Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces
Abstract
1. Introduction
2. Problem Statement
3. Analysis and Design of the Force Control System
3.1. Disturbance Rejection
Time-Varying Disturbances
3.2. Stability Analysis
3.2.1. Stability in Terms of K
3.2.2. Stability in Terms of
3.3. Design Method
Selecting Gains of Considering Stiffness K
- For a rigid surface/environment, a compliant controller is needed, i.e., .
- For a compliant surface/environment, a rigid controller is needed, i.e., .
3.4. Estimation of the Maximum Velocity at Which the Task Is Executed
4. Simulations
4.1. Disturbance Rejection
Time-Varying Disturbances
4.2. Stability
4.3. Design Method
Time-Varying Disturbances
4.4. Maximum Speed along the Surface
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Robotics: Modelling, Planning and Control; Springer: London, UK, 2009. [Google Scholar]
- Suomalainen, M.; Karayiannidis, Y.; Kyrki, V. A survey of robot manipulation in contact. Robot. Auton. Syst. 2022, 156, 104224. [Google Scholar] [CrossRef]
- Balachandran, R.; Jorda, M.; Artigas, J.; Ryu, J.H.; Khatib, O. Passivity-based stability in explicit force control of robots. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 386–393. [Google Scholar] [CrossRef]
- Mariotti, E.; Magrini, E.; Luca, A.D. Admittance Control for Human-Robot Interaction Using an Industrial Robot Equipped with a F/T Sensor. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6130–6136. [Google Scholar] [CrossRef]
- Gutierrez-Giles, A.; Evangelista-Hernandez, L.U.; Arteaga, M.A.; Cruz-Villar, C.A.; Rodriguez–Angeles, A. A Force/Motion Control Approach Based on Trajectory Planning for Industrial Robots With Closed Control Architecture. IEEE Access 2021, 9, 80728–80740. [Google Scholar] [CrossRef]
- Keemink, A.Q.; van der Kooij, H.; Stienen, A.H. Admittance control for physical human–robot interaction. Int. J. Robot. Res. 2018, 37, 1421–1444. [Google Scholar] [CrossRef]
- Park, J.H. Compliance/Impedance Control Strategy for Humanoids. In Humanoid Robotics: A Reference; Goswami, A., Vadakkepat, P., Eds.; Springer: Dordrecht, The Netherlands, 2016; pp. 1–20. [Google Scholar] [CrossRef]
- Zou, W.; Chen, X.; Li, S.; Duan, P.; Yu, N.; Shi, L. Robust Admittance Control for Human Arm Strength Augmentation with Guaranteed Passivity: A Complementary Design. IEEE/ASME Trans. Mechatron. 2022, 27, 5936–5947. [Google Scholar] [CrossRef]
- Griffiths, P.G.; Gillespie, R.B.; Freudenberg, J.S. A Fundamental Linear Systems Conflict Between Performance and Passivity in Haptic Rendering. IEEE Trans. Robot. 2011, 27, 75–88. [Google Scholar] [CrossRef]
- Li, J.; Guan, Y.; Chen, H.; Wang, B.; Zhang, T.; Liu, X.; Hong, J.; Wang, D.; Zhang, H. A High-Bandwidth End-Effector with Active Force Control for Robotic Polishing. IEEE Access 2020, 8, 169122–169135. [Google Scholar] [CrossRef]
- Li, J.; Guan, Y.; Chen, H.; Wang, B.; Zhang, T. Robotic Polishing of Unknown-Model Workpieces With Constant Normal Contact Force Control. IEEE/ASME Trans. Mechatron. 2023, 28, 1093–1103. [Google Scholar] [CrossRef]
- Pérez-Ubeda, R.; Zotovic-Stanisic, R.; Gutiérrez, S.C. Force Control Improvement in Collaborative Robots through Theory Analysis and Experimental Endorsement. Appl. Sci. 2020, 10, 4329. [Google Scholar] [CrossRef]
- Feng, Z.; Liang, W.; Ling, J.; Xiao, X.; Tan, K.K.; Lee, T.H. Precision Force Tracking Control of a Surgical Device Interacting with a Deformable Membrane. IEEE/ASME Trans. Mechatron. 2022, 27, 5327–5338. [Google Scholar] [CrossRef]
- Fan, J.; Jin, L.; Xie, Z.; Li, S.; Zheng, Y. Data-Driven Motion-Force Control Scheme for Redundant Manipulators: A Kinematic Perspective. IEEE Trans. Ind. Inform. 2022, 18, 5338–5347. [Google Scholar] [CrossRef]
- Li, H.; Nie, X.; Duan, D.; Li, Y.; Zhang, J.; Zhou, M.; Magid, E. An admittance-controlled amplified force tracking scheme for collaborative lumbar puncture surgical robot system. Int. J. Med. Robot. Comput. Assist. Surg. 2022, 18, e2428. [Google Scholar] [CrossRef] [PubMed]
- Rosales, A.; Heikkilä, T. On Force Control for Robot Manipulators in Contact with Uneven Planar Surfaces. In Proceedings of the 2022 18th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), Taipei, Taiwan, 28–30 November 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Ahola, J.M.; Koskinen, J.; Seppälä, T.; Heikkilä, T. Development of Impedance Control for Human/Robot Interactive Handling of Heavy Parts and Loads. In Proceedings of the 2015 ASME/IEEE International Conference on Mechatronic and Embedded Systems and Applications, Boston, MA, USA, 2–5 August 2015. [Google Scholar] [CrossRef]
- Dorf, R.; Bishop, R. Modern Control Systems, 12th ed.; Prentice Hall: Hoboken, NJ, USA, 2011. [Google Scholar]
- Rosales, J.A.; Shtessel, Y.; Fridman, L. Phase and Gain Margins in Systems with SMC/HOSM. In Proceedings of the American Control Conference 2012, Montreal, QC, Canada, 27–29 June 2012. [Google Scholar]
Overshoot | |||||
---|---|---|---|---|---|
P | 0.002229 | 0 | 0 | 0.88 s | 14.8% (7.4 N) |
PD | 0.004211 | 0.001111 | 0 | 0.71 s | 14.4% (7.2 N) |
PID | 0.0053947 | 0.0005154 | 0.01411 | 0.88 s | 15.4% (7.7 N) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rosales, A.; Heikkilä, T. Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces. Appl. Sci. 2023, 13, 7233. https://doi.org/10.3390/app13127233
Rosales A, Heikkilä T. Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces. Applied Sciences. 2023; 13(12):7233. https://doi.org/10.3390/app13127233
Chicago/Turabian StyleRosales, Antonio, and Tapio Heikkilä. 2023. "Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces" Applied Sciences 13, no. 12: 7233. https://doi.org/10.3390/app13127233
APA StyleRosales, A., & Heikkilä, T. (2023). Analysis and Design of Direct Force Control for Robots in Contact with Uneven Surfaces. Applied Sciences, 13(12), 7233. https://doi.org/10.3390/app13127233