Influence of Virtual Reality on User Evaluation of Prototypes in the Development Process—A Comparative Study with Control Rooms for Onshore Drilling Rigs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Setup
2.2.1. Real Prototype
2.2.2. VR Prototype
2.3. Experimental Procedure
2.3.1. Simulated Work Processes
2.3.2. Real Prototype
2.3.3. VR Prototype
2.4. Measures
2.4.1. Task Success Rate
Evaluation | Description |
---|---|
Good | Fast operation without assistance Error-free execution |
Medium | Prolonged hesitation before operation Errors are corrected without indications by the test leader |
Poor | Execution of the task after assistance of the test leader |
2.4.2. Satisfaction with the Task Performance
- “Overall, I am satisfied with the ease of completing the tasks in this scenario”.
- “Overall, I am satisfied with the amount of time it took to complete the tasks in this scenario”.
2.4.3. User Experience
- Attractiveness: Describes the overall impression of the product.
- Perspicuity: Describes a user’s feeling that the interaction with a product is easy, predictable, and controllable.
- Efficiency: Describes how quickly and efficiently the user can use the product.
- Dependability: Describes the feeling of being in control of the system.
- Stimulation: Describes the user’s interest and enthusiasm for the product.
- Novelty: Describes whether product design is perceived as innovative or creative.
2.4.4. User Acceptance
2.4.5. Number of User Interactions and Time for Use Scenario
2.4.6. Semi-Structured Interview on Satisfaction with the Prototype
2.5. Statistical Analysis
3. Results
3.1. Task Success Rate
3.2. Satisfaction with the Task Performance
3.3. User Experience
3.4. User Acceptance
3.5. Number of User Interactions and Time for Use Scenario
3.6. Semi-Structured Interview on Satisfaction with the Prototype
4. Discussion
4.1. Construct Validity
4.2. Task Success Rate
4.3. Subjective Evaluation of the Prototype: ASQ, UEQ, and SUS
4.4. Number of User Interactions and Time on Usage Scenario
4.5. Semi-Structured Interview about Satisfaction with the Prototype
4.6. Limitations
5. Conclusions
- Development of an operating concept:
- a.
- Creation of menu structures with click dummies.
- b.
- Selection/development of suitable control elements and indicators.
- Expert evaluation of the menu structures.
- Expert evaluation of the control elements and indicators.
- Development of a virtual prototype.
- User evaluation of the prototype in VR with a focus on usability issues.
- Optimization of the virtual prototype.
- Re-evaluation of the virtual prototype in VR.
- Optimization of the virtual prototype.
- Manufacturing of the prototype.
- User evaluation of a real prototype on a (drilling) simulator, focusing on user experience and usability issues.
- Optimization of the real prototype.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Glossary
Term | Meaning |
Active float | Operation in which the link tilt is moved to the zero position. |
Drill pipe | Pipe section with threaded ends that make up the drill string. |
Drill string | Combination of various drill pipes and other tools used to turn the drill bit. |
Clamp | Clamp for fixing the drill string. |
Elevator | Hinge mechanism that can be closed around the drill string to raise or lower it. |
IBOP | Inside blowout preventer: checks valve inside the drill string to prevent backflows. |
Iron roughneck (IR) | Machine for connecting and disconnecting drill pipes. |
Link-tilt | Device for horizontal movement of drill pipes. |
PWR-slips | Hydraulic metal wedges above the borehole for fixing the drill string. |
Rigfloor | Working area on a rig in which the rig crew conducts operations. Most dangerous location on the rig. |
Top drive | Hydraulic or electric motor for rotating the drill string. |
References
- ISO 9241-220:2019; Ergonomics of Human-System Interaction—Part 220: Processes for Enabling, Executing and Assessing Human-Centred Design within Organizations. Beuth Verlag GmbH: Berlin, Germany, 2019.
