O-Band Grating Couplers Using Silicon Nitride Structures
Abstract
:1. Introduction
2. Grating Coupler Design and Theoretical Aspects
3. Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowen, T.; Lee, J.; Ling, T.; Sun, J.; Zhang, H. Mode Size Converter Designs for Fabrication of Ultra-Low Loss Optical Interconnects. In Proceedings of the 2016 Pan Pacific Microelectronics Symposium (Pan Pacific), Big Island, HI, USA, 25–28 January 2016. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, T.; Zhang, K.; Li, M.; Liu, H.; Li, H.; Niu, P.; Gu, E. Bidirectional Grating Based Interleaved Angled MMI for High-Uniformity Wavelength Division (de)Multiplexing and Surface-Normal Fiber Packaging. Appl. Opt. 2021, 60, 5615. [Google Scholar] [CrossRef]
- Cheng, L.; Mao, S.; Li, Z.; Han, Y.; Fu, H.Y. Grating Couplers on Silicon Photonics: Design Principles, Emerging Trends and Practical Issues. Micromachines 2020, 11, 666. [Google Scholar] [CrossRef]
- Denisov, G.G.; Kalynova, G.I.; Sobolev, D.I. Method for Synthesis of Waveguide Mode Converters. Radiophys. Quantum Electron. 2004, 47, 615–620. [Google Scholar] [CrossRef]
- Wilmart, Q.; Dirani, H.E.; Tyler, N.A.; Fowler, D.; Malhouitre, S.; Garcia, S.; Casale, M.; Kerdiles, S.; Hassan, K.; Monat, C.; et al. A Versatile Silicon-Silicon Nitride Photonics Platform for Enhanced Functionalities and Applications. Appl. Sci. 2019, 9, 255. [Google Scholar] [CrossRef]
- Qing, F.-L.; Song, J.-F.; Luo, X.; Yu, M.; Lo, G.-Q.; Liu, Y. Mode-Size Converter with High Coupling Efficiency and Broad Bandwidth. Opt. Express 2011, 19, 21588. [Google Scholar] [CrossRef]
- Hosseini, A.; Covey, J.; Chen, R.T. Mode Order Converter Using Tapered Multi-Mode Interference Couplers. In Proceedings of the Integrated Photonics Research, Silicon and Nanophotonics 2010, Monterey, CA, USA, 25–28 July 2010. [Google Scholar] [CrossRef]
- Hu, J.-Y.; Lin, C.-P.; Hung, S.-Y.; Yang, H.; Chao, C.-K. Semi-Ellipsoid Microlens Simulation and Fabrication for Enhancing Optical Fiber Coupling Efficiency. Sens. Actuators A-Phys. 2008, 147, 93–98. [Google Scholar] [CrossRef]
- Jia, L.; Song, J.-F.; Liow, T.-Y.; Luo, X.; Tu, X.; Qing, F.-L.; Koh, S.-C.; Yu, M.; Lo, G.-Q. Low Loss/Large Tolerance Mode Converter between SiN Waveguide and Cleaved Single Mode Fiber. In Proceedings of the 2014 Optical Fiber Communications Conference and Exhibition (OFC), San Francisco, CA, USA, 9 March 2014. [Google Scholar] [CrossRef]
- Mu, J.; Guo, Q.-Y.; Deng, L.; Liang, H. A Novel Silicon Nitride Slot Waveguide. Proc. SPIE 2014, 9288, 296–302. [Google Scholar] [CrossRef]
- Bashirullah, R.; Mortazawi, A. A Slotted-Waveguide Power Amplifier for Spatial Power-Combining Applications. IEEE Trans. Microw. Theory Tech. 2000, 48, 1142–1147. [Google Scholar] [CrossRef]
- Bucio, T.D.; Khokhar, A.Z.; Mashanovich, G.Z.; Gardes, F.Y. N-Rich Silicon Nitride Angled MMI for Coarse Wavelength Division (de)Multiplexing in the O-Band. Opt. Lett. 2018, 43, 1251. [Google Scholar] [CrossRef]
