Raman Spectroscopy to Monitor the Delivery of a Nano-Formulation of Vismodegib in the Skin
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. VDG Extraction from Capsules and Its Quantification
2.3. Transfersomes Obtention
2.4. Transfersomes Characterization
2.5. Obtention and Preparation of Skin Samples
2.6. Skin Experiments
3. Results and Discussion
3.1. Transfersomes Characterization
3.2. VDG Determination in Skin by UV-Visible Spectrophotometry
3.3. VDG Determination by Raman Spectroscopy
3.4. Further Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sekulic, A.; Migden, M.R.; Oro, A.E.; Dirix, L.; Lewis, K.D.; Hainsworth, J.D.; Solomon, J.A.; Yoo, S.; Arron, S.T.; Friedlander, P.A.; et al. Efficacy and safety of Vismodegib in advanced basal-cell carcinoma. N. Engl. J. Med. 2012, 366, 2171–2179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olesen, U.H.; Clergeaud, G.; Hendel, K.K.; Yeung, K.; Lerche, C.M.; Andresen, T.L.; Haedersdal, M. Enhanced and Sustained Cutaneous Delivery of Vismodegib by Ablative Fractional Laser and Microemulsion Formulation. J. Investig. Dermatol. 2020, 140, 2051–2059. [Google Scholar] [CrossRef] [PubMed]
- Calienni, M.N.; Maza Vega, D.; Temprana, C.F.; Izquierdo, M.C.; Ybarra, D.E.; Bernabeu, E.; Moretton, M.; Alvira, F.C.; Chiappetta, D.; Alonso, S.D.V.; et al. The Topical Nanodelivery of Vismodegib Enhances Its Skin Penetration and Performance In Vitro While Reducing Its Toxicity In Vivo. Pharmaceutics 2021, 13, 186. [Google Scholar] [CrossRef] [PubMed]
- Mishra, V.; Singh, M.; Mishra, Y.; Charbe, N.; Nayak, P.; Sudhakar, K.; Aljabali, A.A.A.; Shahcheraghi, S.H.; Bakshi, H.; Serrano-Aroca, Á.; et al. Nanoarchitectures in Management of Fungal Diseases: An Overview. Appl. Sci. 2021, 11, 7119. [Google Scholar] [CrossRef]
- Lademann, J.; Jacobi, U.; Surber, C.; Weigmann, H.-J.; Fluhr, J.W. The tape stripping procedure—Evaluation of some critical parameters. Eur. J. Pharm. Biopharm. 2009, 72, 317–323. [Google Scholar] [CrossRef]
- Smith, E.; Dent, G. Modern Raman Spectroscopy: A Practical Approach; John Wiley and Sons: Hoboken, NJ, USA, 2005; ISBN 0-471-49794-0. [Google Scholar]
- Téllez S., C.A.; Costa, A.C., Jr.; Mondragón, M.A.; Ferreira, G.B.; Versiane, O.; Rangel, J.L.; Lima, G.M.; Martin, A.A. Molecular structure, natural bond analysis, vibrational and electronic spectra, surface enhanced Raman scattering and Mulliken atomic charges of the normal modes of [Mn(DDTC)2] complex. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2016, 169, 95–107. [Google Scholar] [CrossRef]
- Buckley, K.; Ryder, A.G. Applications of Raman Spectroscopy in Biopharmaceutical Manufacturing: A Short Review. Appl. Spectrosc. 2017, 71, 1085–1116. [Google Scholar] [CrossRef]
- Franzen, L.; Selzer, D.; Fluhr, J.W.; Schaefer, U.F.; Windbergs, M. Towards drug quantification in human skin with confocal Raman microscopy. Eur. J. Pharm. Biopharm. 2013, 84, 437–444. [Google Scholar] [CrossRef]
- Calienni, M.N.; Tuttolomondo, M.E.; Alonso, S.V.; Montanari, J.; Alvira, F.C. Experimental and theoretical study of the structural features of Vismodegib molecule. J. Mol. Struct. 2020, 1205, 127581. [Google Scholar] [CrossRef]