- Zhou, X.; Rau, P.-L.P. Determining fidelity of mixed prototypes: Effect of media and physical interaction. Appl. Ergon. 2019, 80, 111–118. [Google Scholar] [CrossRef]
- Bullinger, H.-J.; Dangelmaier, M. Virtual prototyping and testing of in-vehicle interfaces. Ergonomics 2003, 46, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Salwasser, M.; Dittrich, F.; Melzer, A.; Müller, S. Virtuelle Technologien für das User-Centered-Design (VR for UCD). Einsatzmöglichkeiten von Virtual Reality bei der Nutzerzentrierten Entwicklung. In Mensch und Computer 2019—Usability Professionals; Fischer, H., Hess, S., Eds.; Gesellschaft für Informatik e.V. Und German UPA e.V.: Hamburg, Germany, 2019. [Google Scholar]
- De Freitas, F.V.; Gomes, M.V.M.; Winkler, I. Benefits and Challenges of Virtual-Reality-Based Industrial Usability Testing and Design Reviews: A Patents Landscape and Literature Review. Appl. Sci. 2022, 12, 1755. [Google Scholar] [CrossRef]
- Adwernat, S.; Wolf, M.; Gerhard, D. Optimizing the Design Review Process for Cyber-Physical Systems using Virtual Reality. Procedia CIRP 2020, 91, 710–715. [Google Scholar] [CrossRef]
- Ahmed, S.; Irshad, L.; Demirel, H.O.; Tumer, I.Y. A Comparison Between Virtual Reality and Digital Human Modeling for Proactive Ergonomic Design. In Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Body and Motion; Duffy, V.G., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–21. ISBN 978-3-030-22215-4. [Google Scholar]
- Aromaa, S. Virtual Prototyping in Design Reviews of Industrial Systems. In Proceedings of the 21st International Annual Academic Mindtrek Conference (AcademicMindtrek’17), Tampere, Finland, 20–21 September 2017; Turunen, M., Väätäjä, H., Paavilainen, J., Olsson, T., Eds.; ACM: New York, NY, USA, 2017; pp. 110–119, ISBN 9781450354264. [Google Scholar]
- Aromaa, S.; Väänänen, K. Suitability of virtual prototypes to support human factors/ergonomics evaluation during the design. Appl. Ergon. 2016, 56, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Berg, L.P.; Vance, J.M. An Industry Case Study: Investigating Early Design Decision Making in Virtual Reality. J. Comput. Inf. Sci. Eng. 2017, 17, 011001. [Google Scholar] [CrossRef]
- Chen, X.; Gong, L.; Berce, A.; Johansson, B.; Despeisse, M. Implications of Virtual Reality on Environmental Sustainability in Manufacturing Industry: A Case Study. Procedia CIRP 2021, 104, 464–469. [Google Scholar] [CrossRef]
- De Clerk, M.; Dangelmaier, M.; Schmierer, G.; Spath, D. User Centered Design of Interaction Techniques for VR-Based Automotive Design Reviews. Front. Robot. AI 2019, 6, 13. [Google Scholar] [CrossRef] [Green Version]
- Wolfartsberger, J. Analyzing the potential of Virtual Reality for engineering design review. Autom. Constr. 2019, 104, 27–37. [Google Scholar] [CrossRef]
- Backhaus, C. Usability-Engineering in der Medizintechnik; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-642-00510-7. [Google Scholar]
- Bolder, A.; Grünvogel, S.M.; Angelescu, E. Comparison of the usability of a car infotainment system in a mixed reality environment and in a real car. In Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology (VRST ’18), Tokyo, Japan, 28 November–1 December 2018; Spencer, S.N., Morishima, S., Itoh, Y., Shiratori, T., Yue, Y., Lindeman, R., Eds.; ACM: New York, NY, USA, 2018; pp. 1–10, ISBN 9781450360869. [Google Scholar]