- Ma, X.; Hu, H.; Liu, S.; Dong, R.; Qing, F.-L.; Chen, H. The Edge-Coupler of Fiber-to-Chip with Ultra-Low Coupling Loss Based on Double-Layer Silicon Waveguides. Front. Phys. 2022, 10, 1018624. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Z.; Zhou, J.; Cong, Q.; Zeng, X.; Zhang, Y.; Jia, L. Process Development of Low-Loss LPCVD Silicon Nitride Waveguides on 8-Inch Wafer. Appl. Sci. 2023, 13, 3660. [Google Scholar] [CrossRef]
- Xiao, J.; Xu, L.; Sun, X. Design of an Ultracompact MMI Wavelength Demultiplexer in Slot Waveguide Structures. Opt. Express 2007, 15, 8300. [Google Scholar] [CrossRef] [PubMed]
- Nadeem, M.A.; Shaikh, H.; Rauf, M. Performance Measure on Efficient Wireless Data Transfer in Highly Conductive Medium. In Proceedings of the 2019 15th International Conference on Emerging Technologies (ICET), Peshawar, Pakistan, 2–3 December 2019. [Google Scholar] [CrossRef]
- Mak, J.C.C.; Wilmart, Q.; Olivier, S.; Menezo, S.; Poon, J.K.S. Silicon Nitride-on-Silicon Bi-Layer Grating Couplers Designed by a Global Optimization Method. Opt. Express 2018, 26, 13656. [Google Scholar] [CrossRef] [PubMed]
- Nambiar, S.; Muthuganesan, H.; Sharma, T.K.; Selvaraja, S.K. On-Chip Unidirectional Dual-Band Fiber-Chip Grating Coupler in Silicon Nitride. OSA Contin. 2018, 1, 864. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Wang, H.; Sun, L.; Su, Y. Ultra-Broadband Mode Size Converter Using On-Chip Metamaterial-Based Luneburg Lens. ACS Photonics 2020, 8, 202–208. [Google Scholar] [CrossRef]
- Sharma, V.; Sinha, A.; Shenoy, M.R. Mode Size Converter Based on Periodically Segmented Liquid Crystal Core Waveguide. J. Light. Technol. 2022, 40, 4728–4734. [Google Scholar] [CrossRef]
- Shiraishi, K.; Matsumura, K.; Ohnuki, H.; Ohishi, I.; Suga, S. Integration-Oriented Lensed Fibers Having Long Working Distances and Wide Tolerances. In Proceedings of the Optical Fiber Communications, OFC, San Jose, CA, USA, 25 February–1 March 1996. [Google Scholar] [CrossRef]
- Remis, A.; Monge-Bartolome, L.; Paparella, M.; Gilbert, A.; Boissier, G.; Grande, M.; Blake, A.; O’Faolain, L.; Cerutti, L.; Rodriguez, J.B.; et al. Unlocking the Monolithic Integration Scenario: Optical Coupling between GaSb Diode Lasers Epitaxially Grown on Patterned Si Substrates and Passive SiN Waveguides. Light-Sci. Appl. 2023, 12, 150. [Google Scholar] [CrossRef]
- Shoji, T.; Tsuchizawa, T.; Watanabe, T.; Yamada, K.; Morita, H. Low Loss Mode Size Converter from 0.3 μm Square Si Wire Waveguides to Singlemode Fibres. Electron. Lett. 2002, 38, 1669. [Google Scholar] [CrossRef]
- Sisto, M.M.; Fisette, B.; Paultre, J.-E.; Paquet, A.; Desroches, Y. Novel Spot Size Converter for Coupling Standard Single Mode Fibers to SOI Waveguides. In Proceedings of the SPIE OPTO, San Francisco, CA, USA, 14 March 2016. [Google Scholar] [CrossRef]
- Yamasaki, S.; Uchida, Y.; Takahashi, M.; Hasegawa, J.; Yagi, T. Spot Size Converter with Cross-Vertical Taper for Low-Loss Coupling between ZrO2-SiO2 PLC and SMF. In Proceedings of the OFC 2014, San Francisco, CA, USA, 9–13 March 2014. [Google Scholar] [CrossRef]
