Hydrothermal Oxidation of Coarse Aluminum Granules with Hydrogen and Aluminum Hydroxide Production: The Influence of Aluminum Purity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Initial Reagents
2.2. Experimental Plant
2.3. Oxidation Experiments
2.4. X-ray Analysis
2.5. Scanning Electron Microscopy (SEM)
3. Results and Discussion
3.1. Effect of Temperature on the Conversion Degree of Aluminum
3.2. Effect of Holding Time on the Conversion Degree of Aluminum
3.3. Effect on Alloying Additives and Dopants to Increase Hydrogen Production
3.4. Influence of Changes in the Structure and Morphology of Aluminum on Hydrothermal Oxidation
3.5. Influence of the Size and Shape of Aluminum Granules on Hydrothermal Oxidation
3.6. Results of X-ray and SEM Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, A.; Baron, G.; Perreault, P.; Lenaerts, S.; Ciocarlan, R.-G.; Cool, P.; Milo, P.; Rogge, S.; Van Speybroeck, V.; Watson, G.; et al. Hydrogen Clathrates: Next Generation Hydrogen Storage Materials. Energy Storage Mater. 2021, 41, 69–107. [Google Scholar] [CrossRef]
- Tan, K.C.; Yu, Y.; Chen, R.; He, T.; Jing, Z.; Pei, Q.; Wang, J.; Chua, Y.S.; Wu, A.; Zhou, W.; et al. Metallo-N-Heterocycles—A new family of hydrogen storage material. Energy Storage Mater. 2020, 26, 198–202. [Google Scholar] [CrossRef]
- Breeze, P. Hydrogen Energy Storage. Power System Energy Storage Technologies; Academic Press: Cambridge, MA, USA, 2018; Volume 8, pp. 69–77. [Google Scholar]
- Davies, J.; Du Preez, S.P.; Bessarabov, D.G. The Hydrolysis of Ball-Milled Aluminum–Bismuth–Nickel Composites for On-Demand Hydrogen Generation. Energies 2022, 15, 2356. [Google Scholar] [CrossRef]
- Saceleanu, F.; Vuong, T.V.; Master, E.R.; Wen, J.Z. Tunable kinetics of nanoaluminum and microaluminum powders reacting with water to produce hydrogen. Int. J. Environ. Res. 2019, 43, 7384–7396. [Google Scholar] [CrossRef]
- Hiraki, T.; Yamauchi, S.; Iida, M.; Uesugi, H.; Akiyama, T. Process for Recycling Waste Aluminum with Generation of High-Pressure Hydrogen. Environ. Sci. Technol. 2007, 41, 4454–4457. [Google Scholar] [CrossRef] [PubMed]
- Olivares-Ramírez, J.M.; Castellanos, R.H.; de Jesús, Á.M.; Borja-Arco, E.; Pless, R.C. Design and Development of a Refrigeration System Energized with Hydrogen Produced from Scrap Aluminum. Int. J. Hydrogen Energy 2008, 33, 2620–2626. [Google Scholar] [CrossRef]
- Liu, H.; Yang, F.; Yang, B.; Zhang, Q.; Chai, Y.; Wang, N. Rapid Hydrogen Generation through Aluminum-Water Reaction in Alkali Solution. Catal. Today 2018, 318, 52–58. [Google Scholar] [CrossRef]
- Ho, C.Y. Hydrolytic Reaction of Waste Aluminum Foils for High Efficiency of Hydrogen Generation. Int. J. Hydrogen Energy 2017, 42, 19622–19628. [Google Scholar] [CrossRef]
- Macanás, J.; Soler, L.; Candela, A.M.; Muñoz, M.; Casado, J. Hydrogen Generation by Aluminum Corrosion in Aqueous Alkaline Solutions of Inorganic Promoters. Energy 2011, 36, 2493–2501. [Google Scholar] [CrossRef]