- Ybarra, D.E.; Calienni, M.N.; Barraza Ramirez, L.F.; Aguayo Frias, E.T.; Lillo, C.; Alonso, S.; Montanari, J.; Alvira, F.C. Vismodegib in PAMAM-dendrimers for potential theragnosis in skin cancer. Open Nano 2022, 7, 100053. [Google Scholar] [CrossRef]
- Calienni, M.N.; Febres-Molina, C.; Llovera, R.E.; Zevallos-Delgado, C.; Tuttolomondo, M.E.; Paolino, D.; Fresta, M.; Barazorda-Ccahuana, H.L.; Gómez, B.; del Valle Alonso, S.; et al. Nanoformulation for potential topical delivery of Vismodegib in skin cancer treatment. Int. J. Pharm. 2019, 565, 108–122. [Google Scholar] [CrossRef]
- Marsanasco, M.; Márquez, A.L.; Wagner, J.R.; Chiaramoni, N.S.; Alonso, S.V. Bioactive compounds as functional food ingredients: Characterization in model system and sensory evaluation in chocolate milk. J. Food Eng. 2015, 166, 55–63. [Google Scholar] [CrossRef]
- Parasassi, T.; Gratton, E. Membrane lipid domains and dynamics as detected by Laurdan fluorescence. J. Fluoresc. 1995, 5, 59–69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stewart, J.C.M. Colorimetric determination of phospholipids with ammonium ferrothiocyanate. Anal. Biochem. 1980, 104, 10–14. [Google Scholar] [CrossRef] [PubMed]
- Disalvo, E.A.; Arroyo, J.; Bernik, D.L. Interfacial properties of liposomes as measured by fluorescence and optical probes. Methods Enzymol. 2003, 367, 213–233. [Google Scholar] [CrossRef]
- Lelkes, P.I.; Miller, I.R. Perturbations of membrane structure by optical probes: I. Location and structural sensitivity of merocyanine 540 bound to phospholipid membranes. J. Membr. Biol. 1980, 52, 1–15. [Google Scholar] [CrossRef]
- Bagatolli, L.A. LAURDAN Fluorescence Properties in Membranes: A Journey from the Fluorometer to the Microscope. In Fluorescent Methods to Study Biological Membranes. Springer Series on Fluorescence; Mély, Y., Duportail, G., Eds.; Springer: Berlin/Heidelberg, Germany, 2012; Volume 13. [Google Scholar] [CrossRef]
- Sgorbini, B.; Cagliero, C.; Argenziano, M.; Cavalli, R.; Bicchi, C.; Rubiolo, P. In vitro release and permeation kinetics of Melaleuca alternifolia (tea tree) essential oil bioactive compounds from topical formulations. Flavour. Fragr. J. 2017, 32, 354–361. [Google Scholar] [CrossRef]
- Soto, F.; Jeerapan, I.; Silva-López, C.; Lopez-Ramirez, M.A.; Chai, I.; Xiaolong, L.; Lv, J.; Kurniawan, J.F.; Martin, I.; Chakravarthy, K.; et al. Noninvasive transdermal delivery system of lidocaine using an acoustic droplet-vaporization based wearable patch. Small 2018, 14, 1803266. [Google Scholar] [CrossRef]
- Izquierdo, M.C.; Lillo, C.R.; Bucci, P.; Gomez, G.E.; Martínez, L.; Alonso, S.D.V.; Calienni, M.N.; Montanari, J. Comparative skin penetration profiles of formulations including ultradeformable liposomes as potential nanocosmeceutical carriers. J. Cosmet. Dermatol. 2020, 19, 3127–3137. [Google Scholar] [CrossRef]
