Transactive Demand–Response Framework for High Renewable Penetrated Multi-Energy Prosumer Aggregators in the Context of a Smart Grid
Abstract
:Featured Application
Abstract
1. Introduction
1.1. Motivation
1.2. Background and Literature Review
1.3. Contribution and Paper Organization
2. Problem Formulation
2.1. Transactive DR Framework
2.2. Flexibility Potential Quantification
2.3. Flexibility Potential Pricing Mechanism
3. Transactive DR Based on Flexibility Potential Evaluation
3.1. Functional Process of Transactive DR Framework
3.2. Pre-Dispatch Optimization
3.3. Real-Time Demand–Response
3.4. Solution Procedures
4. Case Study
4.1. Case Comparions and Results
4.2. Discussions on Practical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Nomenclature
Indices and sets | |
t | Time index |
n | Number of prosumer aggregators |
Symbols | |
a,b,c | The price coefficients |
Ebuy,t,n, Esell,t,n | The amount of electricity bought and sold |
Ei,ch,t,n | The charging output of i |
Ei,dis,t,n | The discharging output of i |
Ei | The capacity of i |
Ei,ch,n,max | The maximum charging of i |
Ei,dis,n,max | The maximum discharging of i |
et,n,flex | Flexibility of flexible resource |
ebest,n,max- | The maximum negative flexible energy for BES |
ebest,n,max+ | The maximum positive flexible energy for BES |
egast,n,max- | The maximum negative flexible energy for gas storage tank |
egast,n,max+ | The maximum positive flexible energy for gas storage tank |
eheatt,n,max- | The maximum negative flexible energy for heat storage tank |
eheatt,n,max+ | The maximum positive flexible energy for heat storage tank |
Gs,t | The gas output of switchable load |
Htfcool,t,n, Htfheat,t,n | The cooling power and heating power |
Li,t,n | Stationary load |
Ps,t | The power of switchable load |
PCHP,n,max | The maximum power for CHP |
PP2G,n,max | The maximum power for P2G |
Pt,n,flex | Flexible power |
Ppf,t,max, Ppf,t,min | The maximum and minimum power of power flexible load |
Pbest,n,flex- | The negative flexible power for BES |
Pbest,n,flex+ | The positive flexible power for BES |
Pgast,n,flex- | The negative flexible power for gas tank |
Pgast,n,flex+ | The positive flexible power for gas tank |
Pheatt,n,flex- | The negative flexible power for gas tank |
Pheatt,n,flex+ | The positive flexible power for gas tank |
PCHPt,n,flex- | The negative flexible power for CHP |
PCHPt,n,flex+ | The positive flexible power for CHP |
PP2Gt,n,flex- | The negative flexible power for P2G |
PP2Gt,n,flex+ | The positive flexible power for P2G |
PWT,t,n, PPVT,t,n, Pgeo | The output of wind, solar, geothermal |
Pmn, Qmn | The active and reactive power |
pn,g/pn,d, qn,g/qn,d | The active and reactive generation/demand |
prn,flex | The flexibility potential pricing of aggregator |
Qgas | The conversion coefficient of gas |
rmn, xmn | The line resistance and reactance |
SOCi,t,n | The optimal SOC of i |
SOCi,n,max | The maximum SOC of i in aggregator n |
SOCi,n,min | The minimum SOC of i in aggregator n |
SOCi,min, SOCi,max | The maximum and minimum SOC of i |
SOCi,t | The state of charge of i |
Tmax, Tmin | The maximum and minimum temperature of flexible load |
Tout | The outside temperature |
Un, U0 | The voltage magnitude at bus n, slack bus |
μbuy,t, μsell,t | Buying and selling electricity price |
ƞe,CHP | Electrical conversion efficiency of CHP |
ƞh,CHP | Heat conversion efficiency of CHP |
μBES | Battery degradation coefficient |
aCHP,t,n | The ON/OFF state of CHP |
