Ex Situ and In Situ Artificial Thermo-Aging Study of the Natural Degradation of Bombyx mori Silk Fibroin
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Silk Sample
2.2. Historical Silk Samples
2.3. Artificial Ageing
- A.
- In a climatic chamber maintained at dry conditions (esO2), oxygen’s effects were used to follow fibroin’s oxidation.
- B.
- In closed vials, oxygen, water vapor, and gaseous degradation products (called volatile organic compounds (VOC)) were called for to simulate the most severe degradation, including oxidation, hydrolysis, and autocatalytic effects (esO2/VOC/H2O).
- -
- An in-build heated board, which triggered the thermo-degradation from the silk’s surface, was placed in a geometry allowing that surface to be measured during aging with ATR-FTIR.
- -
- Gas flow system that allowed to flush of the samples with a given gas mixture containing oxygen to follow oxidation (isO2) to focus more on crystallinity changes.
2.4. Spectroscopic Ex Situ Analysis
2.5. In Situ Spectroscopic Analysis
2.6. pol-ATR-FTIR
2.7. Estimator Definitions
- From ATR-FTIR spectra, the EC—intensity ratios within Amide I C=O stretching vibration of parallel β-sheet to antiparallel β-sheet A1620/A1699 [21]). Absorption values were calculated with a straight-line baseline from 1818 to 866 cm−1.
- From pol-ATR-FTIR spectra, the ECPOL—intensity ratios for this were calculated from polarised spectra recorded at 0° and 90° for each absorption band [8]. Absorption values were calculated from Equation (1) with a straight-line baseline from 1818 to 866 cm−1.APOL = (A‖ + 2A⊥)/3
- From the XRD pattern, the EβXRD—is the sum of fitted peak areas of β-sheet domains divided by the sum of all fitted peaks [34]. Peak analysis was performed on spectra with a polygonal-line baseline from 10 to 35°.
- Oxidation estimator: EAmideI/II—intensity ratios of Amide I C=O stretching vibration to Amide II N-H in-plane bending and C-N stretching vibrations A1620/A1514 (baseline as above).
- Hydrolysis estimator: ECOOH—band 1318 cm−1 integral to band integral of CH3 bending vibration band located at 1442 cm−1 P1318/P1442 (baseline as above).
3. Results
3.1. Short-Time Degradation Viewed by In Situ Analysis on Model Samples
3.2. Long-Time Artificial Ageing Vied by Ex Situ Analysis on Model Samples
3.3. Super-Long-Time Natural Ageing: Historical Banners Analysis by FTIR
3.4. Detailed Analysis of FTIR Crystallinity Estimator at Different Polarisation Angles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Koperska, M.A.; Pawcenis, D.; Bagniuk, J.; Zaitz, M.M.; Missouri, M.; Łojewski, T.; Łojewska, J. Degradation markers of fibroin in silk through infrared spectroscopy. Polym. Degrad. Stab. 2014, 105, 185–196. [Google Scholar] [CrossRef]
- Timar-Balazsy, A.; Eastop, D. Chemical Principles of Textile Conservation; Butterworth-Heinemann: Oxford, UK, 1988. [Google Scholar]
- Landi, S. Textile Conservator’s Manual, 2nd ed.; Butterworth-Heinemann: Oxford, UK, 1998. [Google Scholar]
- Lewin, M. Handbook of Fibre Chemistry, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2006; pp. 154–196. [Google Scholar]
- Sashina, E.S.; Bochek, A.M.; Novoselov, N.P.; Kirichenko, D. Structure and solubility of natural silk fibroin. Russ. J. Appl. Chem. 2006, 79, 869–876. [Google Scholar] [CrossRef]
- Becker. Historic Textile and Paper Material II: Conservation and Characterisation; ASC Symposium Series 410; American Chemical Society: Washington, DC, USA, 1989; Volume 95. [Google Scholar]
- Li, M.; Ogiso, M.; Minoura, N. Enzymatic degradation behaviour of porous silk fibroin sheets. Biomaterials 2003, 24, 357–365. [Google Scholar] [CrossRef]
