Electrochemical Detection of SARS-CoV-2 Using Immunomagnetic Separation and Gold Nanoparticles on Unmodified Screen-Printed Carbon Electrodes
Abstract
:1. Introduction
2. Materials
2.1. Reagents for Immunomagnetic Separation and Sandwich Formation
2.2. Materials for ELISA
2.3. Apparatus for Electrochemical Detection
2.4. Clinical Samples
3. Methods
3.1. Direct EC Detection of AuNPs on the SPCE
3.2. ELISA Protocol for the Characterization of SARS-CoV-2 Capture Antibody
3.3. Immunomagnetic Capture and EC Detection of COVID-19 Nucleocapsid Protein
3.4. Immunomagnetic Capture and EC Detection of COVID-19-Positive Human Nasal Samples
4. Results and Discussion
4.1. Optimization of AuNP Size and Deposition Time to Yield Maximum EC Signal
4.2. Validation of SARS-CoV-2 Nucleocapsid Protein Binding to Anti-SARS-CoV-2 Nucleocapsid Antibody Utilizing ELISA
4.3. Analytical Sensitivity of the Assay for the Detection of SARS-CoV-2 Nucleocapsid Protein in PBS
4.4. Detection of SARS-CoV-2 in Clinical Samples
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- World Health Organization. WHO Coronavirus (COVID-19) Dashboard. Available online: https://covid19.who.int/ (accessed on 1 January 2023).
- Batista, C.; Hotez, P.; Ben Amor, Y.; Kim, J.H.; Kaslow, D.; Lall, B.; Ergonul, O.; Figueroa, J.P.; Gursel, M.; Hassanain, M.; et al. The silent and dangerous inequity around access to COVID-19 testing: A call to action. eClinicalMedicine 2022, 43, 101230. [Google Scholar] [CrossRef] [PubMed]
- U.S. Food and Drug Administration. Coronavirus (COVID-19) Update: FDA Authorizes Additional Oral Antiviral for Treatment of COVID-19 in Certain Adults. December 2021. Available online: https://www.fda.gov/news-events/press-announcements/coronavirus-covid-19-update-fda-authorizes-additional-oral-antiviral-treatment-covid-19-certain (accessed on 27 October 2022).
- Brendish, N.J.; Poole, S.; Naidu, V.V.; Mansbridge, C.T.; Norton, N.J.; Wheeler, H.; Presland, L.; Kidd, S.; Cortes, N.J.; Borca, F.; et al. Clinical impact of molecular point-of-care testing for suspected COVID-19 in hospital (COV-19POC): A prospective, interventional, non-randomised, controlled study. Lancet Respir. Med. 2020, 8, 1192–1200. [Google Scholar] [CrossRef] [PubMed]
- Whitley, R. Molnupiravir—A Step toward Orally Bioavailable Therapies for COVID-19. N. Engl. J. Med. 2022, 386, 592–593. [Google Scholar] [CrossRef] [PubMed]
- Benda, A.; Zerajic, L.; Ankita, A.; Cleary, E.; Park, Y.; Pandey, S. COVID-19 Testing and Diagnostics: A Review of Commercialized Technologies for Cost, Convenience and Quality of Tests. Sensors 2021, 21, 6581. [Google Scholar] [CrossRef]
- Filchakova, O.; Dossym, D.; Ilyas, A.; Kuanysheva, T.; Abdizhamil, A.; Bukasov, R. Review of COVID-19 testing and diagnostic methods. Talanta 2022, 244, 123409. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.O.; Cetin, A.E.; Azimzadeh, M.; Topkaya, S.N. Pathogen detection with electrochemical biosensors: Advantages, challenges and future perspectives. J. Electroanal. Chem. 2021, 882, 114989. [Google Scholar] [CrossRef]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747. [Google Scholar] [CrossRef]
