Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces
Abstract
:1. Introduction
2. Problem Statement
3. Analysis and Design of the Force Control System
3.1. Disturbance Rejection
Time-Varying Disturbances
3.2. Stability Analysis
3.2.1. Stability in Terms of K
3.2.2. Stability in Terms of
3.3. Design Method
Selecting Gains of Considering Stiffness K
- For a rigid surface/environment, a compliant controller is needed, i.e., .
- For a compliant surface/environment, a rigid controller is needed, i.e., .
3.4. Estimation of the Maximum Velocity at Which the Task Is Executed
4. Simulations
4.1. Disturbance Rejection
Time-Varying Disturbances
4.2. Stability
4.3. Design Method
Time-Varying Disturbances
4.4. Maximum Speed along the Surface
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Springer: London, UK, 2009. [Google Scholar]
- Suomalainen, M.; Karayiannidis, Y.; Kyrki, V. A survey of robot manipulation in contact. Robot. Auton. Syst. 2022, 156, 104224. [Google Scholar] [CrossRef]
- Balachandran, R.; Jorda, M.; Artigas, J.; Ryu, J.H.; Khatib, O. Passivity-based stability in explicit force control of robots. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 386–393. [Google Scholar] [CrossRef] [Green Version]
- Mariotti, E.; Magrini, E.; Luca, A.D. Admittance Control for Human-Robot Interaction Using an Industrial Robot Equipped with a F/T Sensor. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6130–6136. [Google Scholar] [CrossRef]
- Gutierrez-Giles, A.; Evangelista-Hernandez, L.U.; Arteaga, M.A.; Cruz-Villar, C.A.; Rodriguez–Angeles, A. A Force/Motion Control Approach Based on Trajectory Planning for Industrial Robots With Closed Control Architecture. IEEE Access 2021, 9, 80728–80740. [Google Scholar] [CrossRef]
- Keemink, A.Q.; van der Kooij, H.; Stienen, A.H. Admittance control for physical human–robot interaction. Int. J. Robot. Res. 2018, 37, 1421–1444. [Google Scholar] [CrossRef] [Green Version]
- Park, J.H. Compliance/Impedance Control Strategy for Humanoids. In Humanoid Robotics: A Reference; Goswami, A., Vadakkepat, P., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–20. [Google Scholar] [CrossRef]
- Zou, W.; Chen, X.; Li, S.; Duan, P.; Yu, N.; Shi, L. Robust Admittance Control for Human Arm Strength Augmentation with Guaranteed Passivity: A Complementary Design. IEEE/ASME Trans. Mechatron. 2022, 27, 5936–5947. [Google Scholar] [CrossRef]
- Griffiths, P.G.; Gillespie, R.B.; Freudenberg, J.S. A Fundamental Linear Systems Conflict Between Performance and Passivity in Haptic Rendering. IEEE Trans. Robot. 2011, 27, 75–88. [Google Scholar] [CrossRef]
- Li, J.; Guan, Y.; Chen, H.; Wang, B.; Zhang, T.; Liu, X.; Hong, J.; Wang, D.; Zhang, H. A High-Bandwidth End-Effector with Active Force Control for Robotic Polishing. IEEE Access 2020, 8, 169122–169135. [Google Scholar] [CrossRef]
- Li, J.; Guan, Y.; Chen, H.; Wang, B.; Zhang, T. Robotic Polishing of Unknown-Model Workpieces With Constant Normal Contact Force Control. IEEE/ASME Trans. Mechatron. 2023, 28, 1093–1103. [Google Scholar] [CrossRef]
- Pérez-Ubeda, R.; Zotovic-Stanisic, R.; Gutiérrez, S.C. Force Control Improvement in Collaborative Robots through Theory Analysis and Experimental Endorsement. Appl. Sci. 2020, 10, 4329. [Google Scholar] [CrossRef]
- Feng, Z.; Liang, W.; Ling, J.; Xiao, X.; Tan, K.K.; Lee, T.H. Precision Force Tracking Control of a Surgical Device Interacting with a Deformable Membrane. IEEE/ASME Trans. Mechatron. 2022, 27, 5327–5338. [Google Scholar] [CrossRef]
- Fan, J.; Jin, L.; Xie, Z.; Li, S.; Zheng, Y. Data-Driven Motion-Force Control Scheme for Redundant Manipulators: A Kinematic Perspective. IEEE Trans. Ind. Inform. 2022, 18, 5338–5347. [Google Scholar] [CrossRef]
- Li, H.; Nie, X.; Duan, D.; Li, Y.; Zhang, J.; Zhou, M.; Magid, E. An admittance-controlled amplified force tracking scheme for collaborative lumbar puncture surgical robot system. Int. J. Med. Robot. Comput. Assist. Surg. 2022, 18, e2428. [Google Scholar] [CrossRef] [PubMed]
- Rosales, A.; Heikkilä, T. On Force Control for Robot Manipulators in Contact with Uneven Planar Surfaces. In Proceedings of the 2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Taipei, Taiwan, 28–30 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Ahola, J.M.; Koskinen, J.; Seppälä, T.; Heikkilä, T. Development of Impedance Control for Human/Robot Interactive Handling of Heavy Parts and Loads. In Proceedings of the 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Boston, MA, USA, 2–5 August 2015. [Google Scholar] [CrossRef]
- Dorf, R.; Bishop, R. Modern Control Systems, 12th ed.; Prentice Hall: Hoboken, NJ, USA, 2011. [Google Scholar]
- Rosales, J.A.; Shtessel, Y.; Fridman, L. Phase and Gain Margins in Systems with SMC/HOSM. In Proceedings of the American Control Conference 2012, Montreal, QC, Canada, 27–29 June 2012. [Google Scholar]
Overshoot | |||||
---|---|---|---|---|---|
P | 0.002229 | 0 | 0 | 0.88 s | 14.8% (7.4 N) |
PD | 0.004211 | 0.001111 | 0 | 0.71 s | 14.4% (7.2 N) |
PID | 0.0053947 | 0.0005154 | 0.01411 | 0.88 s | 15.4% (7.7 N) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales, A.; Heikkilä, T. Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces. Appl. Sci. 2023, 13, 7233. https://doi.org/10.3390/app13127233
Rosales A, Heikkilä T. Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces. Applied Sciences. 2023; 13(12):7233. https://doi.org/10.3390/app13127233
Chicago/Turabian StyleRosales, Antonio, and Tapio Heikkilä. 2023. "Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces" Applied Sciences 13, no. 12: 7233. https://doi.org/10.3390/app13127233
APA StyleRosales, A., & Heikkilä, T. (2023). Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces. Applied Sciences, 13(12), 7233. https://doi.org/10.3390/app13127233