Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective
Abstract
:1. Introduction
2. Characterization of the Grape Cluster and Vinification Processes
3. Bioactive Compounds in Wine By-Products
3.1. Extraction Methods of Bioactive Compounds
3.1.1. Conventional Extraction Methods
3.1.2. Emerging Extraction Methods
By-Product | Variety | Origin | Compounds Determined | Extraction Methods and Detection Method | Concentrations | References |
---|---|---|---|---|---|---|
Wine lees | ‘Sousão’ and ‘Tinta Barroca’ | Douro region (Northern Portugal) | Total phenols, ortho-diphenols and flavonoids | Extraction by ultrasound with MeOH (70%, v/v) at 70 °C for 40 min. | ‘Sousão’: Total phenols: 15.44 mg GAE.g−1 DW Ortho-diphenols: 118.91 mg GAE.g−1 DW Flavonoids: 18.50 mg CAT.g−1 DW ABTS: 1.71 mmol Trolox.g−1 DW DPPH: 1.24 mmol Trolox.g−1 DW FRAP: 1.54 mmol Trolox.g−1 DW ‘Tinta Barroca’: Total phenols: 125.39 mg GAE.g−1 DW Ortho-diphenols: 136.03 mg GAE.g−1 DW Flavonoids: 128.34 mg CAT.g−1 DW ABTS: 3.28 mmol Trolox.g−1 DW DPPH: 1.58 mmol Trolox.g−1 DW FRAP: 1.96 mmol Trolox.g−1 DW | [76] |
Pomace | ‘Sousão’ and ‘Tinta Barroca’ | Douro region (Northern Portugal) | Total phenols, ortho-diphenols and flavonoids | Extraction by ultrasound with MeOH (70%, v/v) at 70 °C for 40 min. | ‘Sousão’: Total phenols: 153.70 mg GAE.g−1 DW Ortho-diphenols: 151.78 mg GAE.g−1 DW Flavonoids: 144.81 mg CAT.g−1 DW ABTS: 5.54 mmol Trolox.g−1 DW DPPH: 1.64 mmol Trolox.g−1 DW FRAP: 1.75 mmol Trolox.g−1 DW ‘Tinta Barroca’: Total phenols: 135.32 mg GAE.g−1 DW Ortho-diphenols: 138.70 mg GAE.g−1 DW Flavonoids: 129.93 mg CAT.g−1 DW ABTS: 4.01 mmol Trolox.g−1 DW DPPH: 1.59 mmol Trolox.g−1 DW FRAP: 1.61 mmol Trolox.g−1 DW | [76] |
Stems | ‘Sousão’ and ‘Tinta Barroca’ | Douro region (Northern Portugal) | Total phenols, ortho-diphenols and flavonoids | Extraction by ultrasound with MeOH (70%, v/v) at 70 °C for 40 min. | ‘Sousão’: Total phenols: 156.81 mg GAE.g−1 DW Ortho-diphenols: 162.53 mg GAE.g−1 DW Flavonoids: 143.90 mg CAT.g−1 DW ABTS: 5.62 mmol Trolox.g−1 DW DPPH: 1.49 mmol Trolox.g−1 DW FRAP: 1.69 mmol Trolox.g−1 DW ‘Tinta Barroca’: Total phenols: 180.68 mg GAE.g−1 DW Ortho-diphenols: 170.24 mg GAE.g−1 DW Flavonoids: 160.71 mg CAT.g−1 DW ABTS: 8.02 mmol Trolox.g−1 DW DPPH: 1.85 mmol Trolox.g−1 DW FRAP: 2.02 mmol Trolox.g−1 DW | [76] |
Stems | ‘Tinta Roriz’, Touriga | Quinta do Pinto, Alenquer (Lisbon). | Catechins | Conventional extraction with MeOH (70%, v/v) at RT for 30 min. | Catechin: 0.44 ± 0.02–2.03 ± 0.08 mg.g−1 DW Extracts with antioxidant activity: ABTS: 0.84 ± 0.06. DPPH: 0.64 ± 0.05. FRAP: 1.03 ± 0.06 mmol Trolox.g−1 DW. | [22] |
Stems | ‘Alvarinho’, ‘Loureiro’ ‘Touriga’ ‘National’ and ‘Tinta Roriz’ (TR) | Sogrape Wines, S. A. (Porto, Portugal) and collected at Quinta dos Carvalhais (from the Dão region), Quinta do Seixo (from the Douro region) and Quinta de Azevedo (from the Minho region). | Phenolic compounds | Subcritical water extraction at 150 °C and 4 MPa for 40 min. | TR from the Douro region (33.7 ± 1.9 mg GAE.g−1 DW). IC50 for the Loureiro variable (56.68 ± 2.60 µg.mL−1). There were no adverse effects on the dermis cells HaCaT and HFF-1 in concentrations below 100 and 1000 µg.mL−1. | [21] |
Stems | ‘Rabigato’, ‘Malvasia Fina’, ‘Fernão Pires’, Viosinho and ‘Moscatel’ | In the Baixo Corgo and Douro Region (Portugal). | Phenolic compounds | Conventional extraction with MeOH (70%, v/v) at RT for 30 min. Qualitative and quantitative analysis of phenolic composite (HPLC). | Total phenolic compounds: (94.71–123.09 mg−1 GAE). Individual phenolics: 0.02–73.79 mg.g−1. Antioxidant: 0.37–1.17 mmol Trolox.g−1 | [135] |
Stems | ‘Rabigato’, ‘Malvasia Fina’, ‘Fernão Pires’, ‘Viosinho’ and ‘Moscatel’ | Douro Region (Portugal). | Phenolics | Conventional extraction with MeOH (70%, v/v) at RT for 30 min. Phenolic profile: evaluated by reverse-phase—high-performance liquid chromatography—diode ray detector (RP-HPLC-DAD). | PC: higher in regions of lower altitude (varying from 78.02 ± 0.70–103.49 ± 4.36 mg GAE.g−1 in contrast with concentrations between 32.35 ± 3.35 and 88.32 ± 1.75 mg GAE.g−1), Grape stem samples: Higher antioxidant activities (0.73 ± 0.00–0.85 ± 0.04 versus 0.24 ± 0.06–0.75 ± 0.01 mmol Trolox.g−1). | [23] |
Stems | ‘Tinta Barroca’, ‘Sousão’ and ‘Syrah’ | Douro demarcated region in the north of Portugal; Quinta do Bonfim, vine located in the sub-region of Cima Corgo. | Total phenolic compounds and flavonoids | Conventional extraction (solvents) with MeOH (70%, v/v) at RT for 30 min. | TP: 42.04–96.29 mg GAE.g−1; Ortho-diphenols: 45.52–81.11 mg GAE.g−1; Flavonoids: 29.46–76.20 mg CAT.g−1. ABTS: 4.28–8.56; DPPH: 0.46–1.00 mmol Trolox.g−1. | [24] |
Pomace | ‘Arinto’ or Pederna, ‘Aragonesa’ and ‘Tália’ | Herdade da Malhadinha Nova, Alentejo; Herdade da Bombeira, Alentejo and Herdade de Vila Chã, Ribatejo. | Total phenolic compounds | Extraction by ultrasound with EtOH (96%, v/v) at RT for 30 min. | Total phenols: 0.16 and 1.93 mmol GAE.g−1 of extract. | [95] |
Stems | ‘Touriga Nacional’, ‘Franca’ and ‘Tinta Roriz’ | Douro Demarcated Region (Cima Corgo and Douro upper Sub-regions), Portugal. | Polyphenols | Conventional extraction with Acetone, EtOH, and water (1:1:1) at RT for 180 min. | TPC: 0.40 g.L−1 | [65] |
Pomace made from fermented grapes (skin, seeds, and mixtures) | - | Three different samples: skin, seeds, and a mixture | Phenolic compounds (anthocyanin) | Conventional extraction with MeOH/water (80%, v/v) at 25 °C for 60 min and 0.5% trifluoroacetic acid. LC-DAD-ESI/MSn determined the phenolic profile. -Anthocyanin. -Evaluation of bioactive properties (antioxidant activity, cytotoxicity, antibacterial). | Seeds: high antioxidant activity: DPPH, reduction potential, β—carotene (23, 110, 208 and 49.6 µg.mL−1). -Skins: higher values of anthocyanins (7.9 µg.g−1 extracts). | [77] |
Seed | ‘Touriga Nacional’, Castelão, Trincadeira, Alfrocheiro, ‘Tinta Roriz’, ‘Trincadeira das Pratas’, ‘Síria’, ‘Terrantez’, ‘Galego’ ‘Dourado’, ‘Vital’, ‘Cerceal Branco’, ‘Avesso’, ‘Arinto’, ‘Malvasia Colares’, ‘Gouveio’, ‘Azal’, ‘Antão Vaz’, ‘Rabigato’, ‘Rabo de Ovelha’, ‘Cercial’, ‘Fernão Pires’, ‘Verdelho’ and ‘Tália’ | - | Fatty acids from the extracted oil | Extraction was made on a semi-continuous process with the organic solvent (petroleum ether) at 60 °C for 8 h. | A maximum oil level (18 + 0.62% DW) was observed in the Azal variety and a minimum in Malvasia Rei (5 + 0.15% DW). The profile of the fatty acids was similar in all the samples. The most recurrent fatty acid was the linoleic acid, which varied between 69 + 0.75% (‘Arinto’ (white grape) and ‘Syrah’(red grape)) to 75 + 0.3% (Malvasia Rei (white grape) and ‘Aragonês’ (red grape)), followed by the oleic acid, which ranged between 13 + 0.07% (Terrantez (white grape) and ‘Aragonês’) and 19 + 0.6% (‘Syrah’). | [136] |
Pomace | ‘Tinta Roriz’ | Herdade do Esporão, Portugal | Polyphenols | Used a Soxhlet unit to determine the most efficient hydroethanolic composition to maximize the extraction of phenolic compounds by varying the environmental composition. (A total of 20, 40, 60, or 80% w/w ethanol in water at 83.1 °C for 8 h). | Total phenolic compounds: 1042.1 mg GAE.L−1. | [137] |
Pomace | Portugal | Lipids, carbohydrates, protein, lignin. | Lyophilized pomace. Protein characterization, ashes, and lipids; HPLC method for the analysis of carbohydrates. Colorimetric method for the analysis of carbohydrates. | Characterization (g.100 g−1) of waste in the reactor after treatment with subcritical water (240 °C and 7 MPa): Lipids = 18.5; Carbohydrates = 6.2; Protein = 7.6; Lignin = 25.6. | [138] | |