- Choe, C.; Schleusener, J.; Lademann, J.; Darvin, M.E. Human skin in vivo has a higher skin barrier function than porcine skin ex vivo-comprehensive Raman microscopic study of the stratum corneum. J. Biophotonics 2018, 11, e201700355. [Google Scholar] [CrossRef]
- Sdobnov, A.Y.; Darvin, M.E.; Schleusener, J.; Lademann, J.; Tuchin, V.V. Hydrogen bound water profiles in the skin influenced by optical clearing molecular agents-Quantitative analysis using confocal Raman microscopy. J. Biophotonics 2019, 12, e201800283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calienni, M.N.; Montanari, J.; Tuttolomondo, M.E.; Gomez, G.; Alonso, S.V.; Alvira, F.C. Raman spectroscopy study of a topical penetration of a new generation skin-cancer antineoplastic drug. In Latin America Optics and Photonics Conference; Paper Tu3C.5; OSA Technical Digest (Optica Publishing Group): Washington, DC, USA, 2018. [Google Scholar] [CrossRef]
- Redasani, V.K.; Patel, P.R.; Marathe, D.Y.; Chaudhari, S.R.; Shirkhedkar, A.A.; Surana, S.J. A review on derivative uv-spectrophotometry analysis of drugs in pharmaceutical formulations and biological samples review. J. Chil. Chem. Soc. 2018, 63, 4126–4134. [Google Scholar] [CrossRef]
- Liu, Y.; Lunter, D.J. Confocal Raman spectroscopy at different laser wavelengths in analyzing stratum corneum and skin penetration properties of mixed PEGylated emulsifier systems. Int. J. Pharm. 2022, 616, 121561. [Google Scholar] [CrossRef]
- Lin, Q.; Lazareva, E.N.; Kochubey, V.I.; Duan, Y.; Tuchin, V.V. Kinetics of optical clearing of human skin studied in vivo using portable Raman spectroscopy. Laser Phys. Lett. 2020, 17, 10. [Google Scholar] [CrossRef]
- Tfaili, S.; Gobinet, C.; Josse, G.; Angiboust, J.F.; Manfait, M.; Piot, O. Confocal Raman microspectroscopy for skin characterization: A comparative study between human skin and pig skin. Analyst 2012, 137, 3673–3682. [Google Scholar] [CrossRef]
Sample | Z-Average (nm) a | Zeta Potential (mV) a | Molar Ratio (VDG:SPC) | MC540 CP (A570/A530) a |
---|---|---|---|---|
T | 111.0 ± 1.8 | −20.3 ± 1.2 | - | 0.94 ± 0.01 |
T + VDG | 114.3 ± 1.1 | −18.5 ± 0.8 | 1:12.5 | 1.00 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez, G.E.; Calienni, M.N.; Alonso, S.d.V.; Alvira, F.C.; Montanari, J. Raman Spectroscopy to Monitor the Delivery of a Nano-Formulation of Vismodegib in the Skin. Appl. Sci. 2023, 13, 7687. https://doi.org/10.3390/app13137687
Gómez GE, Calienni MN, Alonso SdV, Alvira FC, Montanari J. Raman Spectroscopy to Monitor the Delivery of a Nano-Formulation of Vismodegib in the Skin. Applied Sciences. 2023; 13(13):7687. https://doi.org/10.3390/app13137687
Chicago/Turabian StyleGómez, Gisela Eliane, María Natalia Calienni, Silvia del Valle Alonso, Fernando Carlos Alvira, and Jorge Montanari. 2023. "Raman Spectroscopy to Monitor the Delivery of a Nano-Formulation of Vismodegib in the Skin" Applied Sciences 13, no. 13: 7687. https://doi.org/10.3390/app13137687
APA StyleGómez, G. E., Calienni, M. N., Alonso, S. d. V., Alvira, F. C., & Montanari, J. (2023). Raman Spectroscopy to Monitor the Delivery of a Nano-Formulation of Vismodegib in the Skin. Applied Sciences, 13(13), 7687. https://doi.org/10.3390/app13137687