aP2G,t,n | The ON/OFF state of P2G |
α1, α2 | The coefficients of temperature |
ƞch, ƞdis | The charging and discharging efficiency of BES |
ƞw | The loss rate of heat storage tank |
λt,n,flex | The number of flexible timestep |
λbest,n,flex- | The negative flexible timestep for BES |
λbest,n,flex+ | The positive flexible timestep for BES |
λgast,n,flex- | The negative flexible timestep for gas storage tank |
λgast,n,flex+ | The positive flexible timestep for gas storage tank |
λhaett,n,flex- | The negative flexible timestep for heat storage tank |
λheatt,n,flex+ | The positive flexible timestep for heat storage tank |
λCHPt,n,flex- | The negative flexible timestep for CHP |
λCHPt,n,flex+ | The positive flexible timestep for CHP |
λP2Gt,n,flex- | The negative flexible timestep for P2G |
λP2Gt,n,flex+ | The positive flexible timestep for P2G |
References
- Jin, X.; Wu, Q.; Jia, H. Local flexibility markets: Literature review on concepts, models and clearing methods. Appl. Energy 2020, 261, 114387. [Google Scholar] [CrossRef]
- Shangguan, X.C.; He, Y.; Zhang, C.K.; Yao, W.; Zhao, Y.; Jiang, L.; Wu, M. Resilient load frequency control of power systems to compensate random time delays and time-delay attacks. IEEE Trans. Ind. Electron. 2023, 70, 5115–5128. [Google Scholar] [CrossRef]
- Yang, X.; Wang, G.; He, H.; Lu, J.; Zhang, Y. Automated demand response framework in ELNs: Decentralized scheduling and smart contract. IEEE Trans. Syst. Man Cybern. 2019, 50, 58–72. [Google Scholar] [CrossRef]
- Iria, J.; Soares, F. An energy-as-a-service business model for aggregators of prosumers. Appl. Energy 2023, 347, 121487. [Google Scholar] [CrossRef]
- Manna, C.; Sanjab, A. A decentralized stochastic bidding strategy for aggregators of prosumers in electricity reserve markets. J. Clean. Prod. 2023, 389, 135962. [Google Scholar] [CrossRef]
- Lu, X.; Ge, X.; Li, K.; Wang, F.; Shen, H.; Tao, P.; Hu, J.; Lai, J.; Zhen, Z.; Shafie-khah, M.; et al. Optimal bidding strategy of demand response aggregator based on customers’ responsiveness behaviors modeling under different incentives. IEEE Trans Ind. Appl. 2021, 57, 3329–3340. [Google Scholar] [CrossRef]
- Barhagh, S.; Abapour, M.; Mohammadi-Ivatloo, B. Optimal scheduling of electric vehicles and photovoltaic systems in residential complexes under real-time pricing mechanism. J. Clean. Prod. 2020, 246, 119041. [Google Scholar] [CrossRef]
- Sarfarazi, S.; Mohammadi, S.; Khastieva, D.; Hesamzadeh, M.; Bertsch, V.; Bunn, D. An optimal real-time pricing strategy for aggregating distributed generation and battery storage systems in energy communities: A stochastic bilevel optimization approach. Int. J. Electr. Power Energy Syst. 2023, 147, 108770. [Google Scholar] [CrossRef]
- Tostado-Véliz, M.; Jordehi, A.R.; Mansouri, S.A.; Jurado, F. Day-ahead scheduling of 100% isolated communities under uncertainties through a novel stochastic-robust model. Appl. Energy 2022, 328, 120257. [Google Scholar] [CrossRef]
- Qi, N.; Cheng, L.; Xu, H.; Wu, K.; Li, X.; Wang, Y.; Liu, R. Smart meter data-driven evaluation of operational demand response potential of residential air conditioning loads. Appl. Energy 2020, 279, 115708. [Google Scholar] [CrossRef]
- Hu, M.; Xiao, F. Price-responsive model-based optimal demand response control of inverter air conditioners using genetic algorithm. Appl. Energy 2018, 219, 151–164. [Google Scholar] [CrossRef]