Pomace | - | Portugal (Esporão, Alentejo region) | Carbohydrates and phenolic compounds | Pomace from white wine processed with subcritical water in a semi-continuous reactor at 170, 190, and 210 °C, and 10 MPa. | At 210 °C and 10 MPa, the trial resulted in the highest recovery of carbohydrates and phenolic compounds. (2.6 g.100 g−1) The extracts showed higher antimicrobic activity for Gram-positive than for Gram-negative. The lignin content of the remaining residue after SBW (subcritical water hydrolyzed) treatment at 210 °C (8.6 ± 1.5 g/100 g WGP (white grape pomace)) indicates that around half of the lignin of WGP was effectively hydrolyzed by SBW. | [121] |
4. Potential of Bioactive Compounds Obtained from By-Products of the Wine Industry
4.1. Health and Cosmetics
4.2. Feed and Food Industry
Grape By-Product | Variety/Origin | Food Product | Concentration | Effects | References |
---|---|---|---|---|---|
Pomace | Grape pomace (Ives noir cultivar, Vitis labrusca species) by the company Família Fardo, Quatro Barras/Paraná/Brazil | Rice | Addition of grape pomace flour in the process of parboiling the rice; GP:rice ratio 1:2. | -Improved the antioxidant activity. -Change in color. | [64] |
Pomace | Vitis labrusca cv. Isabel | Salmon burger | Addition of 1 and 2% of grape pomace flour to the burger recipe. | -Increased dietary fiber content and storage stability. -Decrease in sensory properties. | [182] |
Pomace | Vitis vinifera L. of the ‘Arinto’ and ‘Touriga Nacional’ | Crackers | 5%, 10%, and 15% | -‘High in fiber’, as per the Regulation (EC) No. 1924/2006, suggesting a functional food. | [183] |
Pomace | ‘Syrah’, ‘Merlot’, and ‘Cabernet Sauvignon’ | Beef hamburger patties | 0%, 2%, and 4%. | -Provided hamburger patties with health promoting factors, such as antioxidant and other functional components. -Provided darker, sourer patties and a lower cooking yield. | [26] |
Skin | ‘Pinot Noir’ (PN) and ‘Italian Riesling’ (IR) grape varieties from western Romania (Teremia Mare Winery, Timis County) | Pasta | Replacement of wheat flour with 3, 6, and 9% of grape skin flour. | -Increased antioxidant activity total phenolic content. -Better sensory evaluation. | [184] |
Skin | Vitis vinifera L. of red variety Frankova modra from southwest Slovakia | Cookie dough | A total of 0, 5, 10, and 15% to weight of flour. | -Decreased dough consistency and stability. -Increased water absorption. -Volume and thickness of cookies decreased. | [185] |
Seed | Grapes, Vitis vinifera L. of red variety Frankova modra; incorporation of grape skins and grape seeds | A total of 0, 5, 10, and 15% to weight of flour. | -Increased dough consistency and stability. -Decreased water absorption. -Volume and thickness of cookies decreased. | ||
Skin | - | Butter biscuits | Grape powders were added to the dough in an amount of 15.0%. | -Increased the butter biscuits’ apparent dough viscosity. -Decreased the modulus of instantaneous springiness and the elasticity modulus. -Increased dough plastic viscosity. | [186] |
Seed | Red wine grape pomace | Wheat bread dough | Different addition levels (0, 3, 5, 7, 9%) to the white wheat flour. | -Dough water absorption decreased with the increase of grape seed flour addition level, influencing dough development time and stability. -The falling number index showed a gradual decrease with the particle size decrease and addition level increase. | [175] |
Seed | - | Meat emulsion | 50% | -Reduction of animal fat. | [187] |
Seed | Ningxia Huahao winery (Yingchuan, China) | Noodle | 1% to 5% | -Replacement of flour. -Textural traits. | [188] |
Seed | Tianjin Jianfeng Natural Product Co., Ltd. (Tianjin, China) | Seabass fillets | 0.5% | -Reduction of microbial growth and biogenic amines. -Color traits. | [189] |
Seed | - | Roast chicken | 0.5% | -Reduction of microbial growth and oxidation. -Physical/color properties. | [190] |
Seed | - | Minced Beef | 0.05% to 1% | -Reduction of microbial growth and oxidation. | [191] |
4.3. Food Packaging
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Piasecka, I.; Gorska, A. Possible Uses of Fruit Pomaces in Food Technology as a Fortifying Additive—A Review. Zesz. Probl. Postępów Nauk. Rol. 2020, 600, 43–54. [Google Scholar] [CrossRef]
- FAO Organização Das Nações Unidas Para Agricultura e Alimentação: FAO Apresenta Avanços No Combate ÀS Perdas e Ao Desperdício de Alimentos|FAO No Brasil|Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/brasil/noticias/detail-events/pt/c/1062706/ (accessed on 25 January 2023).
- Melo, P.S.; Bergamaschi, K.B.; Tiveron, A.P.; Massarioli, A.P.; Oldoni, T.L.C.; Zanus, M.C.; Pereira, G.E.; de Alencar, S.M. Composição fenólica e atividade antioxidante de resíduos agroindustriais. Cienc. Rural 2011, 41, 1088–1093. [Google Scholar] [CrossRef]
- Saraiva, B.R.; Vital, A.C.P.; Anjo, F.A.; de Cesaro, E.; Matumoto-Pintro, P.T. Valorização de resíduos agroindustriais: Fontes de nutrientes e compostos bioativos para a alimentação humana. Pubsaúde 2018, 1, 1–10. [Google Scholar] [CrossRef]
- Trevizan, J.A.C.; Bido, G.D.S.; Ferrari, A.; Felipe, D.F. Nutritional Composition of Malted Barley Residue from Brewery. J. Mgmt. Sustain. 2021, 11, 27–34. [Google Scholar] [CrossRef]
- Jesus, M.S.; Genisheva, Z.; Romaní, A.; Pereira, R.N.; Teixeira, J.A.; Domingues, L. Bioactive Compounds Recovery Optimization from Vine Pruning Residues Using Conventional Heating and Microwave-Assisted Extraction Methods. Ind. Crops Prod. 2019, 132, 99–110. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery By-Products as Health Promoters: A Review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef] [Green Version]
- Agostini, F. Obtenção e Análise de Óleo e Compostos Fenólicos de Sementes de Diferentes Variedades de uva (Vitis vinifera e Vitis labrusca) Cultivadas no Rio Grande do Sul. Ph.D. Thesis, Universidade de Caxias do Sul, Caxias do Sul, Brazil, 2014. [Google Scholar]
- Campos, D.A.; Gómez-García, R.; Vilas-Boas, A.A.; Madureira, A.R.; Pintado, M.M. Management of Fruit Industrial By-Products—A Case Study on Circular Economy Approach. Molecules 2020, 25, 320. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salgado-Ramos, M.; Mariatti, F.; Tabasso, S.; Sánchez-Verdú, M.P.; Moreno, A.; Cravotto, G. Sustainable and Non-Conventional Protocols for the Three-Way Valorisation of Lignin from Grape Stalks. Chem. Eng. Process. Process Intensif. 2022, 178, 109027. [Google Scholar] [CrossRef]
- Schwartz, C.G.K.; de Jesus, J.L.L.; Ramos, F.A.P.; Mezalira, T.S.; Ferreira, R.G.; Otutumi, L.K.; Soares, A.A. Compostos bioativos do bagaço de uva (Vitis vinífera) seus benefícios e perspectivas para o desenvolvimento sustentável. In Tecnologia de Alimentos: Tópicos Físicos, Químicos e Biológicos; Científica: Guarujá, Brazil, 2020; pp. 483–505. [Google Scholar]
- Sirohi, R.; Tarafdar, A.; Singh, S.; Negi, T.; Gaur, V.K.; Gnansounou, E.; Bharathiraja, B. Green Processing and Biotechnological Potential of Grape Pomace: Current Trends and Opportunities for Sustainable Biorefinery. Bioresour. Technol. 2020, 314, 123771. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. World Wine Production Outlook OIV First Estimates 4 November 2021; International Organisation of Vine and Wine: Dijon, France, 2021. [Google Scholar]
- Nanni, A.; Parisi, M.; Colonna, M. Wine By-Products as Raw Materials for the Production of Biopolymers and of Natural Reinforcing Fillers: A Critical Review. Polymers 2021, 13, 381. [Google Scholar] [CrossRef]
- International Organisation of Vine and Wine. World Wine Production Outlook. OIV First Estimates. 2022. Available online: https://www.greatwinecapitals.com/wpfd_file/en-oiv-2022-world-wine-production-outlook-1/ (accessed on 21 March 2023).