- Grandi, F.; Zanni, L.; Peruzzini, M.; Pellicciari, M.; Campanella, C.E. A Transdisciplinary digital approach for tractor’s human-centred design. Int. J. Comput. Integr. Manuf. 2020, 33, 377–397. [Google Scholar] [CrossRef]
- Ma, C.; Han, T. Combining Virtual Reality (VR) Technology with Physical Models—A New Way for Human-Vehicle Interaction Simulation and Usability Evaluation. In HCI in Mobility, Transport, and Automotive Systems; Krömker, H., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 145–160. ISBN 978-3-030-22665-7. [Google Scholar]
- Pettersson, I.; Karlsson, M.; Ghiurau, F.T. Virtually the Same Experience? In Proceedings of the 2019 On Designing Interactive Systems Conference (DIS ’19), San Diego, CA, USA, 23–28 June 2019; Harrison, S., Bardzell, S., Neustaedter, C., Tatar, D., Eds.; ACM: New York, NY, USA, 2019; pp. 463–473, ISBN 9781450358507. [Google Scholar]
- Bruno, F.; Cosco, F.; Angilica, A.; Muzzupappa, M. Mixed Prototyping for Products Usability Evaluation. In Volume 3: 30th Computers and Information in Engineering Conference, Parts A and B, Proceedings of the ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (ASMEDC), Montreal, QC, Canada, 15–18 August 2010; ASME: New York, NY, USA, 15–18 August 2011; pp. 1381–1390. ISBN 978-0-7918-4411-3. [Google Scholar]
- Stamer, M.; Michaels, J.; Tümler, J. Investigating the Benefits of Haptic Feedback During In-Car Interactions in Virtual Reality. In HCI in Mobility, Transport, and Automotive Systems. Automated Driving and In-Vehicle Experience Design; Krömker, H., Ed.; Springer International Publishing: Cham, Switzerland, 2020; pp. 404–416. ISBN 978-3-030-50522-6. [Google Scholar]
- Aromaa, S.; Goriachev, V.; Kymäläinen, T. Virtual prototyping in the design of see-through features in mobile machinery. Virtual Real. 2020, 24, 23–37. [Google Scholar] [CrossRef] [Green Version]
- Bergroth, J.D.; Koskinen, H.M.K.; Laarni, J.O. Use of Immersive 3-D Virtual Reality Environments in Control Room Validations. Nucl. Technol. 2018, 202, 278–289. [Google Scholar] [CrossRef]
- Roberts, R.C.; Flin, R.; Cleland, J.; Urquhart, J. Drillers’ Cognitive Skills Monitoring Task. Ergon. Des. 2019, 27, 13–20. [Google Scholar] [CrossRef]
- Gutemberg Junior, L.S.D.; Ferreira, C.V.; Winkler, I. Virtual Reality Applied to Product Development in the Oil and Gas Industry: A Brief Review. JBTH 2023, 5, 329–334. [Google Scholar] [CrossRef]
- Bartlett, J.D.; Lawrence, J.E.; Stewart, M.E.; Nakano, N.; Khanduja, V. Does virtual reality simulation have a role in training trauma and orthopaedic surgeons? Bone Jt. J. 2018, 100-B, 559–565. [Google Scholar] [CrossRef] [PubMed]
- Van Herzeele, I.; Aggarwal, R.; Malik, I.; Gaines, P.; Hamady, M.; Darzi, A.; Cheshire, N.; Vermassen, F. Validation of video-based skill assessment in carotid artery stenting. Eur. J. Vasc. Endovasc. Surg. 2009, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Dow, S.; Lee, J.; Oezbek, C.; MacIntyre, B.; Bolter, J.D.; Gandy, M. Wizard of Oz interfaces for mixed reality applications. In CHI ‘05 Extended Abstracts on Human Factors in Computing Systems, Proceedings of the CHI05: CHI 2005 Conference on Human Factors in Computing Systems, Portland, OR, USA, 2–7 April 2005; van der Veer, G., Gale, C., Eds.; ACM: New York, NY, USA, 2005; pp. 1339–1342. ISBN 1595930027. [Google Scholar]