- Garside, P.; Wyeth, P. Crystallinity and degradation of silk: Correlations between analytical signatures and physical condition on ageing. Appl. Phys. A 2007, 89, 871–876. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yuan, S.M. Research on the silk aging with x-ray diffraction spectra. Spectrosc. Spectr. Anal. 2010, 30, 262–265. [Google Scholar]
- Socrates, G. Infrared and Raman Characteristic Group Frequencies: Tables and Charts, 3rd ed.; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Chen, X.G.; Li, P.; Holtz, J.S.; Chi, Z.; Pajcini, V.; Asher, S.A.; Kelly, L.A. Resonance Raman examination of the electronic excited states of glycylglycine and other dipeptides: Observation of a carboxylate/amide charge transfer transition. J. Am. Chem. Soc. 1996, 118, 9705–9715. [Google Scholar] [CrossRef]
- Kumar, S.; Rai, A.K.; Singh, V.B.; Rai, S.B. Vibrational spectrum of glycine molecule. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2005, 61, 2741–2746. [Google Scholar] [CrossRef]
- Ren, K.; Ji, J.; Shen, J. Construction and enzymatic degradation of multilayered poly-L-lysine/DNA films. Biomaterials 2006, 27, 1152–1159. [Google Scholar] [CrossRef]
- Ling, S.; Qi, Z.; Knight, D.P.; Shao, Z.; Chen, X.S. Synchrotron FTIR micro-spectroscopy of single natural silk fibres. Biomacromolecules 2011, 12, 3344–3349. [Google Scholar] [CrossRef]
- Wyeth, P.R. Scientific Analysis of Ancient and Historic Textiles Informing Preservation Display and Interpretation; HRC Research, Centre for Textile Conservation and Textile Studies, Textile Conservation Centre, University of Southampton: Southampton, UK, 2005. [Google Scholar]
- Horan, R.L.; Antle, K.; Collette, A.L.; Wang, Y.; Huang, J.; Moreau, J.E.; Volloch, V. In vitro degradation of silk fibroin. Biomaterials 2005, 26, 3385–3393. [Google Scholar] [CrossRef]
- Arai, T.; Freddi, G.; Innocenti, R.; Tsukada, M. Biodegradation of Bombyx mori silk fibroin fibres and films. J. Appl. Polym. Sci. 2004, 91, 2383–2390. [Google Scholar] [CrossRef]
- Khan, M.M.R.; Morikawa, H.; Gotoh, Y.; Miura, M.; Ming, Z.; Sato, Y.; Iwasa, M. Structural characteristics and properties of Bombyx mori silk fibres obtained by different artificial forcibly silking speeds. Int. J. Biol. Macromol. 2008, 42, 264–270. [Google Scholar] [CrossRef]
- Liu, J.; Guo, D.; Zhou, Y.; Wu, Z.; Li, W.; Zhao, F.; Zheng, X. Identification of ancient textiles from Yingpan, Xinjiang, by multiple analytical techniques. J. Archaeol. Sci. 2011, 38, 1763–1770. [Google Scholar] [CrossRef]
- Marelli, B.; Alessandrino, A.; Farè, S.; Freddi, G.; Mantovani, D.; Tanzi, M.C. Compliant electro spun silk fibroin tubes for small vessel bypass grafting. Acta Biomater. 2010, 6, 4019–4026. [Google Scholar] [CrossRef]
- Zhang, X.M.; Yuan, S.M. Research on the Infrared Spectrometry of Aging Silk Fabrics. 2004. Available online: https://pubmed.ncbi.nlm.nih.gov/15828318/ (accessed on 29 June 2023).
- Wyeth, P.R. Signatures of Ageing: Correlations with Behaviour; Archetype Publications Press: London, UK, 2004; pp. 137–142. [Google Scholar]
- Hermes, A.C.; Davies, R.J.; Greiff, S.; Kutzke, H.; Kahlil, P.; Wyeth, P.; Riekel, C. Characterising the decay of ancient Chinese silk fabrics by microbeam synchrotron radiation diffraction. Biomacromolecules 2006, 7, 666–783. [Google Scholar] [CrossRef]
- Anghileri, A.; Lantto, R.; Kruus, K.; Arosio, C.; Freddi, G. Tyrosinase-catalysed grafting of sericin peptides onto chitosan and production of protein-polysaccharide bioconjugates. J. Biotechnol. 2007, 127, 508–519. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Q.; You, R.; Wang, L.; Li, M. The relationship between secondary structure and biodegradation behaviour of silk fibroin scaffolds. Adv. Mater. Sci. Eng. 2012, 2012, 185905. [Google Scholar] [CrossRef]