- Makris, D.P.; Boskou, G.; Andrikopoulos, N.K. Polyphenolic Content and in Vitro Antioxidant Characteristics of Wine Industry and Other Agri-Food Solid Waste Extracts. J. Food Compos. Anal. 2007, 20, 125–132. [Google Scholar] [CrossRef]
- Melo, P.S.; Massarioli, A.P.; Denny, C.; dos Santos, L.F.; Franchin, M.; Pereira, G.E.; de Souza Vieira, T.M.F.; Rosalen, P.L.; de Alencar, S.M. Winery By-Products: Extraction Optimization, Phenolic Composition and Cytotoxic Evaluation to Act as a New Source of Scavenging of Reactive Oxygen Species. Food Chem. 2015, 181, 160–169. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubilar, M.; Pinelo, M.; Shene, C.; Sineiro, J.; Nuñez, M.J. Separation and HPLC-MS Identification of Phenolic Antioxidants from Agricultural Residues: Almond Hulls and Grape Pomace. J. Agric. Food Chem. 2007, 55, 10101–10109. [Google Scholar] [CrossRef]
- da Silveira, M.A.G.; Meira, S.M.M.; Felix, S.; Gautério, F.G.A.; de los Santos, J.R.G. A sustentabilidade do destino do bagaço da vinificação no Brasil. Res. Soc. Dev. 2020, 9, e247997197. [Google Scholar] [CrossRef]
- Fontana, M.; Murowaniecki Otero, D.; Pereira, A.M.; Santos, R.B.; Gularte, M.A. Grape Pomace Flour for Incorporation into Cookies: Evaluation of Nutritional, Sensory and Technological Characteristics. J. Culin. Sci. Technol. 2022, 1–20. [Google Scholar] [CrossRef]
- Moreira, M.M.; Rodrigues, F.; Dorosh, O.; Pinto, D.; Costa, P.C.; Švarc-Gajić, J.; Delerue-Matos, C. Vine-Canes as a Source of Value-Added Compounds for Cosmetic Formulations. Molecules 2020, 25, 2969. [Google Scholar] [CrossRef]
- Leal, C.; Santos, R.A.; Pinto, R.; Queiroz, M.; Rodrigues, M.; José Saavedra, M.; Barros, A.; Gouvinhas, I. Recovery of Bioactive Compounds from White Grape (Vitis vinifera L.) Stems as Potential Antimicrobial Agents for Human Health. Saudi J. Biol. Sci. 2020, 27, 1009–1015. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Pinto, R.; Santos, R.; Saavedra, M.J.; Barros, A.I. Enhanced Phytochemical Composition and Biological Activities of Grape (Vitis vinifera L.) Stems Growing in Low Altitude Regions. Sci. Hortic. 2020, 265, 109248. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Santos, R.A.; Queiroz, M.; Leal, C.; Saavedra, M.J.; Domínguez-Perles, R.; Rodrigues, M.; Barros, A.I. Monitoring the Antioxidant and Antimicrobial Power of Grape (Vitis vinifera L.) Stems Phenolics over Long-Term Storage. Ind. Crops Prod. 2018, 126, 83–91. [Google Scholar] [CrossRef]
- Chen, J.; Thilakarathna, W.P.D.W.; Astatkie, T.; Rupasinghe, H.P.V. Optimization of Catechin and Proanthocyanidin Recovery from Grape Seeds Using Microwave-Assisted Extraction. Biomolecules 2020, 10, 243. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.; Lee, H.C.; Lammert, R., Jr.; Wolberg, C., Jr.; Ma, D.; Immoos, C.; Casassa, F.; Kang, I. Effects of Red-Wine Grape Pomace on the Quality and Sensory Attributes of Beef Hamburger Patty. Int. J. Food Sci. Technol. 2022, 57, 1814–1823. [Google Scholar] [CrossRef]
- Yu, J.; Smith, I.; Carver, J.; Holmes, B. Fatty Acid Composition of Grape Seed Oil as Affected by Grape Variety and Extraction Solvent. EC Nutr. 2021, 16, 51–58. [Google Scholar]
- Sahpazidou, D.; Geromichalos, G.D.; Stagos, D.; Apostolou, A.; Haroutounian, S.A.; Tsatsakis, A.M.; Tzanakakis, G.N.; Hayes, A.W.; Kouretas, D. Anticarcinogenic Activity of Polyphenolic Extracts from Grape Stems against Breast, Colon, Renal and Thyroid Cancer Cells. Toxicol. Lett. 2014, 230, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Ferreyra, S.; Bottini, R.; Fontana, A. Background and Perspectives on the Utilization of Canes’ and Bunch Stems’ Residues from Wine Industry as Sources of Bioactive Phenolic Compounds. J. Agric. Food Chem. 2023, 71, 8699–8730. [Google Scholar] [CrossRef]
- Haas, I.C.D.S. Resíduo Obtido Do Processamento de Sucos de Uva (Vitis labrusca L.): Composição Fenólica, Bioacessibilidade In Vitro e Potencial Biológico Em Células Tumorais. Ph.D. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2019. [Google Scholar]
- Kandemir, K.; Piskin, E.; Xiao, J.; Tomas, M.; Capanoglu, E. Fruit Juice Industry Wastes as a Source of Bioactives. J. Agric. Food Chem. 2022, 70, 6805–6832. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, M.T.D.; Bergamasco, R.; Gomes, R.G. Métodos de extração de compostos bioativos: Aproveitamento de subprodutos na agroindústria. Uningá Rev. 2018, 33, 66–84. [Google Scholar]
- Zwingelstein, M.; Draye, M.; Besombes, J.-L.; Piot, C.; Chatel, G. Viticultural Wood Waste as a Source of Polyphenols of Interest: Opportunities and Perspectives through Conventional and Emerging Extraction Methods. Waste Manag. 2020, 102, 782–794. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green Alternative Methods for the Extraction of Antioxidant Bioactive Compounds from Winery Wastes and By-Products: A Review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Poojary, M.M.; Dellarosa, N.; Roohinejad, S.; Koubaa, M.; Tylewicz, U.; Gómez-Galindo, F.; Saraiva, J.A.; Rosa, M.D.; Barba, F.J. Influence of Innovative Processing on γ-Aminobutyric Acid (GABA) Contents in Plant Food Materials. Compr. Rev. Food Sci. Food Saf. 2017, 16, 895–905. [Google Scholar] [CrossRef] [Green Version]
- Jin, S.; Yang, B.; Cheng, Y.; Tan, J.; Kuang, H.; Fu, Y.; Bai, X.; Xie, H.; Gao, Y.; Lv, C.; et al. Improvement of Resveratrol Production from Waste Residue of Grape Seed by Biotransformation of Edible Immobilized Aspergillus Oryzae Cells and Negative Pressure Cavitation Bioreactor Using Biphasic Ionic Liquid Aqueous System Pretreatment. Food Bioprod. Process. 2017, 102, 177–185. [Google Scholar] [CrossRef]
- Santana, M.T.A. Caracterização Físico-Química, Química e Sensorial de Frutos e Vinho da cv. Patrícia (Vitis labrusca L.). Ph.D. Thesis, Universidade Federal de Lavras, Lavras, Brazil, 2005. [Google Scholar]
- Spinei, M.; Oroian, M. The Potential of Grape Pomace Varieties as a Dietary Source of Pectic Substances. Foods 2021, 10, 867. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; Gonzaga, L.V.; Rizelio, V.M.; Gonçalves, A.E.D.S.S.; Genovese, M.I.; Fett, R. Phenolic Compounds and Antioxidant Activity of Seed and Skin Extracts of Red Grape (Vitis vinifera and Vitis labrusca) Pomace from Brazilian Winemaking. Food Res. Int. 2011, 44, 897–901. [Google Scholar] [CrossRef]
- Haas, I.C.D.S. Resíduo Obtido Do Processamento Do Suco de Uva: Caracterização e Cinética de Secagem. Master’s Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil, 2015. [Google Scholar]
- Versari, A.; Boulton, R.B.; Parpinello, G.P. A Comparison of Analytical Methods for Measuring the Color Components of Red Wines. Food Chem. 2008, 106, 397–402. [Google Scholar] [CrossRef]
- Baaka, N.; Ben Ticha, M.; Haddar, W.; Hammami, S.; Mhenni, M.F. Extraction of Natural Dye from Waste Wine Industry: Optimization Survey Based on a Central Composite Design Method. Fibers Polym. 2015, 16, 38–45. [Google Scholar] [CrossRef]
- De Oliveira Filho, J.F. Extração de Corante Natural a Partir do Resíduo da Uva. Bachelor’s Thesis, Universidade Federal do Rio Grande do Norte, Natal, Brazil, 2017; p. 44. [Google Scholar]
- Blackford, M.; Comby, M.; Zeng, L.; Dienes-Nagy, Á.; Bourdin, G.; Lorenzini, F.; Bach, B. A Review on Stems Composition and Their Impact on Wine Quality. Molecules 2021, 26, 1240. [Google Scholar] [CrossRef]
- Romaní, A.; Michelin, M.; Domingues, L.; Teixeira, J.A. Chapter 16—Valorization of Wastes from Agrofood and Pulp and Paper Industries Within the Biorefinery Concept: Southwestern Europe Scenario. In Waste Biorefinery; Bhaskar, T., Pandey, A., Mohan, S.V., Lee, D.-J., Khanal, S.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; pp. 487–504. ISBN 978-0-444-63992-9. [Google Scholar]
- Cordeiro, A.I.; Moreno, L.; Espejo, A.; Machuca, S.; Almeida, T.; Santos, M.; Mondragão-Rodrigues, F.; Pacheco de Carvalho, G.; Paulo, M.; Sanchez, R. Valorização dos Subprodutos Produzidos nas Adegas da Zona Euroace. 2020. Available online: https://www.rederural.gov.pt/centro-de-recursos/send/10-inovacao/1885-artigo-cientifico-valorizacao-dos-subprodutos-produzidos-nas-adegas-da-zona-euroace (accessed on 21 March 2023).
- Bharathiraja, B.; Iyyappan, J.; Jayamuthunagai, J.; Kumar, R.P.; Sirohi, R.; Gnansounou, E.; Pandey, A. Critical Review on Bioconversion of Winery Wastes into Value-Added Products. Ind. Crops Prod. 2020, 158, 112954. [Google Scholar] [CrossRef]
- Rezende, F.A.; dos Santos, B.; do Nascimento, I.J.; Candiootto, A. Processo de Fabricação de Vinho. In Proceedings of the VIII EEPA—Encontro de Engenharia de Produção Agroindustrial; 2015. Available online: http://www.fecilcam.br/anais/viii_eepa/arquivos/11-01.pdf (accessed on 21 March 2023).
