Numerical Simulation on Thermoelectric Cooling of Core Power Devices in Air Conditioning
Abstract
:1. Introduction
2. Simulations
- (1)
- Only heat convection and heat exchange are considered, and the influence of heat radiation is not considered.
- (2)
- The surface of the cooling fin is regarded as an ideal plane, regardless of the influence of surface roughness on the air viscous heat transfer coefficient.
- (3)
- The contact interface between the cooling fin and the TEC is simplified, and a thermally conductive silicone grease layer is used as a substitute.
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puttaswamy, K.; Loh, G.H. Thermal Analysis of a 3D Die-Stacked High-Performance Microprocessor. In Proceedings of the 16th ACM Great Lakes Symposium on VLSI, Philadelphia, PA, USA, 30 April–1 May 2006; pp. 19–24. [Google Scholar]
- Nada, S.; Alshaer, W. Comprehensive Parametric Study of Using Carbon Foam Structures Saturated with PCMs in Thermal Management of Electronic Systems. Energy Convers. Manag. 2015, 105, 93–102. [Google Scholar] [CrossRef]
- Mathew, J.; Krishnan, S. A Review on Transient Thermal Management of Electronic Devices. J. Electron. Packag. 2022, 144, 010801. [Google Scholar] [CrossRef]
- Brooks, D.; Martonosi, M. Dynamic Thermal Management for High-Performance Microprocessors. In Proceedings of the HPCA Seventh International Symposium on High-Performance Computer Architecture, Monterrey, Mexico, 19–24 January 2001; IEEE: Piscataway, NJ, USA, 2001; pp. 171–182. [Google Scholar]
- Haywood, A.M.; Sherbeck, J.; Phelan, P.; Varsamopoulos, G.; Gupta, S.K. The Relationship among CPU Utilization, Temperature, and Thermal Power for Waste Heat Utilization. Energy Convers. Manag. 2015, 95, 297–303. [Google Scholar] [CrossRef]
- Yi, J.; Liu, W.; Jiang, W.; Qin, M.; Yang, L.; Liu, D.; Xiao, C.; Du, L.; Sha, E.H.-M. An Improved Thermal Model for Static Optimization of Application Mapping and Scheduling in Multiprocessor System-on-Chip. In Proceedings of the 2014 IEEE Computer Society Annual Symposium on VLSI, Tampa, FL, USA, 9–11 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 547–552. [Google Scholar]
- Subramanian, V.; Ramesh, P.K.; Somani, A.K. Managing the Impact of On-Chip Temperature on the Lifetime Reliability of Reliably Overclocked Systems. In Proceedings of the 2009 Second International Conference on Dependability, Athens, Greece, 18–23 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 156–161. [Google Scholar]
- Prakash, A.; Amrouch, H.; Shafique, M.; Mitra, T.; Henkel, J. Improving Mobile Gaming Performance through Cooperative CPU-GPU Thermal Management. In Proceedings of the 53rd Annual Design Automation Conference, Austin, TX, USA, 5–9 June 2016; pp. 1–6. [Google Scholar]
- Hager, G.; Treibig, J.; Habich, J.; Wellein, G. Exploring Performance and Power Properties of Modern Multi-Core Chips via Simple Machine Models. Concurr. Comput. Pract. Exp. 2016, 28, 189–210. [Google Scholar] [CrossRef] [Green Version]
- Garimella, S.V.; Yeh, L.-T.; Persoons, T. Thermal Management Challenges in Telecommunication Systems and Data Centers. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1307–1316. [Google Scholar] [CrossRef]
- Suszko, A.; El-Genk, M.S. Thermally Anisotropic Composite Heat Spreaders for Enhanced Thermal Management of High-Performance Microprocessors. Int. J. Therm. Sci. 2016, 100, 213–228. [Google Scholar] [CrossRef]
- Kong, J.; Chung, S.W.; Skadron, K. Recent Thermal Management Techniques for Microprocessors. ACM Comput. Surv. (CSUR) 2012, 44, 1–42. [Google Scholar] [CrossRef]