- Taillaert, D.; Bogaerts, W.; Bienstman, P.; Krauss, T.F.; Van Daele, P.; Moerman, I.; Verstuyft, S.; De Mesel, K.; Baets, R. An Out-of-Plane Grating Coupler for Efficient Butt-Coupling between Compact Planar Waveguides and Single-Mode Fibers. IEEE J. Quantum Electron. 2002, 38, 949–955. [Google Scholar] [CrossRef]
- Taillaert, D.; Van Laere, F.; Ayre, M.; Bogaerts, W.; Van Thourhout, D.; Bienstman, P.; Baets, R. Grating Couplers for Coupling between Optical Fibers and Nanophotonic Waveguides. Jpn. J. Appl. Phys. 2006, 45, 6071–6077. [Google Scholar] [CrossRef]
- Masturzo, S.A.; Yarrison-Rice, J.M.; Jackson, H.E.; Boyd, J.T. Grating Couplers Fabricated by Electron-Beam Lithography for Coupling Free-Space Light into Nanophotonic Devices. IEEE Trans. Nanotechnol. 2007, 6, 622–626. [Google Scholar] [CrossRef]
- Ding, Y.; Ou, H.; Peucheret, C.; Yvind, K. Fully-Etched Apodized Fiber-to-Chip Grating Coupler on the SOI Platform with −0.78 DB Coupling Efficiency Using Photonic Crystals and Bonded Al Mirror. In Proceedings of the 2014 The European Conference on Optical Communication (ECOC), Cannes, France, 21–25 September 2014. [Google Scholar] [CrossRef]
- Vermeulen, D.; Selvaraja, S.K.; Verheyen, P.; Lepage, G.; Bogaerts, W.; Absil, P.; Van Thourhout, D.; Roelkens, G. High-Efficiency Fiber-to-Chip Grating Couplers Realized Using an Advanced CMOS-Compatible Silicon-On-Insulator Platform. Opt. Express 2010, 18, 18278. [Google Scholar] [CrossRef] [PubMed]
- Vivien, L.; Pascal, D.; Lardenois, S.; Marris-Morini, D.; Cassan, E.; Grillot, F.; Laval, S.; Fedeli, J.-M.; Melhaoui, L.E. Light Injection in SOI Microwaveguides Using High-Efficiency Grating Couplers. J. Light. Technol. 2006, 24, 3810–3815. [Google Scholar] [CrossRef]
- Zaken, B.B.B.; Zanzury, T.; Malka, D. An 8-Channel Wavelength MMI Demultiplexer in Slot Waveguide Structures. Materials 2016, 9, 881. [Google Scholar] [CrossRef]
- Xiao, Y.; Xu, Y.; Dong, Y.; Zhang, B.; Ni, Y. A 60 μm-Long Fiber-to-Chip Edge Coupler Assisted by Subwavelength Grating Structure with Ultralow Loss and Large Bandwidth. Photonics 2022, 9, 413. [Google Scholar] [CrossRef]
- Zhong, Q.; Veerasubramanian, V.; Wang, Y.; Shi, W.; Patel, D.; Ghosh, S.; Samani, A.; Chrostowski, L.; Bojko, R.; Plant, D.V. Focusing-Curved Subwavelength Grating Couplers for Ultra-Broadband Silicon Photonics Optical Interfaces. Opt. Express 2014, 22, 18224. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Yu, Y.; Ye, M.; Liu, L.; Deng, S.; Xu, X.; Zhang, C. Short and Efficient Mode-Size Converter Designed by Segmented-Stepwise Method. Opt. Lett. 2014, 39, 6273. [Google Scholar] [CrossRef] [PubMed]
- Lee, B.-T.; Shin, S.Y. Mode-Order Converter in a Multimode Waveguide. Opt. Lett. 2003, 28, 1660. [Google Scholar] [CrossRef]
- Manolatou, C.; Haus, H.A. Compact Mode-Size Converters for Efficient Coupling between Fibers and Integrated Optical Waveguides. In Proceedings of the 2001 Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo, Copper Mountain, CO, USA, 30 July–1 August 2001. [Google Scholar] [CrossRef]
- Kumric, H.; Thumm, M.; Wilhelm, R. Optimization of Mode Converters for Generating the Fundamental TE01mode from TE06Gyrotron Output at 140 GHz. Int. J. Electron. 1988, 64, 77–94. [Google Scholar] [CrossRef]