- Arduini, F.; Micheli, L.; Moscone, D.; Palleschi, G.; Piermarini, S.; Ricci, F.; Volpe, G. Electrochemical biosensors based on nanomodified screen-printed electrodes: Recent applications in clinical analysis. TrAC Trends Anal. Chem. 2016, 79, 114–126. [Google Scholar] [CrossRef]
- Burlage, R.S.; Tillmann, J. Biosensors of bacterial cells. J. Microbiol. Methods 2017, 138, 2–11. [Google Scholar] [CrossRef]
- Afonso, A.S.; Pérez-López, B.; Faria, R.C.; Mattoso, L.H.; Hernández-Herrero, M.; Roig-Sagués, A.X.; Costa, M.M.-D.; Merkoçi, A. Electrochemical detection of Salmonella using gold nanoparticles. Biosens. Bioelectron. 2013, 40, 121–126. [Google Scholar] [CrossRef]
- Fabiani, L.; Fabiani, L.; Saroglia, M.; Saroglia, M.; Galatà, G.; Galatà, G.; De Santis, R.; De Santis, R.; Fillo, S.; Fillo, S.; et al. Magnetic beads combined with carbon black-based screen-printed electrodes for COVID-19: A reliable and miniaturized electrochemical immunosensor for SARS-CoV-2 detection in saliva. Biosens. Bioelectron. 2021, 171, 112686. [Google Scholar] [CrossRef]
- Katz, E. Synthesis, Properties and Applications of Magnetic Nanoparticles and Nanowires—A Brief Introduction. Magnetochemistry 2019, 5, 61. [Google Scholar] [CrossRef]
- Smith, J.E.; Sapsford, K.E.; Tan, W.; Ligler, F.S. Optimization of antibody-conjugated magnetic nanoparticles for target preconcentration and immunoassays. Anal. Biochem. 2011, 410, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Jayamohan, H.; Gale, B.; Minson, B.; Lambert, C.; Gordon, N.; Sant, H. Highly Sensitive Bacteria Quantification Using Immunomagnetic Separation and Electrochemical Detection of Guanine-Labeled Secondary Beads. Sensors 2015, 15, 12034–12052. [Google Scholar] [CrossRef]
- Nascimento, E.D.; Fonseca, W.T.; de Oliveira, T.R.; de Correia, C.R.; Faça, V.M.; de Morais, B.P.; Silvestrini, V.C.; Pott-Junior, H.; Teixeira, F.R.; Faria, R.C. COVID-19 diagnosis by SARS-CoV-2 Spike protein detection in saliva using an ultrasensitive magneto-assay based on disposable electrochemical sensor. Sens. Actuators B Chem. 2022, 353, 131128. [Google Scholar] [CrossRef] [PubMed]
- Karakuş, E.; Erdemir, E.; Demirbilek, N.; Liv, L. Colorimetric and electrochemical detection of SARS-CoV-2 spike antigen with a gold nanoparticle-based biosensor. Anal. Chim. Acta 2021, 1182, 338939. [Google Scholar] [CrossRef]
- Kumar, N.; Shetti, N.P.; Jagannath, S.; Aminabhavi, T.M. Electrochemical sensors for the detection of SARS-CoV-2 virus. Chem. Eng. J. 2022, 430, 132966. [Google Scholar] [CrossRef]
- Madhurantakam, S.; Muthukumar, S.; Prasad, S. Emerging Electrochemical Biosensing Trends for Rapid Diagnosis of COVID-19 Biomarkers as Point-of-Care Platforms: A Critical Review. ACS Omega 2022, 7, 12467–12473. [Google Scholar] [CrossRef]
- Jayamohan, H.; Lambert, C.J.; Sant, H.J.; Jafek, A.; Patel, D.; Feng, H.; Beeman, M.; Mahmood, T.; Nze, U.; Gale, B.K. SARS-CoV-2 pandemic: A review of molecular diagnostic tools including sample collection and commercial response with associated advantages and limitations. Anal. Bioanal. Chem. 2021, 413, 49–71. [Google Scholar] [CrossRef]
- At-Home OTC COVID-19 Diagnostic Tests|FDA. Available online: https://www.fda.gov/medical-devices/coronavirus-covid-19-and-medical-devices/home-otc-covid-19-diagnostic-tests (accessed on 13 April 2023).