- Li, Y.; Gong, L.; Ding, B.; Xu, M.; Joshi, Y. Thermal Management of Power Electronics with Liquid Cooled Metal Foam Heat Sink. Int. J. Therm. Sci. 2021, 163, 106796. [Google Scholar] [CrossRef]
- Laloya, E.; Lucia, O.; Sarnago, H.; Burdio, J.M. Heat Management in Power Converters: From State of the Art to Future Ultrahigh Efficiency Systems. IEEE Trans. Power Electron. 2015, 31, 7896–7908. [Google Scholar] [CrossRef]
- Shatikian, V.; Ziskind, G.; Letan, R. Numerical Investigation of a PCM-Based Heat Sink with Internal Fins. Int. J. Heat Mass Transf. 2005, 48, 3689–3706. [Google Scholar] [CrossRef]
- Lee, Y.J.; Singh, P.K.; Lee, P.S. Fluid Flow and Heat Transfer Investigations on Enhanced Microchannel Heat Sink Using Oblique Fins with Parametric Study. Int. J. Heat Mass Transf. 2015, 81, 325–336. [Google Scholar] [CrossRef]
- Qi, Z. Advances on Air Conditioning and Heat Pump System in Electric Vehicles—A Review. Renew. Sustain. Energy Rev. 2014, 38, 754–764. [Google Scholar] [CrossRef]
- Jin, X.; Ma, E.W.; Cheng, L.L.; Pecht, M. Health Monitoring of Cooling Fans Based on Mahalanobis Distance with MRMR Feature Selection. IEEE Trans. Instrum. Meas. 2012, 61, 2222–2229. [Google Scholar] [CrossRef]
- Leroy, A.; Bhatia, B.; Kelsall, C.C.; Castillejo-Cuberos, A.; Di Capua, H.M.; Zhao, L.; Zhang, L.; Guzman, A.; Wang, E. High-Performance Subambient Radiative Cooling Enabled by Optically Selective and Thermally Insulating Polyethylene Aerogel. Sci. Adv. 2019, 5, eaat9480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiang, X.; Yang, J.; Fan, A.; Liu, W. A Comparison between Cooling Performances of Water-Based and Gallium-Based Micro-Channel Heat Sinks with the Same Dimensions. Appl. Therm. Eng. 2018, 137, 1–10. [Google Scholar] [CrossRef]
- Khan, Y.; Sarowar, M.T.; Mobarrat, M.; Rahman, M.H. Performance Comparison of a Microchannel Heat Sink Using Different Nano-Liquid Metal Fluid Coolant: A Numerical Study. J. Therm. Sci. Eng. Appl. 2022, 14, 091014. [Google Scholar] [CrossRef]
- Muhammad, A.; Selvakumar, D.; Iranzo, A.; Sultan, Q.; Wu, J. Comparison of Pressure Drop and Heat Transfer Performance for Liquid Metal Cooled Mini-Channel with Different Coolants and Heat Sink Materials. J. Therm. Anal. Calorim. 2020, 141, 289–300. [Google Scholar] [CrossRef]
- Tan, F.; Tso, C. Cooling of Mobile Electronic Devices Using Phase Change Materials. Appl. Therm. Eng. 2004, 24, 159–169. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Cheng, W.; Chen, X.; Zhao, Q. Study of Using Enhanced Heat-Transfer Flexible Phase Change Material Film in Thermal Management of Compact Electronic Device. Energy Convers. Manag. 2020, 210, 112680. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhao, Y.; Ling, Z.; Zhang, Z.; Lin, W.; Fang, X. Simulative Study on the Performance of Polymeric Composites Containing Phase Change Capsules for Chip Heat Dissipation. J. Energy Storage 2023, 68, 107851. [Google Scholar] [CrossRef]
- Faraji, M.; El Qarnia, H.; Lakhal, E.K. Thermal Analysis of a Phase Change Material Based Heat Sink for Cooling Protruding Electronic Chips. J. Therm. Sci. 2009, 18, 268–275. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, Z.; Cai, C.; Zhou, Z.; Ling, Z.; Fang, X. Vertically Aligned Carbon Fibers-Penetrated Phase Change Thermal Interface Materials with High Thermal Conductivity for Chip Heat Dissipation. Appl. Therm. Eng. 2023, 230, 120807. [Google Scholar] [CrossRef]
- Tang, H.; Tang, Y.; Wan, Z.; Li, J.; Yuan, W.; Lu, L.; Li, Y.; Tang, K. Review of Applications and Developments of Ultra-Thin Micro Heat Pipes for Electronic Cooling. Appl. Energy 2018, 223, 383–400. [Google Scholar] [CrossRef]