- Baltova, S.; Vassileva, V.; Valtcheva, E. Photochemical behaviour of natural silk—I. Kinetic investigation of photo yellowing. Polym. Degrad. Stab. 1998, 60, 53–65. [Google Scholar] [CrossRef]
- Baltova, S.; Vassileva, V.; Valtcheva, E. Photochemical behaviour of natural silk—III. Photofading of silk dyed with acid azo dyes. Polym. Degrad. Stab. 1998, 61, 367–373. [Google Scholar]
- Lefevre, T.; Paquet-Mercier, F.; Lesage, S.; Rousseau, M.-E.; Bedard, S.; Pezolet, M. Study by Raman spectromicroscopy of the effect of tensile deformation on the molecular structure of Bombyx mori silk. Vib. Spectrosc. 2009, 51, 136–141. [Google Scholar] [CrossRef]
- Greiff, S.; Kutzke, H.; Riekel, C.; Wyeth, P.; Lahlil, S. Surveying silk fibre degradation by crystallinity deterioration: A study on the Tang dynasty silk treasure from Famen Temple, China. In Proceedings of the First Annual Conference of the AHRC Research Centre for Textile Conservation and Textile Studies, Scientific Analysis of Ancient and Historic Textiles: Informing Preservation, Display and Interpretation, London, UK, 26–28 July 2005. [Google Scholar]
- Martel, A.; Burghammer, M.; Davies, R.J.; Di Cola, E.; Vendrely, C. Silk Fiber Assembly Studied by Synchrotron Radiation SAXS/WAXS and Raman Spectroscopy. JACS 2008, 130, 17070–17074. [Google Scholar] [CrossRef] [PubMed]
- Koperska, M.A.; Pawcenis, D.; Milczarek, J.M.; Blachecki, A.; Łojewski, T.; Łojewska, J. Fibroin degradation—Critical evaluation of conventional analytical methods. Polym. Degrad. Stab. 2015, 120, 357–367. [Google Scholar] [CrossRef]
- Koperska, M.A.; Łojewski, T.; Łojewska, J. Evaluating degradation of silk’s fibroin by attenuated total reflectance infrared spectroscopy: A case study of ancient banners from Polish collections. Spectrochim. Acta Part A 2015, 135, 579–582. [Google Scholar] [CrossRef] [PubMed]
- Boulet-Audet, M.; Lefèvre, T.; Buffeteau, T.; Pézolet, M. Attenuated total reflection infrared spectroscopy: An efficient technique to quantitatively determine the orientation and conformation of proteins in single silk fibres. Appl. Spectrosc. 2008, 62, 956–962. [Google Scholar] [CrossRef]
- Yang, M.Y.; Yao, J.M.; Sonoyama, M.; Asakura, T. Spectroscopic Characterization of Heterogeneous Structure of Samia cynthia ricini Silk Fibroin Induced by Stretching and Molecular Dynamics Simulation. Macromolecules 2004, 37, 3497–3504. [Google Scholar] [CrossRef]
- Tanaka, C.; Takahashi, R.; Asano, A.; Kurotsu, T.; Hiromu, A.; Sata, K.; Knight, D.P.; Asakura, T. Structural analyses of Anaphe Silk Fibroin and several model peptides using 13C NMR and X-ray diffraction methods. Macromolecules 2008, 41, 796–803. [Google Scholar] [CrossRef]
- Teramoto, H.; Miyazawa, M. Molecular orientation behavior of silk sericin film as revealed by ATR infrared spectroscopy. Biomacromolecules 2005, 6, 2049–2057. [Google Scholar] [CrossRef]
- Müller, M.; Kessler, B.; Lunkwitz, K. Induced orientation of α-helical polypeptides in polyelectrolyte multilayers. J. Phys. Chem. B 2003, 107, 8189–8197. [Google Scholar] [CrossRef]
- Swanekamp, R.J.; DiMaio, J.T.; Bowerman, C.J.; Nilsson, B.L. Coassembly of Enantiomeric Amphipathic Peptides into Amyloid-Inspired Rippled β-Sheet Fibrils. J. Am. Chem. Soc. 2012, 134, 5556–5559. [Google Scholar] [CrossRef]
- Jieling, L.; Ruirui, X.; Shuo, B.; Xuehai, Y. Recent advances of self-assembling peptide-based hydrogels for biomedical applications. Soft Matter 2019, 15, 1704–1715. [Google Scholar]