- Chai, Y.J.; Dong, Y.M.; Meng, H.X.; Jia, Y.Y.; Shen, J.; Huang, Y.M.; Wang, N. Hydrogen Generation by Aluminum Corrosion in Cobalt (II) Chloride and Nickel (II) Chloride Aqueous Solution. Energy 2014, 68, 204–209. [Google Scholar] [CrossRef]
- Shchurin, V.N.; Baev, A.K.; Tishevich, V.I. Zeolite Modification with Aluminum and Efficiency of Gas Purification. Russ. J. Appl. Chem. 2002, 75, 1252–1255. [Google Scholar] [CrossRef]
- Kravchenko, O.V.; Semenenko, K.N.; Bulychev, B.M.; Kalmykov, K.B. Activation of Aluminum Metal and its Reaction with Water. J. Alloys Compd. 2005, 397, 58–62. [Google Scholar] [CrossRef]
- Fan, M.-Q.; Sun, L.-X.; Xu, F. Experiment Assessment of Hydrogen Production from Activated Aluminum Alloys in Portable Generator for Fuel Cell Applications. Energy 2010, 35, 2922–2926. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Liu, H.; Dong, Z.; Li, S.; Ge, H.; Yan, M. Improved Hydrogen Generation from the Hydrolysis of Aluminum Ball Milled with Hydride. Energy 2014, 72, 421–426. [Google Scholar] [CrossRef]
- Yang, W.; Zhang, T.; Zhou, J.; Shi, W.; Liu, J.; Cen, K. Experimental Study on the Effect of Low Melting Point Metal Additives on Hydrogen Production in the Aluminum–Water Reaction. Energy 2015, 88, 537–543. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Liu, H.; Dong, Z.; Li, S.; Ge, H.; Yan, M. Investigation on the Improved Hydrolysis of Aluminum–Calcium Hydride-Salt Mixture Elaborated by Ball Milling. Energy 2015, 84, 714–721. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, X.; Liu, H.; Dong, Z.; Li, S.; Ge, H.; Yan, M. Effect of Salts Addition on the Hydrogen Generation of Al–LiH Composite Elaborated by Ball Milling. Energy 2015, 89, 907–913. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Z.; Shi, Z.; Gong, X.; Cao, J.; Wang, M. Facile Hydrogen Production from Al-Water Reaction Promoted by Choline Hydroxide. Energy 2017, 131, 98–105. [Google Scholar] [CrossRef]
- Xiao, F.; Guo, Y.; Li, J.; Yang, R. Hydrogen Generation from Hydrolysis of Activated Aluminum Composites in Tap Water. Energy 2018, 157, 608–614. [Google Scholar] [CrossRef]
- Xiao, F.; Yang, R.; Li, J. Hydrogen Generation from Hydrolysis of Activated Aluminum/Organic Fluoride/Bismuth Composites with High Hydrogen Generation Rate and Good Aging Resistance in Air. Energy 2019, 170, 159–169. [Google Scholar] [CrossRef]
- Guan, X.; Zhou, Z.; Luo, P.; Wu, F.; Dong, S. Hydrogen Generation from the Reaction of Al-Based Composites Activated by Low-Melting-Point Metals/Oxides/Salts with Water. Energy 2019, 188, 116107. [Google Scholar] [CrossRef]
- Hou, K.; Hou, X.; Ye, X.; Li, D.; Suo, G.; Xie, L.; Shu, Q.; Cao, Q.; Bai, J. Carbon Nanotubes and (Mg10Ni)85Ce15 Synergistically Activate Mg-Al Alloy Waste for Efficiently Hydrolysis Hydrogen Generation. Fuel 2022, 324, 124829. [Google Scholar] [CrossRef]