- Salazar, P.B.; Romero, V.L.; Minahk, C.J.; Vaquero, M.J.R. 3 Winery-Derived By-Products: Valorization and Potential. Emerg. Environ. Technol. Health Prot. 2018, 17, 31–46. [Google Scholar]
- Ramawat, K.G.; Merillon, J.M.; Arora, J. Agricultural Waste: Environmental Impact, Useful Metabolites and Energy Production; Spinger: Berlin/Heidelberg, Germany, 2023; ISBN 978-981-19877-3-1. [Google Scholar]
- Navarro, P.; Sarasa, J.; Sierra, D.; Esteban, S.; Ovelleiro, J.L. Degradation of Wine Industry Wastewaters by Photocatalytic Advanced Oxidation. Water Sci. Technol. 2005, 51, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Bustamante, M.A.; Said-Pullicino, D.; Agulló, E.; Andreu, J.; Paredes, C.; Moral, R. Application of Winery and Distillery Waste Composts to a Jumilla (SE Spain) Vineyard: Effects on the Characteristics of a Calcareous Sandy-Loam Soil. Agric. Ecosyst. Environ. 2011, 140, 80–87. [Google Scholar] [CrossRef]
- Oliveira, R.M.C. Valorização do Bagaço de Uva: Avaliação da Potencialidade de Produção de Biogás. Ph.D. Thesis, Universidade da Beira Interior, Covilhã, Portugal, 2011. [Google Scholar]
- The Council of the European Union. Council Regulation (EC), No 479/2008 of 29 April 2008 on the common organisation of the market in wine, amending Regulations (EC) No 1493/1999, (EC) No 1782/2003, (EC) No 1290/2005, (EC) No 3/2008 and repealing Regulations (EEC) No 2392/86 and (EC) No 1493/1999. (06.06.2008). Off. J. Eur. Union 2008, 148, 1–61. [Google Scholar]
- Patel, S. Treatment of Distillery Waste Water: A Review. Int. J. Theor. Appl. Sci. 2018, 10, 23. [Google Scholar]
- Güneş Bayir, A.; Aksoy, A.N.; KoçyiğiT, A. The Importance of Polyphenols as Functional Food in Health. Bezmialem Sci. 2019, 7, 157–163. [Google Scholar] [CrossRef]
- Pandey, K.B.; Rizvi, S.I. Plant Polyphenols as Dietary Antioxidants in Human Health and Disease. Oxidative Med. Cell. Longev. 2009, 2, 270–278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasouli, H.; Farzaei, M.H.; Khodarahmi, R. Polyphenols and Their Benefits: A Review. Int. J. Food Prop. 2017, 20, 1700–1741. [Google Scholar] [CrossRef] [Green Version]
- Rotili, M.C.C.; Villa, F.; Braga, G.C.; de França, D.L.B.; Rosanelli, S.; Laureth, J.C.U.; da Silva, D.F.; Rotili, M.C.C.; Villa, F.; Braga, G.C.; et al. Bioactive Compounds, Antioxidant and Physic-Chemical Characteristics of the Dovyalis Fruit. Acta Scientiarum. Agron. 2018, 40, e35465. [Google Scholar] [CrossRef]
- Voss, G.B.; Oliveira, A.L.S.; Alexandre, E.M.d.C.; Pintado, M.E. Chapter 1—Importance of Polyphenols: Consumption and Human Health. In Technologies to Recover Polyphenols from AgroFood By-Products and Wastes; Pintado, M.E., Saraiva, J.M.A., Alexandre, E.M.d.C., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 1–23. ISBN 9780323852739. [Google Scholar]
- Nieto, J.A.; Santoyo, S.; Prodanov, M.; Reglero, G.; Jaime, L. Valorisation of Grape Stems as a Source of Phenolic Antioxidants by Using a Sustainable Extraction Methodology. Foods 2020, 9, 604. [Google Scholar] [CrossRef]
- Abreu, B.B.; Sousa, C.R.N.; Passos, J.C.; Marinho, A.R.S.; Brandão, A.C.A.S.; de Oliveira, M.L.V.S.; Moreira-Araújo, R.S.d.R. Composição centesimal, compostos bioativos e atividade antioxidante em cálice de hibisco (Hibiscus sabdariffa L.). J. Interdiscip. Biociênc. 2019, 4, 1–4. [Google Scholar] [CrossRef]
- Schneuer, F.J.; Nassar, N.; Tasevski, V.; Morris, J.M.; Roberts, C.L. Association and Predictive Accuracy of High TSH Serum Levels in First Trimester and Adverse Pregnancy Outcomes. J. Clin. Endocrinol. Metab. 2012, 97, 3115–3122. [Google Scholar] [CrossRef]
- Balbinoti, T.C.V.; Stafussa, A.P.; Haminiuk, C.W.I.; Maciel, G.M.; Sassaki, G.L.; Jorge, L.M.d.M.; Jorge, R.M.M. Addition of Grape Pomace in the Hydration Step of Parboiling Increases the Antioxidant Properties of Rice. Int. J. Food Sci. Technol. 2020, 55, 2370–2380. [Google Scholar] [CrossRef]
- Teixeira, N.; Mateus, N.; de Freitas, V.; Oliveira, J. Wine Industry By-Product: Full Polyphenolic Characterization of Grape Stalks. Food Chem. 2018, 268, 110–117. [Google Scholar] [CrossRef]
- Wichienchot, S.; Chakkaravarthi, S. Chapter 42—Polyphenols from Food Processing Byproducts and Their Microbiota–Gut–Brain Axis-Based Health Benefits. In Valorization of Agri-Food Wastes and By-Products; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 855–880. ISBN 978-0-12-824044-1. [Google Scholar]
- Baroi, A.M.; Popitiu, M.; Fierascu, I.; Sărdărescu, I.-D.; Fierascu, R.C. Grapevine Wastes: A Rich Source of Antioxidants and Other Biologically Active Compounds. Antioxidants 2022, 11, 393. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, P.; Dubourdieu, D.; Donèche, B.; Lonvaud, A. Handbook of Enology, Volume 1: The Microbiology of Wine and Vinifications; John Wiley & Sons: Hoboken, NJ, USA, 2006; ISBN 9780470010358. [Google Scholar]
- Tralhão, G.M.d.S. Propriedades Antioxidantes e Compostos Bioactivos em Vinhos Portugueses Monocasta. Ph.D. Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2015. [Google Scholar]
- Dengo, B.L.; Ferreira, J.R.N. Avaliação in vitro do potencial fotoprotetor do extrato do bagaço da uva Isabel (Vitis labrusca L.). Evidencia 2017, 17, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Ribeiro, L.F. Avaliação Dos Compostos Bioativos e Atividade Antioxidante In Vitro e in Vivo Em Bagaços de Uvas (Vitis Vinífera e Vitis labrusca). Ph.D. Thesis, Departamento de Engenharia Química, Setor de Tecnologia, Universidade Federal do Paraná, Curitiba, Brazil, 2016. [Google Scholar]
- Ferrari, V. A Sustentabilidade da Vitivinicultura Através de Seus Próprios Resíduos. Bachelor’s Thesis, Universidade de Caxias do Sul, Campus Universitário da Região dos Vinhedos, Bento Gonçalves, Brazil, 2010; p. 27. [Google Scholar]
- Santos, P.V.S.; Leite, Â.A.M. Identificação de produtos secundários da vinificação: Um estudo de caso. Rev. Gestão Sustentabilidade Ambient. 2020, 9, 650–666. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Rosselló, C.; Simal, S.; Garau, M.C.; López, F.; Femenia, A. Physico-Chemical Properties of Cell Wall Materials Obtained from Ten Grape Varieties and Their Byproducts: Grape Pomaces and Stems. LWT Food Sci. Technol. 2010, 43, 1580–1586. [Google Scholar] [CrossRef]
- Rajković, M.; Popović-Minić, D.; Milincić, D.D.; Zdravković, M. Circular Economy in Food Industry. Zaštita Mater. 2020, 61, 229–250. [Google Scholar] [CrossRef]
- Gouvinhas, I.; Barros, A. Winery By-Products as Source of Bioactive Compounds for Pharmaceutical and Cosmetic Industries; IntechOpen: London, UK, 2021; ISBN 9781838806835. [Google Scholar]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C.F.R. Grape Pomace as a Source of Phenolic Compounds and Diverse Bioactive Properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [Green Version]
- Debien, I.C.d.N. Process Study of Extraction and Phase Equilibrium Data at High Pressures: Obtaining of Beta-Ecdysone from Brazilian Ginseng (Pfaffia glomerata) and Phase Equilibrium Data of Systems Containing L-Lactic Acid, CO2, Propane and Ethanol. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2014. [Google Scholar]
- Júnior, F.D.B.; Marquezi, L.C.; Sakai, O.A.; Terhaag, M.M. Efeitos de diferentes técnicas extrativas na obtenção da β-ecdisona proveniente de Pfaffia glomerata: Um estudo de revisão. Res. Soc. Dev. 2021, 10, e24610414147. [Google Scholar] [CrossRef]
- Rockenbach, I.I.; da Silva, G.L.; Rodrigues, E.; Gonzaga, L.V.; Fett, R. Revista Atividade antioxidante de extratos de bagaço de uva das variedades Regente e Pinot Noir (Vitis vinifera). Rev. Do Inst. Adolfo Lutz 2007, 66, 158–163. [Google Scholar]
- Okunowo, W.O.; Oyedeji, O.; Afolabi, L.O.; Matanmi, E. Essential Oil of Grape Fruit (Citrus Paradisi) Peels and Its Antimicrobial Activities. Am. J. Plant Sci. 2013, 2013, 34556. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, V.P.F. Valorização de Subprodutos da Vinha e do Vinho-Composição Fenólica e Atividade Antioxidante. Master’s Thesis, Universidade Lusófona de Humanidades e Tecnologias, Lisbon, Portugal, 2016. [Google Scholar]
- Rombaut, N.; Savoire, R.; Thomasset, B.; Castello, J.; Van Hecke, E.; Lanoisellé, J.-L. Optimization of Oil Yield and Oil Total Phenolic Content during Grape Seed Cold Screw Pressing. Ind. Crops Prod. 2015, 63, 26–33. [Google Scholar] [CrossRef]
- Rodrigues, B.; Rodrigues, R.; Soares, R. Extração Sólido-Líquido de Compostos Fenólicos do Pericarpo da Noz; Politecnico de Coimbra Escola Superior Agraria: Coimbra, Portugal, 2018; p. 14. [Google Scholar]