- Kiss, M.; Schmidt, G.; Babbel, E. Das Wizard of Oz Fahrzeug: Rapid prototyping und usability Testing von zukünftigen Fahrerassistenzsystemen. In Proceedings of the 3 Tagung Aktive Sicherheit durch Fahrerassistenz, München, Germany, 7–8 April 2008. [Google Scholar]
- Müller, A.I.; Weinbeer, V.; Bengler, K. Using the wizard of Oz paradigm to prototype automated vehicles. In Proceedings of the 11th International Conference on Automotive User Interfaces and Interactive Vehicular Applications: Adjunct Proceedings (AutomotiveUI ’19), Utrecht, The Netherlands, 21–25 September 2019; Janssen, C.P., Donker, S.F., Chuang, L.L., Ju, W., Eds.; ACM: New York, NY, USA, 2019; pp. 181–186, ISBN 9781450369206. [Google Scholar]
- Buja, H.-O. Handbuch der Tief-, Flach-, Geothermie- und Horizontalbohrtechnik: Bohrtechnik in Grundlagen und Anwendung; mit 119 Tabellen, 1st ed.; Vieweg + Teubner: Wiesbaden, Germany, 2011; ISBN 9783834812780. [Google Scholar]
- Reich, M. Auf Jagd im Untergrund: Mit Hightech auf der Suche nach Öl, Gas und Erdwärme, 3rd ed.; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 978-3-662-64150-7. [Google Scholar]
- Nielsen, J. Success Rate: The Simplest Usability Metric. Available online: https://www.nngroup.com/articles/success-rate-the-simplest-usability-metric/ (accessed on 12 July 2023).
- Laugwitz, B.; Held, T.; Schrepp, M. Construction and Evaluation of a User Experience Questionnaire. In HCI and Usability for Education and Work; Holzinger, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2008; pp. 63–76. ISBN 978-3-540-89349-3. [Google Scholar]
- Rauschenberger, M.; Schrepp, M.; Thomaschewski, J. User Experience mit Fragebögen messen—Durchführung und Auswertung am Beispiel des UEQ. In Tagungsband UP13; Brau, H., Lehmann, A., Petrovic, K., Schroeder, M.C., Eds.; German UPA e.V: Stuttgart, Germany, 2013; pp. 72–77. [Google Scholar]
- Brooke, J. SUS: A quick and dirty usability scale. Usabil. Eval. Ind. 1995, 189, 189–194. [Google Scholar]
- Bangor, A.; Kortum, P.; Miller, J. Determining what individual SUS scores mean: Adding an adjective rating scale. J. Usabil. Stud. Arch. 2009, 4, 114–123. [Google Scholar]
- Mayring, P. Qualitative Inhaltsanalyse. In Handbuch Qualitative Forschung in der Psychologie; Mey, G., Mruck, K., Eds.; VS Verlag für Sozialwissenschaften: Wiesbaden, Germany, 2010; pp. 601–613. ISBN 978-3-531-16726-8. [Google Scholar]
- Endsley, M.R. Toward a Theory of Situation Awareness in Dynamic Systems. Hum. Factors 1995, 37, 32–64. [Google Scholar] [CrossRef]
- Salmon, P.M.; Stanton, N.A.; Walker, G.H.; Jenkins, D.; Ladva, D.; Rafferty, L.; Young, M. Measuring Situation Awareness in complex systems: Comparison of measures study. Int. J. Ind. Ergon. 2009, 39, 490–500. [Google Scholar] [CrossRef]
- Roberts, R.; Flin, R.; Cleland, J. How to recognise a kick: A cognitive task analysis of drillers’ situation awareness during well operations. J. Loss Prev. Process Ind. 2016, 43, 503–513. [Google Scholar] [CrossRef] [Green Version]
- Mehta, R.K.; Peres, S.C.; Shortz, A.E.; Hoyle, W.; Lee, M.; Saini, G.; Chan, H.-C.; Pryor, M.W. Operator situation awareness and physiological states during offshore well control scenarios. J. Loss Prev. Process Ind. 2018, 55, 332–337. [Google Scholar] [CrossRef]