- Li, D.; Cai, Y.; Chen, C.; Lin, X.; Jiang, L. Magnesium-Aluminum Mixed Metal Oxide Supported Copper Nanoparticles as Catalysts for Water-Gas Shift Reaction. Fuel 2016, 184, 382–389. [Google Scholar] [CrossRef]
- He, T.; Chen, W.; Wang, W.; Du, S.; Deng, S. Microstructure and Hydrogen Production of the Rapidly Solidified Al–Mg-Ga-In-Sn Alloy. J. Alloys Compd. 2020, 827, 154290. [Google Scholar] [CrossRef]
- Amrani, M.A.; Haddad, Y.; Obeidat, F.; Ghaleb, A.M.; Mejjaouli, S.; Rahman, I.; Galil, M.S.A.; Shameeri, M.; Alsofi, A.A.; Saif, A. Productive and Sustainable H2 Production from Waste Aluminum Using Copper Oxides-Based Graphene Nanocatalysts: A Techno-Economic Analysis. Sustainability 2022, 14, 15256. [Google Scholar] [CrossRef]
- Chen, X.; Wang, C.; Liu, Y.; Chen, Y.; Zhang, Q.; Yang, S.; Lu, H.; Zhou, H.; Lin, K.; Liu, H.; et al. Popcorn-Like Aluminum-Based Powders for Instant Low-Temperature Water Vapor Hydrogen Generation. Mater. Today Energy 2021, 19, 100602. [Google Scholar] [CrossRef]
- Buryakovskaya, O.A.; Suleimanov, M.Z.; Vlaskin, M.S.; Kumar, V.; Ambaryan, G.N. Aluminum Scrap to Hydrogen: Complex Effects of Oxidation Medium, Ball Milling Parameters, and Copper Additive Dispersity. Metals 2023, 13, 185. [Google Scholar] [CrossRef]
- Vlaskin, M.S.; Grigorenko, A.V.; Zhuk, A.Z.; Lisitsyn, A.V.; Sheindlin, A.E.; Shkolnikov, E.I. Synthesis of High-Purity α-Al2O3 from Boehmite Obtained by Hydrothermal Oxidation of Aluminum. High Temp. 2016, 54, 322–329. [Google Scholar] [CrossRef]
- Zhuk, A.Z.; Vlaskin, M.S.; Grigorenko, A.V.; Kislenko, S.A.; Shkolnikov, E.I. Synthesis of High-Purity α-Al2O3 from Boehmite by High Temperature Vacuum Treatment. J. Ceram. Process. Res. 2016, 17, 910–918. [Google Scholar]
- Kislenko, S.A.; Vlaskin, M.S.; Zhuk, A.Z. Diffusion of Cation Impurities by Vacancy Mechanism in α-Al2O3: Effect of Cation Size and Valence. Solid State Ionics 2016, 293, 1–6. [Google Scholar] [CrossRef]
- Bersh, A.V.; Lisitsyn, A.V.; Sorokovikov, A.I.; Vlaskin, M.S.; Mazalov, Y.A.; Shkolnikov, E.I. Study of the Processes of Steam-Hydrogen Mixture Generation in a Reactor for Hydrothermal Aluminum Oxidation for Power Units. High Temp. 2010, 48, 866–873. [Google Scholar] [CrossRef]
- Vlaskin, M.S.; Shkolnikov, E.I.; Bersh, A.V. Oxidation Kinetics of Micron-Sized Aluminum Powder in High-Temperature Boiling Water. Int. J. Hydrogen Energy 2011, 36, 6484–6495. [Google Scholar] [CrossRef]
- Vlaskin, M.S.; Shkolnikov, E.I.; Bersh, A.V.; Zhuk, A.Z.; Lisicyn, A.V.; Sorokovikov, A.I.; Pankina, Y.V. An Experimental Aluminum-Fueled Power Plant. J. Power Sources 2011, 196, 8828–8835. [Google Scholar] [CrossRef]
- Vlaskin, M.S.; Valyano, G.E.; Zhuk, A.Z.; Shkolnikov, E.I. Oxidation of Coarse Aluminum in Pressured Water Steam for Energy Applications. Int. J. Environ. Res. 2020, 44, 8689–8715. [Google Scholar] [CrossRef]