- Veggi, P.C. Obtenção de Extratos Vegetais Por Diferentes Métodos de Extração: Estudo Experimental e Simulação Dos Processos. Ph.D. Thesis, Universidade Estadual de Campinas, Campinas, Brazil, 2009. [Google Scholar]
- Conde, E.; Moure, A.; Domínguez, H.; Parajó, J.C. 18—Extraction of Natural Antioxidants from Plant Foods. In Separation, Extraction and Concentration Processes in the Food, Beverage and Nutraceutical Industries; Rizvi, S.S.H., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing: Sawston, UK, 2013; pp. 506–594. ISBN 9781845696450. [Google Scholar]
- Saponea, V.; Ciccib, A.; Franceschic, D.; Vincenzic, S.; Bravia, M. Antioxidant Extraction and Bioactivity Preservation from Winery By-Products by Natural Deep Eutectic Solvents (Nades). Chem. Eng. Trans. 2020, 79, 157–162. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Araújo, P.; Duarte, M.F.; de Freitas, V.; Pintado, M.; Saraiva, J.A. High-Pressure Assisted Extraction of Bioactive Compounds from Industrial Fermented Fig by-Product. J. Food Sci. Technol. 2017, 54, 2519–2531. [Google Scholar] [CrossRef] [PubMed]
- Alexandre, E.M.C.; Moreira, S.A.; Castro, L.M.G.; Pintado, M.; Saraiva, J.A. Emerging Technologies to Extract High Added Value Compounds from Fruit Residues: Sub/Supercritical, Ultrasound-, and Enzyme-Assisted Extractions. Food Rev. Int. 2018, 34, 581–612. [Google Scholar] [CrossRef]
- Sánchez-Gómez, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Vine-Shoot Waste Aqueous Extracts for Re-Use in Agriculture Obtained by Different Extraction Techniques: Phenolic, Volatile, and Mineral Compounds. J. Agric. Food Chem. 2014, 62, 10861–10872. [Google Scholar] [CrossRef] [PubMed]
- Dabetić, N.; Todorović, V.; Panić, M.; Radojčić Redovniković, I.; Šobajić, S. Impact of Deep Eutectic Solvents on Extraction of Polyphenols from Grape Seeds and Skin. Appl. Sci. 2020, 10, 4830. [Google Scholar] [CrossRef]
- Panić, M.; Gunjević, V.; Cravotto, G.; Radojčić Redovniković, I. Enabling Technologies for the Extraction of Grape-Pomace Anthocyanins Using Natural Deep Eutectic Solvents in up-to-Half-Litre Batches Extraction of Grape-Pomace Anthocyanins Using NADES. Food Chem. 2019, 300, 125185. [Google Scholar] [CrossRef] [PubMed]
- Pereira, R.N.; Teixeira, J.A.; Vicente, A.A.; Cappato, L.P.; Ferreira, M.V.S.; Rocha, R.S.; da Cruz, A.G. Ohmic Heating for the Dairy Industry: A Potential Technology to Develop Probiotic Dairy Foods in Association with Modifications of Whey Protein Structure. Curr. Opin. Food Sci. 2018, 22, 95–101. [Google Scholar] [CrossRef] [Green Version]
- Da Rocha, C.B.; Noreña, C.P.Z. Microwave-Assisted Extraction and Ultrasound-Assisted Extraction of Bioactive Compounds from Grape Pomace. Int. J. Food Eng. 2020, 16. [Google Scholar] [CrossRef]
- Nicolai, M.; Pereira, P.; Rijo, P.; Amaral, O.; Amaral, A.; Palma, L. Vitis vinera L. Pomace: Chemical and Nutritional Characterization (Caracterização Química e Nutricional Do Bagaço de Vitis vinera L.). J. Biomed. Biopharm. Res. 2018, 15, 156–166. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Comas-Serra, F.; Femenia, A.; Rosselló, C.; Simal, S. Effect of Power Ultrasound Application on Aqueous Extraction of Phenolic Compounds and Antioxidant Capacity from Grape Pomace (Vitis vinifera L.): Experimental Kinetics and Modeling. Ultrason. Sonochemistry 2015, 22, 506–514. [Google Scholar] [CrossRef] [Green Version]
- Pezzini, V.; Agostini, F.; Smiderle, F.; Touguinha, L.; Salvador, M.; Moura, S. Grape Juice By-Products Extracted by Ultrasound and Microwave-Assisted with Different Solvents: A Rich Chemical Composition. Food Sci. Biotechnol. 2018, 28, 691–699. [Google Scholar] [CrossRef] [PubMed]
- Jain, T.; Jain, V.; Pandey, R.; Vyas, A.; Shukla, S.S. Microwave Assisted Extraction for Phytoconstituents—An Overview. Asian J. Res. Chem. (AJRC) 2009, 2, 19–25. [Google Scholar]
- Chemat, F.; Vian, M.A.; Cravotto, G. Green Extraction of Natural Products: Concept and Principles. Int. J. Mol. Sci. 2012, 13, 8615–8627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cravotto, G.; Boffa, L.; Mantegna, S.; Perego, P.; Avogadro, M.; Cintas, P. Improved Extraction of Vegetable Oils under High-Intensity Ultrasound and/or Microwaves. Ultrason. Sonochemistry 2008, 15, 898–902. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, V.M.; Martínez-Monteagudo, S.I.; Gupta, R. Principles and Application of High Pressure–Based Technologies in the Food Industry. Annu. Rev. Food Sci. Technol. 2015, 6, 435–462. [Google Scholar] [CrossRef]
- Castro, L.M.G.; Alexandre, E.M.C.; Saraiva, J.A.; Pintado, M. Impact of High Pressure on Starch Properties: A Review. Food Hydrocoll. 2020, 106, 105877. [Google Scholar] [CrossRef]
- Huang, H.-W.; Hsu, C.-P.; Yang, B.B.; Wang, C.-Y. Advances in the Extraction of Natural Ingredients by High Pressure Extraction Technology. Trends Food Sci. Technol. 2013, 33, 54–62. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Silva, S.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial Activity of Pomegranate Peel Extracts Performed by High Pressure and Enzymatic Assisted Extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef] [Green Version]
- Prasad, K.N.; Yang, E.; Yi, C.; Zhao, M.; Jiang, Y. Effects of High Pressure Extraction on the Extraction Yield, Total Phenolic Content and Antioxidant Activity of Longan Fruit Pericarp. Innov. Food Sci. Emerg. Technol. 2009, 10, 155–159. [Google Scholar] [CrossRef]
- Xi, J.; Shen, D.; Zhao, S.; Lu, B.; Li, Y.; Zhang, R. Characterization of Polyphenols from Green Tea Leaves Using a High Hydrostatic Pressure Extraction. Int. J. Pharm. 2009, 382, 139–143. [Google Scholar] [CrossRef]
- Putnik, P.; Kovačević, D.B.; Ježek, D.; Šustić, I.; Zorić, Z.; Dragović-Uzelac, V. High-Pressure Recovery of Anthocyanins from Grape Skin Pomace (Vitis vinifera Cv. Teran) at Moderate Temperature. J. Food Process. Preserv. 2018, 42, e13342. [Google Scholar] [CrossRef]
- Khan, M.K.; Ahmad, K.; Hassan, S.; Imran, M.; Ahmad, N.; Xu, C. Effect of Novel Technologies on Polyphenols during Food Processing. Innov. Food Sci. Emerg. Technol. 2018, 45, 361–381. [Google Scholar] [CrossRef]
- Ramírez-Jiménez, A.K.; Rangel-Hernández, J.; Morales-Sánchez, E.; Loarca-Piña, G.; Gaytán-Martínez, M. Changes on the Phytochemicals Profile of Instant Corn Flours Obtained by Traditional Nixtamalization and Ohmic Heating Process. Food Chem. 2019, 276, 57–62. [Google Scholar] [CrossRef]
- El Darra, N.; Grimi, N.; Vorobiev, E.; Louka, N.; Maroun, R. Extraction of Polyphenols from Red Grape Pomace Assisted by Pulsed Ohmic Heating. Food Bioprocess Technol. 2013, 6, 1281–1289. [Google Scholar] [CrossRef]
- Koubaa, M.; Roselló-Soto, E.; Šic Žlabur, J.; Režek Jambrak, A.; Brnčić, M.; Grimi, N.; Boussetta, N.; Barba, F.J. Current and New Insights in the Sustainable and Green Recovery of Nutritionally Valuable Compounds from Stevia Rebaudiana Bertoni. J. Agric. Food Chem. 2015, 63, 6835–6846. [Google Scholar] [CrossRef]
- Barbosa-Canovas, G.V.; Pierson, M.D.; Zhang, Q.H.; Schaffner, D.W. Pulsed Electric Fields. J. Food Sci. 2000, 65, 65–79. [Google Scholar] [CrossRef]
- Gil, K.A.; Tuberoso, C.I.G. Crucial Challenges in the Development of Green Extraction Technologies to Obtain Antioxidant Bioactive Compounds from Agro-Industrial By–Products. Chem. Biochem. Eng. Q. 2021, 35, 105–138. [Google Scholar] [CrossRef]
- Vicas, S.I.; Bandici, L.; Teusdea, A.C.; Bandici, G.E. Extraction of Bioactive Compounds from Two Grape Varieties Using Pulsed Electric Field. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2016, 73, 85–92. [Google Scholar] [CrossRef] [Green Version]
- Ghafoor, K.; AL-Juhaimi, F.Y.; Choi, Y.H. Supercritical Fluid Extraction of Phenolic Compounds and Antioxidants from Grape (Vitis labrusca B.) Seeds. Plant Foods Hum. Nutr. 2012, 67, 407–414. [Google Scholar] [CrossRef]
- Barbosa, H.M.A.; de Melo, M.M.R.; Coimbra, M.A.; Passos, C.P.; Silva, C.M. Optimization of the Supercritical Fluid Coextraction of Oil and Diterpenes from Spent Coffee Grounds Using Experimental Design and Response Surface Methodology. J. Supercrit. Fluids 2014, 85, 165–172. [Google Scholar] [CrossRef]
- Berk, Z. Food Process Engineering and Technology; Academic Press: Cambridge, MA, USA, 2018; ISBN 978-0-12-812054-5. [Google Scholar]
- Borges, M.E.; Tejera, R.L.; Díaz, L.; Esparza, P.; Ibáñez, E. Natural Dyes Extraction from Cochineal (Dactylopius coccus). New Extraction Methods. Food Chem. 2012, 132, 1855–1860. [Google Scholar] [CrossRef]
- Plaza, M.; Turner, C. Pressurized Hot Water Extraction of Bioactives. TrAC Trends Anal. Chem. 2015, 71, 39–54. [Google Scholar] [CrossRef] [Green Version]