- Barlev-Gross, M.; Weiss, S.; Ben-Shmuel, A.; Sittner, A.; Eden, K.; Mazuz, N.; Glinert, I.; Bar-David, E.; Puni, R.; Amit, S.; et al. Spike vs nucleocapsid SARS-CoV-2 antigen detection: Application in nasopharyngeal swab specimens. Anal. Bioanal. Chem. 2021, 413, 3501–3510. [Google Scholar] [CrossRef]
- Bar-On, Y.M.; Flamholz, A.; Phillips, R.; Milo, R. SARS-CoV-2 (COVID-19) by the numbers. eLife 2020, 9, e57309. [Google Scholar] [CrossRef] [PubMed]
- García, M.B.G.; García, A.C. Adsorptive stripping voltammetric behaviour of colloidal gold and immunogold on carbon paste electrode. Bioelectrochem. Bioenerg. 1995, 38, 389–395. [Google Scholar] [CrossRef]
- Dequaire, M.; Degrand, C.; Limoges, B. An Electrochemical Metalloimmunoassay Based on a Colloidal Gold Label. Anal. Chem. 2000, 72, 5521–5528. [Google Scholar] [CrossRef]
- Authier, L.; Grossiord, C.; Brossier, P.; Limoges, B. Gold Nanoparticle-Based Quantitative Electrochemical Detection of Amplified Human Cytomegalovirus DNA Using Disposable Microband Electrodes. Anal. Chem. 2001, 73, 4450–4456. [Google Scholar] [CrossRef]
- Saha, K.; Agasti, S.S.; Kim, C.; Li, X.; Rotello, V.M. Gold Nanoparticles in Chemical and Biological Sensing. Chem. Rev. 2012, 112, 2739–2779. [Google Scholar] [CrossRef] [PubMed]
- Driskell, J.D.; Kwarta, K.M.; Lipert, R.J.; Porter, M.D.; Neill, J.D.; Ridpath, J.F. Low-Level Detection of Viral Pathogens by a Surface-Enhanced Raman Scattering Based Immunoassay. Anal. Chem. 2005, 77, 6147–6154. [Google Scholar] [CrossRef] [PubMed]
- Dynabeads M-280 Streptavidin. Available online: https://assets.thermofisher.com/TFS-Assets/LSG/manuals/MAN0014017_Dynabeads_M280_Streptavidin_UG.pdf (accessed on 17 April 2023).
- Ealia, S.A.M.; Saravanakumar, M.P. A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032019. [Google Scholar] [CrossRef]
- de la Escosura-Muñiz, A.; Parolo, C.; Maran, F.; Mekoçi, A. Size-dependent direct electrochemical detection of gold nanoparticles: Application in magnetoimmunoassays. Nanoscale 2011, 3, 3350. [Google Scholar] [CrossRef]
- Patel, D.M. Novel Sample Isolation and Nanomaterial-Based Electrochemical Detection of Bacterial Toxins for Food Security. Ph.D. Thesis, The University of Utah, Salt Lake City, UT, USA, 2023. Available online: https://www.proquest.com/docview/2781661883/abstract/1B197B4D063D4A65PQ/1 (accessed on 18 April 2023).
- Kinoshita, K. Carbon: Electrochemical and Physicochemical Properties; Wiley: Hoboken, NJ, USA, 1988. [Google Scholar]
- Wu, C.; Qavi, A.J.; Hachim, A.; Kavian, N.; Cole, A.R.; Moyle, A.B.; Wagner, N.D.; Sweeney-Gibbons, J.; Rohrs, H.W.; Gross, M.L.; et al. Characterization of SARS-CoV-2 nucleocapsid protein reveals multiple functional consequences of the C-terminal domain. iScience 2021, 24, 102681. [Google Scholar] [CrossRef]
- Wu, W.; Cheng, Y.; Zhou, H.; Sun, C.; Zhang, S. The SARS-CoV-2 nucleocapsid protein: Its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol. J. 2023, 20, 6. [Google Scholar] [CrossRef]
- Cubuk, J.; Alston, J.J.; Incicco, J.J.; Singh, S.; Stuchell-Brereton, M.D.; Ward, M.D.; Zimmerman, M.I.; Vithani, N.; Griffith, D.; Wagoner, J.A.; et al. The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA. Nat. Commun. 2021, 12, 1936. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Liu, G.; Ma, H.; Zhao, D.; Yang, Y.; Liu, M.; Mohammed, A.; Zhao, C.; Yang, Y.; Xie, J.; et al. Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem. Biophys. Res. Commun. 2020, 527, 618–623. [Google Scholar] [CrossRef] [PubMed]
- Anti-SARS-CoV-2 Nucleocapsid Antibody, Mouse IgG1 (AS46) (Trehalose Free)—ACROBiosystems. Available online: https://www.acrobiosystems.com/P3309-Anti-SARS-CoV-2-Nucleocapsid-Antibody-Mouse-IgG1-%28AS46%29-%28Trehalose-free%29.html (accessed on 20 April 2023).
- Anti-SARS-CoV-2 Nucleocapsid Antibody, Mouse IgG1 (AS47) (Trehalose Free)—ACROBiosystems. Available online: https://www.acrobiosystems.com/P3307-Anti-SARS-CoV-2-Nucleocapsid-Antibody-Mouse-IgG1-%28AS47%29-%28Trehalose-free%29.html (accessed on 20 April 2023).