- Zhu, L.; Tan, H.; Yu, J. Analysis on Optimal Heat Exchanger Size of Thermoelectric Cooler for Electronic Cooling Applications. Energy Convers. Manag. 2013, 76, 685–690. [Google Scholar] [CrossRef]
- Byon, C. Heat Pipe and Phase Change Heat Transfer Technologies for Electronics Cooling. In Electronics Cooling; IntechOpen: Rijeka, Croatia, 2016. [Google Scholar] [CrossRef] [Green Version]
- Groll, M.; Schneider, M.; Sartre, V.; Zaghdoudi, M.C.; Lallemand, M. Thermal Control of Electronic Equipment by Heat Pipes. Rev. Générale Therm. 1998, 37, 323–352. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Maghrabie, H.M.; Sayed, E.T.; Kais, E.-C.A.; Abo-Khalil, A.G.; Al Radi, M.; Baroutaji, A.; Olabi, A. Heat Pipe-Based Waste Heat Recovery Systems: Background and Applications. Therm. Sci. Eng. Prog. 2022, 29, 101221. [Google Scholar] [CrossRef]
- Baby, R.; Balaji, C. Thermal Management of Electronics Using Phase Change Material Based Pin Fin Heat Sinks. J. Phys. Conf. Ser. 2012, 395, 012134. [Google Scholar] [CrossRef]
- Goharshadi, E.; Ahmadzadeh, H.; Samiee, S.; Hadadian, M. Nanofluids for Heat Transfer Enhancement—A Review. Phys. Chem. Res. 2013, 1, 1–33. [Google Scholar]
- Zhao, D.; Tan, G. A Review of Thermoelectric Cooling: Materials, Modeling and Applications. Appl. Therm. Eng. 2014, 66, 15–24. [Google Scholar] [CrossRef]
- Enescu, D.; Virjoghe, E.O. A Review on Thermoelectric Cooling Parameters and Performance. Renew. Sustain. Energy Rev. 2014, 38, 903–916. [Google Scholar] [CrossRef]
- Chen, W.; Shi, X.; Zou, J.; Chen, Z. Thermoelectric Coolers: Progress, Challenges, and Opportunities. Small Methods 2022, 6, 2101235. [Google Scholar] [CrossRef]
- Pourkiaei, S.M.; Ahmadi, M.H.; Sadeghzadeh, M.; Moosavi, S.; Pourfayaz, F.; Chen, L.; Yazdi, M.A.P.; Kumar, R. Thermoelectric Cooler and Thermoelectric Generator Devices: A Review of Present and Potential Applications, Modeling and Materials. Energy 2019, 186, 115849. [Google Scholar] [CrossRef]
- Bansal, P.; Martin, A. Comparative Study of Vapour Compression, Thermoelectric and Absorption Refrigerators. Int. J. Energy Res. 2000, 24, 93–107. [Google Scholar] [CrossRef]
- Liang, K.; Li, Z.; Chen, M.; Jiang, H. Comparisons between Heat Pipe, Thermoelectric System, and Vapour Compression Refrigeration System for Electronics Cooling. Appl. Therm. Eng. 2019, 146, 260–267. [Google Scholar] [CrossRef]
- Chougule, S.S.; Sahu, S. Thermal Performance of Nanofluid Charged Heat Pipe with Phase Change Material for Electronics Cooling. J. Electron. Packag. 2015, 137, 021004. [Google Scholar] [CrossRef]
- Singh, V.; Sisodia, S.; Patel, A.; Shah, T.; Das, P.; Patel, R.; Bhavsar, R. Thermoelectric Cooler (TEC) Based Thermal Control System for Space Applications: Numerical Study. Appl. Therm. Eng. 2023, 224, 120101. [Google Scholar] [CrossRef]
- Gillott, M.; Jiang, L.; Riffat, S. An Investigation of Thermoelectric Cooling Devices for Small-Scale Space Conditioning Applications in Buildings. Int. J. Energy Res. 2010, 34, 776–786. [Google Scholar] [CrossRef]
- Chen, W.-Y.; Shi, X.-L.; Zou, J.; Chen, Z.-G. Thermoelectric Coolers for On-Chip Thermal Management: Materials, Design, and Optimization. Mater. Sci. Eng. R Rep. 2022, 151, 100700. [Google Scholar] [CrossRef]
- Moazzez, A.F.; Najafi, G.; Ghobadian, B.; Hoseini, S.S. Numerical Simulation and Experimental Investigation of Air Cooling System Using Thermoelectric Cooling System. J. Therm. Anal. Calorim. 2020, 139, 2553–2563. [Google Scholar] [CrossRef]
- Al-Shehri, S.A. Cooling Computer Chips with Cascaded and Non-Cascaded Thermoelectric Devices. Arab. J. Sci. Eng. 2019, 44, 9105–9126. [Google Scholar] [CrossRef]
