeoyl dihexoside | PA | 0.35 ± 0.03 |
2 | 2.65 | 193 | 179 149 | Ferulic acid | PA | 0.07 ± 0.00 |
3 | 9.33 | 301 | 179 151 | Quercetin | FV | 0.04 ± 0.00 |
4 | 10.85 | 341 | 179 161 135 | Caffeoyl hexoside | PA | 0.05 ± 0.00 |
5 | 11.88 | 353 | 191 173 127 | Chlorogenic acid | PA | 0.29 ± 0.01 |
6 | 13.00 | 533 | 371 209 191 | Dicaffeoylhexaric acid | PA | 0.12 ± 0.00 |
7 | 13.50 | 533 | 371 209 191 | Dicaffeoylhexaric acid isomer 1 | PA | 0.11 ± 0.00 |
8 | 13.89 | 479 | 317 299 271 | Myricetin hexoside | FV | 0.09 ± 0.01 |
9 | 13.96 | 367 | 191 173 | Feruloylquinic acid | PA | 0.07 ± 0.00 |
10 | 14.40 | 533 | 371 209 191 | Dicaffeoylhexaric acid isomer 2 | PA | 0.16 ± 0.01 |
11 | 14.46 | 639 | 331 | Patuletin-rharnnopyranosyl-galactopyranoside | FV | 0.09 ± 0.01 |
12 | 14.65 | 533 | 371 209 191 | Dicaffeoylhexaric acid isomer 3 | PA | 0.08 ± 0.00 |
13 | 14.78 | 609 | 301 | Rutin | FV | 0.22 ± 0.02 |
14 | 15.05 | 533 | 371 209 191 | Dicaffeoylhexaric acid isomer 4 | PA | 0.12 ± 0.00 |
15 | 15.18 | 493 | 331 | Patuletin galactoside | FV | 0.15 ± 0.00 |
16 | 15.38 | 503 | 341 323 221 179 161 | Caffeoyl diglucoside | PA | 0.24 ± 0.02 |
17 | 15.95 | 515 | 353 191 173 | 3,5-Dicaffeoylquinic acid | PA | 1.04 ± 0.04 |
18 | 16.36 | 491 | 329 315 300 | Tricin 7-glucoside | FV | 0.26 ± 0.01 |
19 | 16.92 | 695 | 533 371 209 | Tricaffeoylhexaric acid | PA | 1.76 ± 0.10 |
20 | 18.66 | 857 | 695 533 371 209 | Tetracaffeoylhexaric acid | PA | 1.41 ± 0.66 |
21 | 19.66 | 285 | 270 255 | Kaempferol | FV | 0.13 ± 0.00 |
22 | 21.56 | 269 | 151 117 107 | Apigenin | FV | 0.18 ± 0.00 |
23 | 22.60 | 329 | 314 329 299 | Tricin | FV | 0.24 ± 0.01 |
Total identified | 7.26 ± 0.66 | |||||
Phenolic acids | 5.83 ± 0.65 | |||||
Flavonoids | 1.42 ± 0.01 |
Class | Chemical Constituent | Bioactivities | References |
---|---|---|---|
Phenolic acids | Ferulic acid | Anti-hyperlipidemic, antioxidant, and anti-inflammatory effects in vivo | [26] |
Chlorogenic acid | Anti-inflammatory, antioxidant, antibacterial, protection of liver and kidney in vivo | [27] | |
3,5-Dicaffeoylquinic acid | Anti-inflammatory and memory enhancer in vivo | [28,29] | |
Flavonoids | Apigenin | Antitumor, antioxidant, decreases levels of blood glucose, improves cognitive performance in vivo | [30] |
Quercetin | Antioxidant, antimicrobial, anti-inflammatory, antitumor effects in vivo | [31] | |
Kaempferol | Antimicrobial and beneficial cardiovascular properties | [32] | |
Tricin | Antitumor properties | [33] | |
Rutin | Anticancer properties | [34] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adoui, N.; Souilah, N.; Bendif, H.; Sut, S.; Dall’Acqua, S.; Flamini, G.; Maggi, F.; Peron, G. Characterization of Polyphenols and Volatile Compounds from Understudied Algerian Pallenis spinosa by HS-SPME-GC-MS, NMR and HPLC-MSn Approaches. Appl. Sci. 2023, 13, 10113. https://doi.org/10.3390/app131810113
Adoui N, Souilah N, Bendif H, Sut S, Dall’Acqua S, Flamini G, Maggi F, Peron G. Characterization of Polyphenols and Volatile Compounds from Understudied Algerian Pallenis spinosa by HS-SPME-GC-MS, NMR and HPLC-MSn Approaches. Applied Sciences. 2023; 13(18):10113. https://doi.org/10.3390/app131810113
Chicago/Turabian StyleAdoui, Nabila, Nabila Souilah, Hamdi Bendif, Stefania Sut, Stefano Dall’Acqua, Guido Flamini, Filippo Maggi, and Gregorio Peron. 2023. "Characterization of Polyphenols and Volatile Compounds from Understudied Algerian Pallenis spinosa by HS-SPME-GC-MS, NMR and HPLC-MSn Approaches" Applied Sciences 13, no. 18: 10113. https://doi.org/10.3390/app131810113
APA StyleAdoui, N., Souilah, N., Bendif, H., Sut, S., Dall’Acqua, S., Flamini, G., Maggi, F., & Peron, G. (2023). Characterization of Polyphenols and Volatile Compounds from Understudied Algerian Pallenis spinosa by HS-SPME-GC-MS, NMR and HPLC-MSn Approaches. Applied Sciences, 13(18), 10113. https://doi.org/10.3390/app131810113