- Zheng, Y.; Yu, H.; Shao, Z.; Jian, L. Day-ahead bidding strategy for electric vehicle aggregator enabling multiple agent modes in uncertain electricity markets. Appl. Energy 2020, 280, 115977. [Google Scholar] [CrossRef]
- Mai, W.; Chung, C.Y. Economic MPC of aggregating commercial buildings for providing flexible power reserve. IEEE Trans. Power Syst. 2014, 30, 2685–2694. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; Zhao, B.; Huang, F.; Chen, Y.; Ren, S. Optimal energy flow control strategy for a residential energy local network combined with demand-side management and real-time pricing. Energy Build. 2017, 150, 177–188. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y.; He, H.; Ren, S.; Weng, G. Real-time demand side management for a microgrid considering uncertainties. IEEE Trans. Smart Grid 2018, 10, 3401–3414. [Google Scholar] [CrossRef]
- Xu, D.; Zhong, F.; Bai, Z.; Wu, Z.; Yang, X.; Gao, M. Real-time multi-energy demand response for high-renewable buildings. Energy Build. 2023, 281, 112764. [Google Scholar] [CrossRef]
- Ju, L.; Lu, X.; Yang, S.; Li, G.; Fan, W.; Pan, Y.; Qiao, H. A multi-time scale dispatching optimal model for rural biomass waste energy conversion system-based micro-energy grid considering multi-energy demand response. Appl. Energy 2022, 327, 120155. [Google Scholar] [CrossRef]
- Zheng, L.; Zhou, B.; Cao, Y.; Or, S.W.; Li, Y.; Chan, K.W. Hierarchical distributed multi-energy demand response for coordinated operation of building clusters. Appl. Energy 2022, 308, 118362. [Google Scholar] [CrossRef]
- Söder, L.; Lund, P.D.; Koduvere, H.; Bolkesjø, T.F.; Rossebø, G.H.; Rosenlund-Soysal, E.; Skytte, K.; Katz, J.; Blumberga, D. A review of demand side flexibility potential in Northern Europe. Renew. Sust. Energ. Rev. 2018, 91, 654–664. [Google Scholar] [CrossRef]
- Fratean, A.; Dobra, P. Key performance indicators for the evaluation of building indoor air temperature control in a context of demand side management: An extensive analysis for Romania. Sustain. Cities Soc. 2021, 68, 102805. [Google Scholar] [CrossRef]
- D’Ettorre, F.; Banaei, M.; Ebrahimy, R.; Ali Pourmousavi, S.; Blomgren, E.M.V.; Kowalski, J.; Bohdanowicz, Z.; Łopaciuk-Gonczaryk, B.; Biele, C.; Madsen, H. Exploiting demand-side flexibility: State-of-the-art, open issues and social perspective. Renew. Sust. Energ. Rev. 2022, 165, 112605. [Google Scholar] [CrossRef]
- Kathirgamanathan, A.; Péan, T.; Zhang, K.; De Rosa, M.; Salom, J.; Kummert, M.; Finn, D.P. Towards standardising market-independent indicators for quantifying energy flexibility in buildings. Energy Build. 2020, 220, 110027. [Google Scholar] [CrossRef]
- Chen, Y.; Chen, Z.; Xu, P.; Li, W.; Sha, Z.; Li, G.; Hu, C. Quantification of electricity flexibility in demand response: Office building case study. Energy 2019, 188, 116054. [Google Scholar] [CrossRef]
- Heydarian-Forushani, E.; Golshan, M.E.H. Quantitative flexibility assessment of a comprehensive set of demand response programs. Int. J. Electr. Power Energy Syst. 2020, 116, 105562. [Google Scholar] [CrossRef]
- Nalini, B.K.; You, Z.; Zade, M.; Tzscheutschler, P.; Wagner, U. OpenTUMFlex: A flexibility quantification and pricing mechanism for prosumer participation in local flexibility markets. Int. J. Electr. Power Energy Syst. 2022, 143, 108382. [Google Scholar] [CrossRef]
- Wang, Y.; Li, F.; Yang, J.; Zhou, M.; Song, F.; Zhang, D.; Xue, L.; Zhu, J. Demand response evaluation of RIES based on improved matter-element extension model. Energy 2020, 212, 118121. [Google Scholar] [CrossRef]