- Malla, P.; Liao, H.-P.; Liu, C.-H.; Wu, W.-C.; Sreearunothai, P. Voltammetric biosensor for coronavirus spike protein using magnetic bead and screen-printed electrode for point-of-care diagnostics. Microchim. Acta 2022, 189, 168. [Google Scholar] [CrossRef] [PubMed]
- Osaki, S.; Espulgar, W.V.; Wakida, S.; Saito, M.; Tamiya, E. Optimization of electrochemical analysis for signal amplification in gold nanoparticle-probed immunoassays. Electrochimica Acta 2022, 432, 141180. [Google Scholar] [CrossRef]
- Levy, J.M.; Frediani, J.K.; Tyburski, E.A.; Wood, A.; Figueroa, J.; Kempker, R.R.; Rebolledo, P.A.; Gonzalez, M.D.; Sullivan, J.; Vos, M.B.; et al. Impact of repeated nasal sampling on detection and quantification of SARS-CoV-2. Sci. Rep. 2021, 11, 14903. [Google Scholar] [CrossRef]
- Jayamohan, H.; Romanov, V.; Li, H.; Son, J.; Samuel, R.; Nelson, J.; Gale, B. Chapter 11—Advances in Microfluidics and Lab-on-a-Chip Technologies. In Molecular Diagnostics, 3rd ed.; Patrinos, G.P., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 197–217. [Google Scholar] [CrossRef]
- Jamshaid, T.; Neto, E.T.T.; Eissa, M.M.; Zine, N.; Kunita, M.H.; El-Salhi, A.E.; Elaissari, A. Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. TrAC Trends Anal. Chem. 2016, 79, 344–362. [Google Scholar] [CrossRef]
- Available online: https://www.prosci-inc.com/product/sars-cov-2-covid-19-trimeric-spike-s-recombinant-protein-10-075 (accessed on 25 July 2023).
Technique | Sample | Analytical Performance (LOD) | Ref. |
---|---|---|---|
Immunomagnetic beads for analyte capture and a secondary antibody conjugated to alkaline phosphatase as the EC label (DPV) | S and N proteins in untreated human saliva | 19 ng/mL for S protein 8 ng/mL for N protein (in untreated human saliva) | [13] |
Immunomagnetic beads loaded with peroxidase as the EC label (SWV) | S protein in saliva, urine, and serum (spiked samples) | 0.20, 0.31, and 0.54 ng/mL in human saliva, urine, and serum, respectively | [41] |
Peptide-conjugated magnetic beads for analyte capture and a secondary peptide conjugated to AuNPs as the EC label (DPV) | S protein in human saliva | 0.35 ag/mL in human saliva | [17] |
Immunomagnetic beads for analyte capture and a secondary antibody conjugated to AuNPs as the EC label (DPV) | N protein in PBS and nasopharyngeal samples | 2.64 ng/mL | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lambert, C.J.; Jayamohan, H.; Gale, B.K.; Laurentius, L.B.; Patel, D.; Hansen, M.; Mahmood, T.; Sant, H.J. Electrochemical Detection of SARS-CoV-2 Using Immunomagnetic Separation and Gold Nanoparticles on Unmodified Screen-Printed Carbon Electrodes. Appl. Sci. 2023, 13, 10007. https://doi.org/10.3390/app131810007
Lambert CJ, Jayamohan H, Gale BK, Laurentius LB, Patel D, Hansen M, Mahmood T, Sant HJ. Electrochemical Detection of SARS-CoV-2 Using Immunomagnetic Separation and Gold Nanoparticles on Unmodified Screen-Printed Carbon Electrodes. Applied Sciences. 2023; 13(18):10007. https://doi.org/10.3390/app131810007
Chicago/Turabian StyleLambert, Christopher J., Harikrishnan Jayamohan, Bruce K. Gale, Lars B. Laurentius, Dhruv Patel, Madison Hansen, Tawsif Mahmood, and Himanshu Jayant Sant. 2023. "Electrochemical Detection of SARS-CoV-2 Using Immunomagnetic Separation and Gold Nanoparticles on Unmodified Screen-Printed Carbon Electrodes" Applied Sciences 13, no. 18: 10007. https://doi.org/10.3390/app131810007
APA StyleLambert, C. J., Jayamohan, H., Gale, B. K., Laurentius, L. B., Patel, D., Hansen, M., Mahmood, T., & Sant, H. J. (2023). Electrochemical Detection of SARS-CoV-2 Using Immunomagnetic Separation and Gold Nanoparticles on Unmodified Screen-Printed Carbon Electrodes. Applied Sciences, 13(18), 10007. https://doi.org/10.3390/app131810007