- Otero-Pareja, M.J.; Casas, L.; Fernández-Ponce, M.T.; Mantell, C.; de la Ossa, E.J.M. Green Extraction of Antioxidants from Different Varieties of Red Grape Pomace. Molecules 2015, 20, 9686–9702. [Google Scholar] [CrossRef] [Green Version]
- Pedras, B.; Salema-Oom, M.; Sá-Nogueira, I.; Simões, P.; Paiva, A.; Barreiros, S. Valorization of White Wine Grape Pomace through Application of Subcritical Water: Analysis of Extraction, Hydrolysis, and Biological Activity of the Extracts Obtained. J. Supercrit. Fluids 2017, 128, 138–144. [Google Scholar] [CrossRef]
- Wang, L.; Huang, J.; Li, Z.; Liu, D.; Fan, J. A Review of the Polyphenols Extraction from Apple Pomace: Novel Technologies and Techniques of Cell Disintegration. Crit. Rev. Food Sci. Nutr. 2022, 1–14. [Google Scholar] [CrossRef]
- Roselló-Soto, E.; Parniakov, O.; Deng, Q.; Patras, A.; Koubaa, M.; Grimi, N.; Boussetta, N.; Tiwari, B.K.; Vorobiev, E.; Lebovka, N.; et al. Application of Non-Conventional Extraction Methods: Toward a Sustainable and Green Production of Valuable Compounds from Mushrooms. Food Eng. Rev. 2016, 8, 214–234. [Google Scholar] [CrossRef]
- Patist, A.; Bates, D. Ultrasonic Innovations in the Food Industry: From the Laboratory to Commercial Production. Innov. Food Sci. Emerg. Technol. 2008, 9, 147–154. [Google Scholar] [CrossRef]
- González-Centeno, M.R.; Knoerzer, K.; Sabarez, H.; Simal, S.; Rosselló, C.; Femenia, A. Effect of Acoustic Frequency and Power Density on the Aqueous Ultrasonic-Assisted Extraction of Grape Pomace (Vitis vinifera L.)—A Response Surface Approach. Ultrason. Sonochemistry 2014, 21, 2176–2184. [Google Scholar] [CrossRef]
- Mouratoglou, E.; Malliou, V.; Makris, D.P. Novel Glycerol-Based Natural Eutectic Mixtures and Their Efficiency in the Ultrasound-Assisted Extraction of Antioxidant Polyphenols from Agri-Food Waste Biomass. Waste Biomass Valorization 2016, 7, 1377–1387. [Google Scholar] [CrossRef]
- Patsea, M.; Stefou, I.; Grigorakis, S.; Makris, D.P. Screening of Natural Sodium Acetate-Based Low-Transition Temperature Mixtures (LTTMs) for Enhanced Extraction of Antioxidants and Pigments from Red Vinification Solid Wastes. Environ. Process. 2017, 4, 123–135. [Google Scholar] [CrossRef]
- Frum, A.; Dobrea, C.M.; Rus, L.L.; Virchea, L.-I.; Morgovan, C.; Chis, A.A.; Arseniu, A.M.; Butuca, A.; Gligor, F.G.; Vicas, L.G.; et al. Valorization of Grape Pomace and Berries as a New and Sustainable Dietary Supplement: Development, Characterization, and Antioxidant Activity Testing. Nutrients 2022, 14, 3065. [Google Scholar] [CrossRef] [PubMed]
- Drevelegka, I.; Goula, A.M. Recovery of Grape Pomace Phenolic Compounds through Optimized Extraction and Adsorption Processes. Chem. Eng. Process. Process Intensif. 2020, 149, 107845. [Google Scholar] [CrossRef]
- Loarce, L.; Oliver-Simancas, R.; Marchante, L.; Díaz-Maroto, M.C.; Alañón, M.E. Implementation of Subcritical Water Extraction with Natural Deep Eutectic Solvents for Sustainable Extraction of Phenolic Compounds from Winemaking By-Products. Food Res. Int. 2020, 137, 109728. [Google Scholar] [CrossRef]
- Radošević, K.; Ćurko, N.; Gaurina Srček, V.; Cvjetko Bubalo, M.; Tomašević, M.; Kovačević Ganić, K.; Radojčić Redovniković, I. Natural Deep Eutectic Solvents as Beneficial Extractants for Enhancement of Plant Extracts Bioactivity. LWT 2016, 73, 45–51. [Google Scholar] [CrossRef]
- Pagano, I.; Campone, L.; Celano, R.; Piccinelli, A.L.; Rastrelli, L. Green Non-Conventional Techniques for the Extraction of Polyphenols from Agricultural Food by-Products: A Review. J. Chromatogr. A 2021, 1651, 462295. [Google Scholar] [CrossRef]
- Alexandre, E.M.C.; Pinto, C.A.; Moreira, S.A.; Pintado, M.; Saraiva, J.A. 5—Nonthermal Food Processing/Preservation Technologies. In Saving Food; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 141–169. ISBN 978-0-12-815357-4. [Google Scholar]
- Vieira, P.; Ribeiro, C.; Pinto, C.A.; Saraiva, J.A.; Barba, F.J. Chapter 15—Application of HPP in Food Fermentation Processes. In Present and Future of High Pressure Processing; Barba, F.J., Tonello-Samson, C., Puértolas, E., Lavilla, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 329–351. ISBN 978-0-12-816405-1. [Google Scholar]
- Leal, C.; Gouvinhas, I.; Santos, R.A.; Rosa, E.; Silva, A.M.; Saavedra, M.J.; Barros, A.I. Potential Application of Grape (Vitis vinifera L.) Stem Extracts in the Cosmetic and Pharmaceutical Industries: Valorization of a by-Product. Ind. Crops Prod. 2020, 154, 112675. [Google Scholar] [CrossRef]
- Mota, M.F. Caracterização de óleo de Grainha de Uva de Distintas Castas Cultivadas sob as Mesmas Condições Edafo-Climáticas. Ph.D. Thesis, Universidade de Lisboa, Lisbon, Portugal, 2018; p. 78. [Google Scholar]
- Syed, U.T.; Brazinha, C.; Crespo, J.G.; Ricardo-da-Silva, J.M. Valorisation of Grape Pomace: Fractionation of Bioactive Flavan-3-Ols by Membrane Processing. Sep. Purif. Technol. 2017, 172, 404–414. [Google Scholar] [CrossRef]
- Figueira, D.R. Valorization of Agro-Industrial Waste through Chemical and Microbiological Approaches. Ph.D. Thesis, Universidade Nova de Lisboa, Lisbon, Portugal, 2017. [Google Scholar]
- Silva, V.; Igrejas, G.; Falco, V.; Santos, T.P.; Torres, C.; Oliveira, A.M.P.; Pereira, J.E.; Amaral, J.S.; Poeta, P. Chemical Composition, Antioxidant and Antimicrobial Activity of Phenolic Compounds Extracted from Wine Industry by-Products. Food Control. 2018, 92, 516–522. [Google Scholar] [CrossRef] [Green Version]
- Luchian, C.E.; Cotea, V.V.; Vlase, L.; Toiu, A.M.; Colibaba, L.C.; Răschip, I.E.; Nadăş, G.; Gheldiu, A.M.; Tuchiluş, C.; Rotaru, L. Antioxidant and Antimicrobial Effects of Grape Pomace Extracts. BIO Web Conf. 2019, 15, 04006. [Google Scholar] [CrossRef]
- Casagrande, M.; Zanela, J.; Pereira, D.; de Lima, V.A.; Oldoni, T.L.C.; Carpes, S.T. Optimization of the Extraction of Antioxidant Phenolic Compounds from Grape Pomace Using Response Surface Methodology. J. Food Meas. Charact. 2019, 13, 1120–1129. [Google Scholar] [CrossRef]
- Kalli, E.; Lappa, I.; Bouchagier, P.; Tarantilis, P.A.; Skotti, E. Novel Application and Industrial Exploitation of Winery By-Products. Bioresour. Bioprocess. 2018, 5, 46. [Google Scholar] [CrossRef]
- Maia, M.; Ferreira, A.E.N.; Laureano, G.; Patrícia Marques, A.; Torres, V.M.; Bernardes Silva, A.; Rita Matos, A.; Cordeiro, C.; Figueiredo, A.; Silva, M.S. Vitis vinifera ‘Pinot Noir’ Leaves as a Source of Bioactive Nutraceutical Compounds. Food Funct. 2019, 10, 3822–3827. [Google Scholar] [CrossRef] [Green Version]
- Milinčić, D.D.; Stanisavljević, N.S.; Kostić, A.Ž.; Soković Bajić, S.; Kojić, M.O.; Gašić, U.M.; Barać, M.B.; Stanojević, S.P.; Lj Tešić, Ž.; Pešić, M.B. Phenolic Compounds and Biopotential of Grape Pomace Extracts from Prokupac Red Grape Variety. LWT 2021, 138, 110739. [Google Scholar] [CrossRef]
- Paraiso, I.L.; Revel, J.S.; Stevens, J.F. Potential Use of Polyphenols in the Battle against COVID-19. Curr. Opin. Food Sci. 2020, 32, 149–155. [Google Scholar] [CrossRef]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.-V.N.; Prabhakar, S. Techniques and Modeling of Polyphenol Extraction from Food: A Review. Environ. Chem. Lett. 2021, 19, 3409–3443. [Google Scholar] [CrossRef] [PubMed]
- Piccolella, S.; Crescente, G.; Candela, L.; Pacifico, S. Nutraceutical Polyphenols: New Analytical Challenges and Opportunities. J. Pharm. Biomed. Anal. 2019, 175, 112774. [Google Scholar] [CrossRef]
- Theodorou, M.K.; Kingston-Smith, A.H.; Winters, A.L.; Lee, M.R.F.; Minchin, F.R.; Morris, P.; MacRae, J. Polyphenols and Their Influence on Gut Function and Health in Ruminants: A Review. Environ. Chem. Lett. 2006, 4, 121–126. [Google Scholar] [CrossRef]
- Nunes, M.A.; Rodrigues, F.; Oliveira, M.B.P.P. 11—Grape Processing By-Products as Active Ingredients for Cosmetic Proposes. In Handbook of Grape Processing By-Products; Galanakis, C.M., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 267–292. ISBN 978-0-12-809870-7. [Google Scholar]
- da Rocha, L.C.A. Phenolic Compounds of White Wine from the Douro Region: The Relationship between Chemistry and Bioactivity in the Context of Alzheimer’s Disease and Type 2 Diabetes. Master’s Thesis, Universidade do Porto, Porto, Portugal, 2018. [Google Scholar]
- Gutiérrez-Escobar, R.; Aliaño-González, M.J.; Cantos-Villar, E. Wine Polyphenol Content and Its Influence on Wine Quality and Properties: A Review. Molecules 2021, 26, 718. [Google Scholar] [CrossRef] [PubMed]