- Lu, F.; Yu, Z.; Zou, Y.; Yang, X. Energy flexibility assessment of a zero-energy office building with building thermal mass in short-term demand-side management. J. Build. Eng. 2022, 50, 104214. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, B.; Wu, Q.; Chung, C.Y.; Li, C.; Huang, S.; Chen, S. Integrated modelling and enhanced utilization of power-to-ammonia for high renewable penetrated multi-energy systems. IEEE Trans. Power Syst. 2020, 35, 4769–4780. [Google Scholar] [CrossRef]
- Xu, D.; Zhong, F.; Bai, Z. A two-layer multi-energy management system for microgrids with solar, wind, and geothermal renewable energy. Front. Energy Res. 2023, 10, 1030662. [Google Scholar] [CrossRef]
- Xu, D.; Zhou, B.; Chan, K.W.; Li, C.; Wu, Q.; Chen, B.; Xia, S. Distributed multienergy coordination of multimicrogrids with biogas-solar-wind renewables. IEEE Trans. Industr. Inform. 2018, 15, 3254–3266. [Google Scholar] [CrossRef]
- Cao, Y.; Zhou, B.; Chung, C.Y.; Shuai, Z.; Hua, Z.; Sun, Y. Dynamic modelling and mutual coordination of electricity and watershed networks for spatio-temporal operational flexibility enhancement under rainy climates. IEEE Trans. Smart Grid 2022. [Google Scholar] [CrossRef]
References | 100% Renewable | Multi-Energy | Time Scale | Flexibility Potential Evaluation | |
---|---|---|---|---|---|
Quantification | Pricing | ||||
[5,6] | ✓ | ✓ | Day-ahead | ✕ | ✕ |
[4,9] | ✓ | ✕ | Day-ahead | ✕ | ✕ |
[10,13] | No renewable | ✕ | Day-ahead | ✕ | ✕ |
[11] | No renewable | ✕ | Day-ahead | ✕ | ✕ |
[12] | ✕ | ✕ | Day-ahead | ✕ | ✕ |
[7,8,14] | ✓ | ✕ | Real-time | ✕ | ✕ |
[15,19] | ✕ | ✕ | Real-time | ✕ | ✕ |
[16] | ✓ | ✓ | Multi-time-scale | ✕ | ✕ |
[17] | ✕ | ✓ | Multi-time-scale | ✕ | ✕ |
[20,23] | No renewable | ✕ | Real-time | Quantitative | ✕ |
[22] | No renewable | ✕ | Real-time | Quantitative | ✕ |
[24] | No renewable | ✕ | Day-ahead | Quantitative | ✕ |
[25,26] | ✕ | ✓ | Day-ahead | Quantitative | ✓ |
[27] | ✓ | ✕ | Day-ahead | Quantitative | ✕ |
Proposed | ✓ | ✓ | Multi-time-scale | Quantitative | ✓ |
Scheme | Prosumer Aggregator | Operating Cost ($) |
---|---|---|
1 | 1 | 61.78 |
2 | 125.78 | |
3 | 40.84 | |
2 | 1 | 63.55 |
2 | 126.12 | |
3 | 44.18 | |
3 | 1 | 66.21 |
2 | 128.31 | |
3 | 44.99 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, W.; Zhu, S.; Ding, J.; Zhu, T.; Wang, M.; Sun, L.; Zhong, F.; Yang, X. Transactive Demand–Response Framework for High Renewable Penetrated Multi-Energy Prosumer Aggregators in the Context of a Smart Grid. Appl. Sci. 2023, 13, 10083. https://doi.org/10.3390/app131810083
Lou W, Zhu S, Ding J, Zhu T, Wang M, Sun L, Zhong F, Yang X. Transactive Demand–Response Framework for High Renewable Penetrated Multi-Energy Prosumer Aggregators in the Context of a Smart Grid. Applied Sciences. 2023; 13(18):10083. https://doi.org/10.3390/app131810083
Chicago/Turabian StyleLou, Wei, Shenglong Zhu, Jinjin Ding, Taiyun Zhu, Ming Wang, Licheng Sun, Feili Zhong, and Xiaodong Yang. 2023. "Transactive Demand–Response Framework for High Renewable Penetrated Multi-Energy Prosumer Aggregators in the Context of a Smart Grid" Applied Sciences 13, no. 18: 10083. https://doi.org/10.3390/app131810083
APA StyleLou, W., Zhu, S., Ding, J., Zhu, T., Wang, M., Sun, L., Zhong, F., & Yang, X. (2023). Transactive Demand–Response Framework for High Renewable Penetrated Multi-Energy Prosumer Aggregators in the Context of a Smart Grid. Applied Sciences, 13(18), 10083. https://doi.org/10.3390/app131810083