- Li, S.; Liu, J.; Ding, L.; Liu, J.; Xu, J.; Peng, Y.; Chen, M. Active Thermal Management of High-Power LED through Chip on Thermoelectric Cooler. IEEE Trans. Electron Devices 2021, 68, 1753–1756. [Google Scholar] [CrossRef]
- Lou, L.; Shou, D.; Park, H.; Zhao, D.; Wu, Y.S.; Hui, X.; Yang, R.; Kan, E.C.; Fan, J. Thermoelectric Air Conditioning Undergarment for Personal Thermal Management and HVAC Energy Saving. Energy Build. 2020, 226, 110374. [Google Scholar] [CrossRef]
- Sasidharan, M.; Mohd Sabri, M.F.; Wan Muhammad Hatta, S.F.; Ibrahim, S. A Review on the Progress and Development of Thermoelectric Air Conditioning System. Int. J. Green Energy 2023, 20, 1–17. [Google Scholar] [CrossRef]
- Said, M.; Hassan, H. Impact of Energy Storage of New Hybrid System of Phase Change Materials Combined with Air-Conditioner on Its Heating and Cooling Performance. J. Energy Storage 2021, 36, 102400. [Google Scholar] [CrossRef]
- Ma, K.; Zuo, Z.; Wang, W. Design and Experimental Study of an Outdoor Portable Thermoelectric Air-Conditioning System. Appl. Therm. Eng. 2023, 219, 119471. [Google Scholar] [CrossRef]
- Seyednezhad, M.; Najafi, H. Numerical Analysis and Parametric Study of a Thermoelectric-Based Radiant Ceiling Panel for Building Cooling Applications. In Proceedings of the ASME International Mechanical Engineering Congress and Exposition, Virtual Online, 16–19 November 2020; American Society of Mechanical Engineers: New York, NY, USA, 2020; Volume 84560, p. V008T08A030. [Google Scholar]
- Manikandan, S.; Selvam, C.; Pavan Sai Praful, P.; Lamba, R.; Kaushik, S.; Zhao, D.; Yang, R. A Novel Technique to Enhance Thermal Performance of a Thermoelectric Cooler Using Phase-Change Materials. J. Therm. Anal. Calorim. 2020, 140, 1003–1014. [Google Scholar] [CrossRef]
- Venkatesan, K.; Venkataramanan, M. Experimental and Simulation Studies on Thermoelectric Cooler: A Performance Study Approach. Int. J. Thermophys. 2020, 41, 1–23. [Google Scholar] [CrossRef]
- Hu, K.; Yang, D.; Hui, Y.; Zhang, H.; Song, R.; Liu, Y.; Wang, J.; Wen, P.; He, D.; Liu, X.; et al. Optimized Thermal Design for Excellent Wearable Thermoelectric Generator. J. Mater. Chem. A 2022, 10, 24985–24994. [Google Scholar] [CrossRef]
Material | Parameter | Value |
---|---|---|
N-type Bi2Se0.3Te2.7 | Resistivity (104 S m−1) | 7.640 |
Thermal conductivity (W m−1 K−1) | 1.275 (at room temperature) | |
P-type Bi0.5Sb1.5Te3 | Resistivity (104 S m−1) | 9.535 |
Thermal conductivity (W m−1 K−1) | 1.362 (at room temperature) | |
Copper electrode | Resistivity (107 S m−1) | 5.998 |
Thermal conductivity (W m−1 K−1) | 400 | |
AlN substrate | Thermal conductivity (W m−1 K−1) | 170 |
Thermal grease | Thermal conductivity (W m−1 K−1) | 10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Hu, K.; Tang, K.; Xing, Y.; Xiao, Y.; Liu, Y.; Yan, Y.; Yang, D. Numerical Simulation on Thermoelectric Cooling of Core Power Devices in Air Conditioning. Appl. Sci. 2023, 13, 7274. https://doi.org/10.3390/app13127274
Wang J, Hu K, Tang K, Xing Y, Xiao Y, Liu Y, Yan Y, Yang D. Numerical Simulation on Thermoelectric Cooling of Core Power Devices in Air Conditioning. Applied Sciences. 2023; 13(12):7274. https://doi.org/10.3390/app13127274
Chicago/Turabian StyleWang, Jiang, Kai Hu, Kechen Tang, Yubing Xing, Yani Xiao, Yutian Liu, Yonggao Yan, and Dongwang Yang. 2023. "Numerical Simulation on Thermoelectric Cooling of Core Power Devices in Air Conditioning" Applied Sciences 13, no. 12: 7274. https://doi.org/10.3390/app13127274
APA StyleWang, J., Hu, K., Tang, K., Xing, Y., Xiao, Y., Liu, Y., Yan, Y., & Yang, D. (2023). Numerical Simulation on Thermoelectric Cooling of Core Power Devices in Air Conditioning. Applied Sciences, 13(12), 7274. https://doi.org/10.3390/app13127274