- Lu, Q.; Hu, X.; Kaplan, D.L. Water-insoluble silk films with silk I structure. Acta Biomater. 2010, 6, 1380–1387. [Google Scholar] [CrossRef] [PubMed]
- Moini, M.; Klauenberg, K.; Ballard, M. Dating silk by capillary electrophoresis mass spectrometry. Anal. Chem. 2011, 83, 7577–7581. [Google Scholar] [CrossRef] [PubMed]
- Lotz, B. Rippled Sheets: The Early Polyglycine Days and Recent Developments in Nylons. ChemBioChem 2022, 23, e202100658. [Google Scholar] [CrossRef] [PubMed]
- Marsh, R.E.; Corey, R.B.; Pauling, L. Crystal structure of silk fibroin. Acta Cryst. 1955, 8, 62. [Google Scholar] [CrossRef]
- Cheng, Y.; Koh, L.D.; Li, D.; Ji, B.; Han, M.Y.; Zhang, Y.W. On the strength of β-sheet crystallites of Bombyx mori silk fibroin. J. R. Soc. Interface 2014, 11, 20140305. [Google Scholar] [CrossRef]
Sample—Short Name | Sample—Full Name | Ageing Factor/ | Ageing Time | Museum (Century)/Model Sample |
---|---|---|---|---|
FB | Stanisław Barzi’s Funeral Banner | natural | 332 years | museum (16th) |
CB | Court Banner | natural | 462 years | museum (16th) |
IB | Inscription Banner | natural | 485 years | museum (17th) |
MS | model silk sample | none | t = 0 | model |
esO2 | ex situ aged in air/open | thermo-aged/O2 | up to 14 days | model |
esO2/VOC/H2O | ex situ aged in air/closed | thermo O2/VOC/H2O | up to 14 days | model |
isO2 | in situ aged in air/open | thermo-aged/O2 | up to t = 120 min | model |
R | S | |
---|---|---|
1620 cm−1 | 0.352 ± 0.010 | −0.277 ± 9.67 × 10−5 |
1656 cm−1 | 0.718 ± 0.016 | −0.104 ± 2.43 × 10−4 |
1699 cm−1 | 3.322 ± 0.122 | 0.427 ± 1.49 × 10−2 |
Sample’s Name | MS | isO2 | esO2 | esO2/VOC/H2O | ||||
---|---|---|---|---|---|---|---|---|
1620 | 1699 | 1620 | 1699 | 1620 | 1699 | 1620 | 1699 | |
R | 0.368 | 3.005 | 0.438 | 1.572 | 0.486 | 1.776 | 0.751 | 0.675 |
(+/−) | 0.027 | 0.095 | 0.013 | 0.012 | 0.023 | 0.109 | 0.014 | 0.001 |
S | −0.270 | 0.393 | −0.232 | 0.160 | −0.205 | 0.212 | −0.091 | −0.122 |
Sample’s name | MS | IB | CB | FB | ||||
1620 | 1699 | 1620 | 1699 | 1620 | 1699 | 1620 | 1699 | |
R | 0.368 | 3.005 | 0.493 | 0.792 | 0.517 | 0.865 | 0.692 | 0.898 |
(+/−) | 0.027 | 0.095 | 0.007 | 0.033 | 0.005 | 0.020 | 0.014 | 0.019 |
S | −0.270 | 0.393 | −0.203 | −0.074 | −0.192 | −0.047 | −0.115 | −0.035 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koperska, M.A.; Bagniuk, J.; Zaitz-Olsza, M.M.; Gassowska, K.; Pawcenis, D.; Sitarz, M.; Bulska, E.; Profic-Paczkowska, J. Ex Situ and In Situ Artificial Thermo-Aging Study of the Natural Degradation of Bombyx mori Silk Fibroin. Appl. Sci. 2023, 13, 9427. https://doi.org/10.3390/app13169427
Koperska MA, Bagniuk J, Zaitz-Olsza MM, Gassowska K, Pawcenis D, Sitarz M, Bulska E, Profic-Paczkowska J. Ex Situ and In Situ Artificial Thermo-Aging Study of the Natural Degradation of Bombyx mori Silk Fibroin. Applied Sciences. 2023; 13(16):9427. https://doi.org/10.3390/app13169427
Chicago/Turabian StyleKoperska, Monika A., Jacek Bagniuk, Małgorzata M. Zaitz-Olsza, Katarzyna Gassowska, Dominika Pawcenis, Maciej Sitarz, Ewa Bulska, and Joanna Profic-Paczkowska. 2023. "Ex Situ and In Situ Artificial Thermo-Aging Study of the Natural Degradation of Bombyx mori Silk Fibroin" Applied Sciences 13, no. 16: 9427. https://doi.org/10.3390/app13169427
APA StyleKoperska, M. A., Bagniuk, J., Zaitz-Olsza, M. M., Gassowska, K., Pawcenis, D., Sitarz, M., Bulska, E., & Profic-Paczkowska, J. (2023). Ex Situ and In Situ Artificial Thermo-Aging Study of the Natural Degradation of Bombyx mori Silk Fibroin. Applied Sciences, 13(16), 9427. https://doi.org/10.3390/app13169427