- Escobar-Alarcón, L.; Iturbe-García, J.L.; González-Zavala, F.; Solis-Casados, D.A.; Pérez-Hernández, R.; Haro-Poniatowski, E. Hydrogen Production by Ultrasound Assisted Liquid Laser Ablation of Al, Mg and Al-Mg Alloys in Water. Appl. Surf. Sci. 2019, 478, 189–196. [Google Scholar] [CrossRef]
- Xu, F.; Sun, L.; Lan, X.; Hu, H.; Sun, Y.; Zhou, H.; Li, F.; Yang, L.; Si, X.; Zhang, J.; et al. Mechanism of Fast Hydrogen Generation from Pure Water Using Al–SnCl2 and Bi-doped Al–SnCl2 Composites. Int. J. Hydrogen Energy 2014, 39, 5514–5521. [Google Scholar] [CrossRef]
- Jia, Y.; Shen, J.; Meng, H.; Dong, Y.; Chai, Y.; Wang, N. Hydrogen Generation Using a Ball-milled Al/Ni/NaCl Mixture. J. Alloys Compd. 2014, 588, 259–264. [Google Scholar] [CrossRef]
- He, T.; Chen, W.; Wang, W.; Ren, F.; Stock, H.-R. Effect of Different Cu Contents on the Microstructure and Hydrogen Production of Al–Cu-Ga-In-Sn Alloys for Dissolvable Materials. J. Alloys Compd. 2020, 821, 153489. [Google Scholar] [CrossRef]
- Soler, L.; Candela, A.M.; Macanás, J.; Muñoz, M.; Casado, J. Hydrogen Generation by Aluminum Corrosion in Seawater Promoted by Suspensions of Aluminum Hydroxide. Energy 2009, 34, 8511–8518. [Google Scholar] [CrossRef]
- Ziebarth, J.T.; Woodall, J.M.; Kramer, R.A.; Choi, G. Liquid Phase-enabled Reaction of Al–Ga and Al–Ga–In–Sn Alloys with Water. Int. J. Hydrogen Energy 2011, 36, 5271–5279. [Google Scholar] [CrossRef]
- Lim, S.T.; Sethupathi, S.; Alsultan, A.G.; Munusamy, Y. Hydrogen Production via Activated Waste Aluminum Cans and Its Potential for Methanation. Energy Fuels 2021, 35, 16212–16221. [Google Scholar] [CrossRef]
- Ambaryan, G.N.; Vlaskin, M.S.; Dudoladov, A.O.; Meshkov, E.A.; Zhuk, A.Z.; Shkolnikov, E.I. Hydrogen Generation by Oxidation of Coarse Aluminum in Low Content Alkali Aqueous Solution under Intensive Mixing. Int. J. Hydrogen Energy 2016, 41, 17216–17224. [Google Scholar] [CrossRef]
№ Exp. | T, °C | State of Water | Chemical Purity of Aluminum, % | z, g | c, g | h, % | V(H2), L |
---|---|---|---|---|---|---|---|
1 | 200 | Steam | 99.99 | 3.07 | 3.14 | 1.87 | 0.07 |
99.9 | 3.14 | 3.15 | 0.26 | 0.01 | |||
99.7 | 3.26 | 3.27 | 0.25 | 0.01 | |||
Liquid | 99.99 | 3.06 | 3.17 | 2.95 | 0.11 | ||
99.9 | 3.19 | 3.21 | 0.51 | 0.02 | |||
99.7 | 3.21 | 3.22 | 0.26 | 0.01 | |||
2 | 220 | Steam | 99.99 | 3.11 | 3.33 | 5.80 | 0.22 |
99.9 | 3.10 | 3.11 | 0.26 | 0.01 | |||
99.7 | 3.18 | 3.18 | 0.00 | 0.00 | |||
Liquid | 99.99 | 3.09 | 3.37 | 7.43 | 0.29 | ||
99.9 | 3.06 | 3.08 | 0.54 | 0.02 | |||
99.7 | 3.16 | 3.17 | 0.26 | 0.01 | |||
3 | 240 | Steam | 99.99 | 3.06 | 3.97 | 24.38 | 0.93 |
99.9 | 3.24 | 3.26 | 0.51 | 0.02 | |||
99.7 | 3.24 | 3.24 | 0.00 | 0.00 | |||
Liquid | 99.99 | 3.01 | 4.33 | 35.95 | 1.35 | ||
99.9 | 3.19 | 3.22 | 0.77 | 0.03 | |||
99.7 | 3.33 | 3.35 | 0.49 | 0.02 | |||
4 | 260 | Steam | 99.99 | 3.25 | 5.97 | 68.60 | 2.78 |
99.9 | 3.26 | 3.28 | 0.50 | 0.02 | |||
99.7 | 3.16 | 3.16 | 0.00 | 0.00 | |||