- Versari, A.; Ricci, A.; Brioni, A.; Galaz Torres, C.; Pavez Moreno, C.A.; Concha García, J.; Parpinello, G.P. Evaluation of Plant-Based Byproducts as Green Fining Agents for Precision Winemaking. Molecules 2022, 27, 1671. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudi, S.; Ghorbani, M.; Sabzichi, M.; Ramezani, F.; Hamishehkar, H.; Samadi, N. Targeted Hyaluronic Acid-Based Lipid Nanoparticle for Apigenin Delivery to Induce Nrf2-Dependent Apoptosis in Lung Cancer Cells. J. Drug Deliv. Sci. Technol. 2019, 49, 268–276. [Google Scholar] [CrossRef]
- Tavsan, Z.; Kayali, H.A. Flavonoids Showed Anticancer Effects on the Ovarian Cancer Cells: Involvement of Reactive Oxygen Species, Apoptosis, Cell Cycle and Invasion. Biomed. Pharmacother. 2019, 116, 109004. [Google Scholar] [CrossRef]
- Zhu, Z.-Y.; Wang, F.; Jia, C.-H.; Xie, M.-L. Apigenin-Induced HIF-1α Inhibitory Effect Improves Abnormal Glucolipid Metabolism in AngⅡ/Hypoxia-Stimulated or HIF-1α-Overexpressed H9c2 Cells. Phytomedicine 2019, 62, 152713. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Imran, M.; Khan, I.A.; ur-Rehman, M.-; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer Potential of Quercetin: A Comprehensive Review. Phytother. Res. 2018, 32, 2109–2130. [Google Scholar] [CrossRef]
- Hamza, A.A.; Heeba, G.H.; Elwy, H.M.; Murali, C.; El-Awady, R.; Amin, A. Molecular Characterization of the Grape Seeds Extract’s Effect against Chemically Induced Liver Cancer: In Vivo and in Vitro Analyses. Sci. Rep. 2018, 8, 1270. [Google Scholar] [CrossRef] [Green Version]
- Dinicola, S.; Cucina, A.; Antonacci, D.; Bizzarri, M. Anticancer Effects of Grape Seed Extract on Human Cancers: A Review. J. Carcinog. Mutagen. 2014, 8. [Google Scholar] [CrossRef]
- Tsiviki, M.; Goula, A.M. Chapter 16—Valorization of Grape Seeds. In Valorization of Agri-Food Wastes and By-Products; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2021; pp. 331–346. ISBN 9780128240441. [Google Scholar]
- Apostolou, A.; Stagos, D.; Galitsiou, E.; Spyrou, A.; Haroutounian, S.; Portesis, N.; Trizoglou, I.; Wallace Hayes, A.; Tsatsakis, A.M.; Kouretas, D. Assessment of Polyphenolic Content, Antioxidant Activity, Protection against ROS-Induced DNA Damage and Anticancer Activity of Vitis vinifera Stem Extracts. Food Chem. Toxicol. 2013, 61, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Bogdan, C.; Pop, A.; Iurian, S.M.; Benedec, D.; Moldovan, M.L. Research Advances in the Use of Bioactive Compounds from Vitis vinifera By-Products in Oral Care. Antioxidants 2020, 9, 502. [Google Scholar] [CrossRef] [PubMed]
- Kouidhi, B.; Al Qurashi, Y.M.A.; Chaieb, K. Drug Resistance of Bacterial Dental Biofilm and the Potential Use of Natural Compounds as Alternative for Prevention and Treatment. Microb. Pathog. 2015, 80, 39–49. [Google Scholar] [CrossRef]
- Oliveira, D.A.; Salvador, A.A.; Smânia, A.; Smânia, E.F.A.; Maraschin, M.; Ferreira, S.R.S. Antimicrobial Activity and Composition Profile of Grape (Vitis vinifera) Pomace Extracts Obtained by Supercritical Fluids. J. Biotechnol. 2013, 164, 423–432. [Google Scholar] [CrossRef]
- Muñoz-González, I.; Thurnheer, T.; Bartolomé, B.; Moreno-Arribas, M.V. Red Wine and Oenological Extracts Display Antimicrobial Effects in an Oral Bacteria Biofilm Model. J. Agric. Food Chem. 2014, 62, 4731–4737. [Google Scholar] [CrossRef]
- Chakka, A.K.; Babu, A.S. Bioactive Compounds of Winery By-Products: Extraction Techniques and Their Potential Health Benefits. Appl. Food Res. 2022, 2, 100058. [Google Scholar] [CrossRef]
- Palma, L.; Nunes, C.; Gameiro, R.; Rodrigues, M.; Gothe, S.; Tavares, N.; Pego, C.; Nicolai, M.; Pereira, P. Preliminary Sensory Evaluation of Salty Crackers with Grape Pomace Flour (Avaliação Sensorial Preliminar de Bolachas Salgadas de Farinha de Bagaço de Uva). Biomed. Biopharm. Res. 2020, 17, 33–43. [Google Scholar] [CrossRef]
- Cebrián-Tarancón, C.; Sánchez-Gómez, R.; Cabrita, M.J.; García, R.; Zalacain, A.; Alonso, G.L.; Salinas, M.R. Winemaking with Vine-Shoots. Modulating the Composition of Wines by Using Their Own Resources. Food Res. Int. 2019, 121, 117–126. [Google Scholar] [CrossRef]
- Rajha, H.N.; El Kantar, S.; Afif, C.; Boussetta, N.; Louka, N.; Maroun, R.G.; Vorobiev, E. Selective Multistage Extraction Process of Biomolecules from Vine Shoots by a Combination of Biological, Chemical, and Physical Treatments. Comptes Rendus Chim. 2018, 21, 581–589. [Google Scholar] [CrossRef]
- Mattos, G.N.; Tonon, R.V.; Furtado, A.A.; Cabral, L.M. Grape By-Product Extracts against Microbial Proliferation and Lipid Oxidation: A Review. J. Sci. Food Agric. 2017, 97, 1055–1064. [Google Scholar] [CrossRef] [PubMed]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Saéz, V.; Riquelme, S.; von Baer, D.; Vallverdú-Queralt, A. Phenolic Profile of Grape Canes: Novel Compounds Identified by LC-ESI-LTQ-Orbitrap-MS. Molecules 2019, 24, 3763. [Google Scholar] [CrossRef] [Green Version]
- Louli, V.; Ragoussis, N.; Magoulas, K. Recovery of Phenolic Antioxidants from Wine Industry By-Products. Bioresour. Technol. 2004, 92, 201–208. [Google Scholar] [CrossRef]
- Strapasson, G.C. Caracterização E Utilização Do Resíduo De Produção De Vinho No Desenvolvimento De Alimentos Com Propriedade Funcional. Ph.D. Thesis, Universidade Federal do Paraná, Curitiba, Brazil, 2016; p. 148. [Google Scholar]
- Ortega-Heras, M.; Gómez, I.; de Pablos-Alcalde, S.; González-Sanjosé, M.L. Application of the Just-About-Right Scales in the Development of New Healthy Whole-Wheat Muffins by the Addition of a Product Obtained from White and Red Grape Pomace. Foods 2019, 8, 419. [Google Scholar] [CrossRef] [Green Version]
- Theagarajan, R.; Malur Narayanaswamy, L.; Dutta, S.; Moses, J.A.; Chinnaswamy, A. Valorisation of Grape Pomace (Cv. Muscat) for Development of Functional Cookies. Int. J. Food Sci. Technol. 2019, 54, 1299–1305. [Google Scholar] [CrossRef]
- Mironeasa, S.; Iuga, M.; Zaharia, D.; Dabija, A.; Mironeasa, C. Influence of Particle Sizes and Addition Level of Grape Seeds on Wheat Flour Dough Rheological Properties. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM; Surveying Geology & Mining Ecology Management (SGEM), Sofia, Bulgaria, 1–10 July 2017; Volume 17, pp. 265–272. [Google Scholar]
- Mironeasa, S.; Mironeasa, C. Dough Bread from Refined Wheat Flour Partially Replaced by Grape Peels: Optimizing the Rheological Properties. J. Food Process. Eng. 2019, 42, e13207. [Google Scholar] [CrossRef]
- Šporin, M.; Avbelj, M.; Kovač, B.; Možina, S.S. Quality Characteristics of Wheat Flour Dough and Bread Containing Grape Pomace Flour. Food Sci. Technol. Int. 2018, 24, 251–263. [Google Scholar] [CrossRef] [PubMed]
- Vilela, A.; Pinto, T. Grape Infusions: The Flavor of Grapes and Health-Promoting Compounds in Your Tea Cup. Beverages 2019, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Tournour, H.H.; Cunha, L.M.; Magalhães, L.M.; Lima, R.C.; Segundo, M.A. Evaluation of the Joint Effect of the Incorporation of Mechanically Deboned Meat and Grape Extract on the Formulation of Chicken Nuggets. Food Sci. Technol. Int. 2017, 23, 328–337. [Google Scholar] [CrossRef]
- Libera, J.; Kononiuk, A.; Kęska, P.; Wójciak, K. Use of Grape Seed Extract as a Natural Antioxidant Additive in Dry-Cured Pork Neck Technology. Biotechnol. Food Sci. 2018, 82, 141–150. [Google Scholar]
- Gasiński, A.; Kawa-Rygielska, J.; Mikulski, D.; Kłosowski, G.; Głowacki, A. Application of White Grape Pomace in the Brewing Technology and Its Impact on the Concentration of Esters and Alcohols, Physicochemical Parameteres and Antioxidative Properties of the Beer. Food Chem. 2022, 367, 130646. [Google Scholar] [CrossRef] [PubMed]
- Cilli, L.P.; Contini, L.R.F.; Sinnecker, P.; Lopes, P.S.; Andreo, M.A.; Neiva, C.R.P.; Nascimento, M.S.; Yoshida, C.M.P.; Venturini, A.C. Effects of Grape Pomace Flour on Quality Parameters of Salmon Burger. J. Food Process. Preserv. 2020, 44, e14329. [Google Scholar] [CrossRef]
- Marcos, J.; Carriço, R.; Sousa, M.J.; Palma, M.L.; Pereira, P.; Nunes, M.C.; Nicolai, M. Effect of Grape Pomace Flour in Savory Crackers: Technological, Nutritional and Sensory Properties. Foods 2023, 12, 1392. [Google Scholar] [CrossRef] [PubMed]
- Gaita, C.; Alexa, E.; Moigradean, D.; Conforti, F.; Poiana, M.A. Designing of High Value-Added Pasta Formulas by Incorporation of Grape Pomace Skins. Rom. Biotechnol. Lett. 2018, 25, 1607–1614. [Google Scholar] [CrossRef]
- Kuchtova, V.; Kohajdova, Z.; Karovicova, J.; Laukova, M. Physical, Textural and Sensory Properties of Cookies Incorporated with Grape Skin and Seed Preparations. Pol. J. Food Nutr. Sci. 2018, 68, 309–317. [Google Scholar] [CrossRef]
- Brykova, T.; Samohvalova, O.; Grevtseva, N.; Kasabova, K.; Grygorenko, A. The Influence of Grape Powders on the Rheological Properties of Dough and Characteristics of the Quality of Butter Biscuits. Food Sci. Technol. 2018, 12, 33–38. [Google Scholar] [CrossRef]