- Xu, H.; Qin, Y.; Hu, G.; Tsang, H.K. Compact Integrated Mode-Size Converter Using a Broadband Ultralow-Loss Parabolic-Mirror Collimator. Opt. Lett. 2023, 48, 327. [Google Scholar] [CrossRef]
- Frishman, A.; Malka, D. An Optical 1 × 4 Power Splitter Based on Silicon–Nitride MMI Using Strip Waveguide Structures. Nanomaterials 2023, 13, 2077. [Google Scholar] [CrossRef] [PubMed]
- Brand, O.; Wolftson, B.; Malka, D. A Compact Polarization MMI Combiner Using Silicon Slot-Waveguide Structures. Micromachines 2023, 14, 1203. [Google Scholar] [CrossRef] [PubMed]
- Menahem, J.; Malka, D. A Two-Channel Silicon Nitride Multimode Interference Coupler with Low Back Reflection. Appl. Sci. 2022, 12, 11812. [Google Scholar] [CrossRef]
- Zou, J.; Yu, Y.; Ye, M.; Liu, L.; Deng, S.; Zhang, C. Ultra Efficient Silicon Nitride Grating Coupler with Bottom Grating Reflector. Opt. Express 2015, 23, 26305. [Google Scholar] [CrossRef]
- Doerr, C.R.; Chen, L.; Chen, Y.-K.; Buhl, L.L. Wide Bandwidth Silicon Nitride Grating Coupler. IEEE Photonics Technol. Lett. 2010, 22, 1461–1463. [Google Scholar] [CrossRef]
- Xu, C.; Khajavikhan, M.; LiKamWa, P. A Silicon Nitride Grating Coupler for Efficent Coupling Bewteen Waveguide and Fiber. In Proceedings of the 2017 IEEE Photonics Conference (IPC), Orlando, FL, USA, 1–5 October 2017. [Google Scholar] [CrossRef]
- Zhao, X.; Li, D.; Zeng, C.; Gao, G.; Huang, Z.; Huang, Q.; Wang, Y.; Xia, J. Compact Grating Coupler for 700-Nm Silicon Nitride Strip Waveguides. J. Light. Technol. 2016, 34, 1322–1327. [Google Scholar] [CrossRef]
- Zhang, H.; Li, C.; Tu, X.; Song, J.-F.; Zhou, H.; Luo, X.; Huang, Y.; Yu, M.; Lo, G.-Q. Efficient Silicon Nitride Grating Coupler with Distributed Bragg Reflectors. Opt. Express 2014, 22, 21800. [Google Scholar] [CrossRef] [PubMed]
Si3N4 GC Technology | Coupling Efficiency (%) | Wavelength (μm) | Complexity of Fabrication (Yes/No) | Fabrication Cost (High/Low) |
---|---|---|---|---|
GC with bottom grating reflector [43] | 27 | 1.55 | yes | high |
GC based on butt-coupled [44] | 38 | 1.54 | yes | high |
GC between waveguide and fiber [45] | 22 | 1.56 | no | low |
GC combined inverse taper using [46] | 42 | 1.56 | yes | high |
GC with bottom reflectors [47] | 56 | 1.57 | yes | high |
In this work | 28 | 1.31 | no | low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ohana, E.; Malka, D. O-Band Grating Couplers Using Silicon Nitride Structures. Appl. Sci. 2023, 13, 9951. https://doi.org/10.3390/app13179951
Ohana E, Malka D. O-Band Grating Couplers Using Silicon Nitride Structures. Applied Sciences. 2023; 13(17):9951. https://doi.org/10.3390/app13179951
Chicago/Turabian StyleOhana, Eli, and Dror Malka. 2023. "O-Band Grating Couplers Using Silicon Nitride Structures" Applied Sciences 13, no. 17: 9951. https://doi.org/10.3390/app13179951
APA StyleOhana, E., & Malka, D. (2023). O-Band Grating Couplers Using Silicon Nitride Structures. Applied Sciences, 13(17), 9951. https://doi.org/10.3390/app13179951