Liquid | 99.99 | 3.25 | 6.27 | 76.17 | 3.08 | ||
99.9 | 3.23 | 3.28 | 1.27 | 0.05 | |||
99.7 | 3.19 | 3.20 | 0.26 | 0.01 | |||
5 | 280 | Steam | 99.99 | 3.11 | 6.78 | 96.73 | 3.75 |
99.9 | 3.02 | 3.05 | 0.81 | 0.03 | |||
99.7 | 3.05 | 3.06 | 0.27 | 0.01 | |||
Liquid | 99.99 | 3.06 | 6.79 | 100.0 | 3.81 | ||
99.9 | 3.11 | 3.16 | 1.32 | 0.05 | |||
99.7 | 3.00 | 3.00 | 0.00 | 0.00 |
№ Exp. | Holding Time, Hours | State of Water | Chemical Purity of Aluminum, % | z, g | c, g | h, % | V(H2), L |
---|---|---|---|---|---|---|---|
1 | 4 | Steam | 99.99 | 2.97 | 5.45 | 68.44 | 2.53 |
99.9 | 3.00 | 3.04 | 0.96 | 0.04 | |||
99.7 | 3.14 | 3.15 | 0.26 | 0.01 | |||
Liquid | 99.99 | 2.91 | 5.26 | 66.05 | 2.40 | ||
99.9 | 3.14 | 3.19 | 1.31 | 0.05 | |||
99.7 | 3.15 | 3.15 | 0.00 | 0.00 | |||
2 | 6 | Steam | 99.99 | 3.02 | 5.96 | 79.80 | 3.00 |
99.9 | 3.02 | 3.08 | 1.63 | 0.06 | |||
99.7 | 2.99 | 3.00 | 0.27 | 0.01 | |||
Liquid | 99.99 | 3.00 | 6.21 | 87.70 | 3.28 | ||
99.9 | 2.99 | 3.05 | 1.64 | 0.06 | |||
99.7 | 3.02 | 3.16 | 3.80 | 0.14 | |||
3 | 8 | Steam | 99.99 | 3.15 | 6.73 | 93.16 | 3.65 |
99.9 | 3.07 | 3.09 | 0.53 | 0.02 | |||
99.7 | 3.14 | 3.14 | 0.00 | 0.00 | |||
Liquid | 99.99 | 3.06 | 6.70 | 97.50 | 3.72 | ||
99.9 | 3.05 | 3.09 | 1.07 | 0.04 | |||
99.7 | 3.09 | 3.10 | 0.27 | 0.01 | |||
4 | 10 | Steam | 99.99 | 3.11 | 6.78 | 96.73 | 3.75 |
99.9 | 3.02 | 3.05 | 0.81 | 0.03 | |||
99.7 | 3.05 | 3.06 | 0.27 | 0.01 | |||
Liquid | 99.99 | 3.06 | 6.79 | 100.0 | 3.81 | ||
99.9 | 3.11 | 3.16 | 1.32 | 0.05 | |||
99.7 | 3.00 | 3.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ambaryan, G.N.; Buryakovskaya, O.A.; Kumar, V.; Valyano, G.E.; Kiseleva, E.A.; Grigorenko, A.V.; Vlaskin, M.S. Hydrothermal Oxidation of Coarse Aluminum Granules with Hydrogen and Aluminum Hydroxide Production: The Influence of Aluminum Purity. Appl. Sci. 2023, 13, 7793. https://doi.org/10.3390/app13137793
Ambaryan GN, Buryakovskaya OA, Kumar V, Valyano GE, Kiseleva EA, Grigorenko AV, Vlaskin MS. Hydrothermal Oxidation of Coarse Aluminum Granules with Hydrogen and Aluminum Hydroxide Production: The Influence of Aluminum Purity. Applied Sciences. 2023; 13(13):7793. https://doi.org/10.3390/app13137793
Chicago/Turabian StyleAmbaryan, Grayr N., Olesya A. Buryakovskaya, Vinod Kumar, Georgii E. Valyano, Elena A. Kiseleva, Anatoly V. Grigorenko, and Mikhail S. Vlaskin. 2023. "Hydrothermal Oxidation of Coarse Aluminum Granules with Hydrogen and Aluminum Hydroxide Production: The Influence of Aluminum Purity" Applied Sciences 13, no. 13: 7793. https://doi.org/10.3390/app13137793
APA StyleAmbaryan, G. N., Buryakovskaya, O. A., Kumar, V., Valyano, G. E., Kiseleva, E. A., Grigorenko, A. V., & Vlaskin, M. S. (2023). Hydrothermal Oxidation of Coarse Aluminum Granules with Hydrogen and Aluminum Hydroxide Production: The Influence of Aluminum Purity. Applied Sciences, 13(13), 7793. https://doi.org/10.3390/app13137793