- Horsch, C.H.G.; Smets, N.J.J.M.; Neerincx, M.A.; Cuijpers, R.H. Comparing performance and situation awareness in USAR unit tasks in a virtual and real environment. In Proceedings of the 10th International Conference on Information Systems for Crisis Response and Management 2013 (ISCRAM 2013), Baden Baden, Germany, 12–15 May 2013; Comes, T., Fiedrich, S., Fortier, S., Geldermann, J., Eds.; ISCRAM: Baden-Baden, Germany, 2013. ISBN 978-3-923704-80-4. [Google Scholar]
- Read, J.M.; Saleem, J.J. Task Performance and Situation Awareness with a Virtual Reality Head-Mounted Display. Proc. Hum. Factors Ergon. Soc. Annu. Meet. 2017, 61, 2105–2109. [Google Scholar] [CrossRef]
- Taylor, R.M. Situational Awareness Rating Technique (Sart): The Development of a Tool for Aircrew Systems Design. In Situational Awareness; Salas, E., Dietz, A.S., Eds.; Routledge: Oxford, UK, 2017; pp. 111–128. ISBN 9781315087924. [Google Scholar]
- Clark, R.E.; Sugrue, B.M. Research on Instructional Media 1978–1988. In Educational Media and Technology Yearbook; Libraries Unlimited, Inc.: Englewood, CO, USA, 1988. [Google Scholar]
- Karapanos, E.; Zimmerman, J.; Forlizzi, J.; Martens, J.-B. User Experience over Time. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI ’09), Boston, MA, USA, 4–9 April 2009; Olsen, D.R., Arthur, R.B., Hinckley, K., Morris, M.R., Hudson, S., Greenberg, S., Eds.; ACM: New York, NY, USA, 2009; pp. 729–738, ISBN 9781605582467. [Google Scholar]
- Franzreb, D.; Warth, A.; Futternecht, K. User Experience of Real and Virtual Products: A Comparison of Perceived Product Qualities. In Developments in Design Research and Practice; Duarte, E., Rosa, C., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 105–125. ISBN 978-3-030-86595-5. [Google Scholar]
- Hinricher, N.; König, S.; Schröer, C.; Backhaus, C. Effects of virtual reality and test environment on user experience, usability, and mental workload in the evaluation of a blood pressure monitor. Front. Virtual Real. 2023, 4, 1151190. [Google Scholar] [CrossRef]
- Sonderegger, A.; Sauer, J. The influence of design aesthetics in usability testing: Effects on user performance and perceived usability. Appl. Ergon. 2010, 41, 403–410. [Google Scholar] [CrossRef] [Green Version]
- Chandran, S.K.; Forbes, J.; Bittick, C.; Allanson, K.; Brinda, F. Sample Size in the Application of System Usability Scale to Automotive Interfaces; SAE Technical Paper Series; SAE: Warrendale, PA, USA, 4 April 2017. [Google Scholar]
- Bangor, A.; Kortum, P.T.; Miller, J.T. An Empirical Evaluation of the System Usability Scale. Int. J. Hum. Comput. Interact. 2008, 24, 574–594. [Google Scholar] [CrossRef]
- Tullis, T.; Stetson, J. A Comparison of Questionnaires for Assessing Website Usability; Usability Professionals Association (UPA): Minneapolis, MN, USA, 2004. [Google Scholar]
- Simoes, F.; Bezerra, M.; Teixeira, J.M.; Correia, W.; Teichrieb, V. A User Perspective Analysis on Augmented vs. 3D Printed Prototypes for Product’s Project Design. In Proceedings of the 2016 XVIII Symposium on Virtual and Augmented Reality (SVR), Gramado, Brazil, 21–24 June 2016; pp. 71–80, ISBN 978-1-5090-4149-7. [Google Scholar]
- Bachman, P.; Milecki, A. Safety Improvement of Industrial Drives Manual Control by Application of Haptic Joystick. In Intelligent Systems in Production Engineering and Maintenance; Burduk, A., Chlebus, E., Nowakowski, T., Tubis, A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 563–573. ISBN 978-3-319-97489-7. [Google Scholar]