- Kim, T.-K.; Yong, H.-I.; Jung, S.; Kim, Y.-B.; Choi, Y.-S. Effects of Replacing Pork Fat with Grape Seed Oil and Gelatine/Alginate for Meat Emulsions. Meat Sci. 2020, 163, 108079. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-X.; Ni, Z.-J.; Thakur, K.; Wang, S.; Zhang, J.-G.; Shang, Y.-F.; Wei, Z.-J. Effect of Grape Seed Power on the Structural and Physicochemical Properties of Wheat Gluten in Noodle Preparation System. Food Chem. 2021, 355, 129500. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Chen, L.; Wongmaneepratip, W.; He, Y.; Zhao, L.; Yang, H. Effect of Vacuum Impregnated Fish Gelatin and Grape Seed Extract on Moisture State, Microbiota Composition, and Quality of Chilled Seabass Fillets. Food Chem. 2021, 354, 129581. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, J.; Chen, Y.; Hou, Q.; Huang, M. Effect of Grape Seed Extract Combined with Modified Atmosphere Packaging on the Quality of Roast Chicken. Poult. Sci. 2020, 99, 1598–1605. [Google Scholar] [CrossRef]
- Reham, A.A.; Shimaa, N.E. Grape Seed Extract as Natural Antioxidant and Antibacterial in Minced Beef. PSM Biol. Res. 2017, 2, 89–96. [Google Scholar]
- Sani, M.A.; Azizi-Lalabadi, M.; Tavassoli, M.; Mohammadi, K.; McClements, D.J. Recent Advances in the Development of Smart and Active Biodegradable Packaging Materials. Nanomaterials 2021, 11, 1331. [Google Scholar] [CrossRef]
- Singh, S.; Gaikwad, K.K.; Lee, Y.S. Anthocyanin—A Natural Dye for Smart Food Packaging Systems. Korean J. Packag. Sci. Technol. 2018, 24, 167–180. [Google Scholar] [CrossRef]
- Singh, S.; Gaikwad, K.K.; Lee, M.; Lee, Y.S. Microwave-Assisted Micro-Encapsulation of Phase Change Material Using Zein for Smart Food Packaging Applications. J. Therm. Anal. Calorim. 2018, 131, 2187–2195. [Google Scholar] [CrossRef]
- Yong, H.; Liu, J. Recent Advances in the Preparation, Physical and Functional Properties, and Applications of Anthocyanins-Based Active and Intelligent Packaging Films. Food Packag. Shelf Life 2020, 26, 100550. [Google Scholar] [CrossRef]
- Ferreira, A.S.; Nunes, C.; Castro, A.; Ferreira, P.; Coimbra, M.A. Influence of Grape Pomace Extract Incorporation on Chitosan Films Properties. Carbohydr. Polym. 2014, 113, 490–499. [Google Scholar] [CrossRef]
- Shahbazi, Y. The Properties of Chitosan and Gelatin Films Incorporated with Ethanolic Red Grape Seed Extract and Ziziphora Clinopodioides Essential Oil as Biodegradable Materials for Active Food Packaging. Int. J. Biol. Macromol. 2017, 99, 746–753. [Google Scholar] [CrossRef] [PubMed]
- Dilucia, F.; Lacivita, V.; Conte, A.; Del Nobile, M.A. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods 2020, 9, 857. [Google Scholar] [CrossRef] [PubMed]
- Kurek, M.; Hlupić, L.; Elez Garofulić, I.; Descours, E.; Ščetar, M.; Galić, K. Comparison of Protective Supports and Antioxidative Capacity of Two Bio-Based Films with Revalorised Fruit Pomaces Extracted from Blueberry and Red Grape Skin. Food Packag. Shelf Life 2019, 20, 100315. [Google Scholar] [CrossRef]
- Cejudo-Bastante, C.; Arjona-Mudarra, P.; Fernández-Ponce, M.T.; Casas, L.; Mantell, C.; Martínez de la Ossa, E.J.; Pereyra, C. Application of a Natural Antioxidant from Grape Pomace Extract in the Development of Bioactive Jute Fibers for Food Packaging. Antioxidants 2021, 10, 216. [Google Scholar] [CrossRef] [PubMed]
Compounds | By-Product | Extraction Methods and Detection Method | Concentrations | Function | References |
---|---|---|---|---|---|
Resveratrol | Grape pomace | Resveratrol extraction with a 50% mixture of water and EtOH for 24 h at room temperature and determination by the HPLC. | Trans-resveratrol 23.54 µg. mL−1 concentration in extract; Cis-resveratrol 2.01 µg. mL−1 concentration in the extract. | Anti-aging and sun protector | [140] |
Catechin | Grape pomace (more in seed) | Catechin extraction with and without the microwave-assisted extraction (MAE) method. The optimized MAE condition is 94% ethanol, 170 °C temperature, and a duration of 55 min. | Under conventional conditions (94% EtOH; 25 °C; 55 min), the value for total catechins was 0.95 mg.g−1 DW. Under microwave extraction conditions (94% ethanol, 170 °C, 55 min), the value for total catechins was 4.0 mg. g−1 DW. | Anti-aging | [25] |
Epicatechin | Stem and seed | Epicatechin extraction with and without the microwave-assisted extraction (MAE) method. The optimized MAE condition is 94% ethanol, 170 °C temperature, and a duration of 55 min. | Under conventional conditions (94% EtOH, 25 °C, 55 min), the value for total epicatechins was 1.04 mg.g−1 DW. Under microwave extraction conditions (94% ethanol, 170 °C, 55 min), the value for total epicatechins was 3.32 mg.g−1 DW. | Anti-aging | [25] |
Gallic acid | Grape pomace | Gallic acid extraction with 25 mL of each solvent (ethanol 800 g.L−1 or acetone 800 g.L−1) in bath water. The optimized solvent is acetone at 60 °C at 45 min. | Gallic acid 13.93 mg.100 g−1 at a temperature of 60 °C for 15 min. | Anti-aging and sun protector | [141] |
Tartaric acid | Wine lees | Recovery of tartaric acid using cation exchange resin under mild conditions and ambient temperature. | Tartaric acid content 575.8 mg.g−1 dry wine lees. Tartaric acid recovery 99.8% at 40 °C for 24 h. | Exfoliating, depigmenting, and pH regulation | [142] |
Oleic acid | Grape seed oil | Oleic acid extraction using methanol. Approximately 1 mL of methanol addition in 0.5 mL of GSO and centrifugation at 10,000 rpm for 10 min. The supernatant was collected for analysis. | The oleic acid accounts for 6.52–14.51% of the total fatty acid, depending on the variety of grape. | Anti-aging and moisturizing | [27] |
Linoleic acid | Grape seed oil | Linoleic acid extraction using 1 mL of methanol addition in 0.5 mL of GSO and centrifugation at 10,000 rpm for 10 min. The supernatant was collected for analysis. | The linoleic acid accounts for 70.90–77.38% of the total fatty acid, depending on the variety of grape. | Anti-aging | [27] |
Linolenic acid | Grape leaves | Linolenic acid extraction with a mixture of methanol in sulfuric acid (97.5:2.5, v/v), incubation at 70 °C for 1 h. The extracts were recovered in the organic phase after adding a mixture of petroleum ether: ultrapure water (3:2, v/v). Analysis by gas chromatography. | Alpha-linolenic acid was founded in 42% of the total quantified fatty acids in the leaves. | Anti-aging | [143] |
Vitamin E | Grape seed | Vitamin E extraction with conventional (Soxhlet and mechanical press extraction) and non-conventional (pressurized liquid extraction (PLE) with hexane) methods. Determination by HPLC. | A Vitamin E content of 5.67 mg.100 g−1 was obtained by PLE for grape seed. | Anti-aging | [142] |
Ferulic acid | Grape skin | Ferulic acid extraction with 20 mL of 80% aqueous methanol and 0.1% HCl for 1 h with shaking at room temperature. Filtration and determination by HPLC. | Ferulic acid concentration 4.2 ± 0.15 mg.kg−1 of dry matter in the grape skin. | Sunscreen | [144] |
Proanthocyanidins | Grape pomace | The proanthocyanidins (PAC) were extracted with and without the microwave-assisted extraction (MAE) method. The optimized MAE condition was 94% ethanol, 170 °C temperature, and a duration of 55 min. | Under conventional conditions (94% EtOH; 25 °C; 55 min), the (PAC) measured 9.70 ± 0.39 mg CE.g−1 DW. Under microwave extraction conditions (94% ethanol; 170 °C; 55 min), the (PAC) measured 56.37 ± 8.37 mg CE.g−1 DW. | Anti-inflammatory | [25] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodrigues Machado, A.; Atatoprak, T.; Santos, J.; Alexandre, E.M.C.; Pintado, M.E.; Paiva, J.A.P.; Nunes, J. Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective. Appl. Sci. 2023, 13, 7754. https://doi.org/10.3390/app13137754
Rodrigues Machado A, Atatoprak T, Santos J, Alexandre EMC, Pintado ME, Paiva JAP, Nunes J. Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective. Applied Sciences. 2023; 13(13):7754. https://doi.org/10.3390/app13137754
Chicago/Turabian StyleRodrigues Machado, Adriana, Tugba Atatoprak, Joana Santos, Elisabete M. C. Alexandre, Manuela Estevez Pintado, Jorge A. P. Paiva, and João Nunes. 2023. "Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective" Applied Sciences 13, no. 13: 7754. https://doi.org/10.3390/app13137754
APA StyleRodrigues Machado, A., Atatoprak, T., Santos, J., Alexandre, E. M. C., Pintado, M. E., Paiva, J. A. P., & Nunes, J. (2023). Potentialities of the Extraction Technologies and Use of Bioactive Compounds from Winery By-Products: A Review from a Circular Bioeconomy Perspective. Applied Sciences, 13(13), 7754. https://doi.org/10.3390/app13137754