- Meera, C.S.; Sairam, P.S.; Veeramalla, V.; Kumar, A.; Gupta, M.K. Design and Analysis of New Haptic Joysticks for Enhancing Operational Skills in Excavator Control. J. Mech. Des. 2020, 142, 121406. [Google Scholar] [CrossRef]
- Anguelov, N. Haptic and Acoustic Parameters for Objectifying and Optimizing the Perceived Value of Switches and Control Panels for Automotive Interiors. Ph.D. Thesis, Technical University Dresden, Berlin, Germany, 2009. [Google Scholar]
- Vergara, M.; Mondragón, S.; Sancho-Bru, J.L.; Company, P.; Agost, M.-J. Perception of products by progressive multisensory integration. A study on hammers. Appl. Ergon. 2011, 42, 652–664. [Google Scholar] [CrossRef] [PubMed]
- Rebelo, F.; Noriega, P.; Duarte, E.; Soares, M. Using virtual reality to assess user experience. Hum. Factors 2012, 54, 964–982. [Google Scholar] [CrossRef]
Trial Group | Gender m/f [n] | Age ± SD [a] | Work Experience [a] |
---|---|---|---|
VR Drilling Experts | 8/0 | 42 ± 5 | 12 ± 10 |
VR Drilling Novice | 10/0 | 26 ± 3 | 0 |
Real Drilling Experts | 8/0 | 40 ± 7 | 9 ± 6 |
Category | Question |
---|---|
General operation | How do you evaluate the operation? |
Which functions are you missing? | |
Are there functions that would not be directly accessible during safety-critical moments? | |
Would you prefer this concept to the previous operating concept? | |
Touchscreens | How do you like the touchscreens? |
Could you read everything on the touchscreens? | |
Do the touch fields have an appropriate size? | |
Control elements | How do you like the control elements on the side consoles? |
Are there any physical control elements that you would prefer to have implemented as touch functions? | |
Are there touch functions that you would prefer to have implemented as physical control elements? | |
Iron roughneck | How do you rate the control of the iron roughneck via the touchscreens? |
Indicators | How do you rate the indicator screen? |
Could you read indicators correctly? |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hinricher, N.; König, S.; Schröer, C.; Backhaus, C. Influence of Virtual Reality on User Evaluation of Prototypes in the Development Process—A Comparative Study with Control Rooms for Onshore Drilling Rigs. Appl. Sci. 2023, 13, 8319. https://doi.org/10.3390/app13148319
Hinricher N, König S, Schröer C, Backhaus C. Influence of Virtual Reality on User Evaluation of Prototypes in the Development Process—A Comparative Study with Control Rooms for Onshore Drilling Rigs. Applied Sciences. 2023; 13(14):8319. https://doi.org/10.3390/app13148319
Chicago/Turabian StyleHinricher, Niels, Simon König, Chris Schröer, and Claus Backhaus. 2023. "Influence of Virtual Reality on User Evaluation of Prototypes in the Development Process—A Comparative Study with Control Rooms for Onshore Drilling Rigs" Applied Sciences 13, no. 14: 8319. https://doi.org/10.3390/app13148319
APA StyleHinricher, N., König, S., Schröer, C., & Backhaus, C. (2023). Influence of Virtual Reality on User Evaluation of Prototypes in the Development Process—A Comparative Study with Control Rooms for Onshore Drilling Rigs. Applied Sciences, 13(14), 8319. https://doi.org/10.3390/app13148319