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Abstract: Robots executing contact tasks are essential in a wide range of industrial processes such as
polishing, welding, debugging, drilling, etc. Force control is indispensable in these type of tasks since
it is required to keep the interaction force (between the robot and the environment/surface) within
acceptable values. In this paper, we present a methodology to analyze and to design the force control
system needed to regulate the force as close as possible to the desired value. The proposed methods
are presented using a widely used generic contact task consisting of exerting a desired force on the
normal direction to the surface while a desired velocity/position is tracked on the tangent direction
to the surface. The analysis considers environments/surfaces with certain uneven characteristics, i.e.,
not perfectly flat. The uneven characteristic is studied using ramp or sinusoidal signals disturbing
the position on the normal direction to the surface, and we present how the velocity on the tangent
direction is related with the slope of the ramp or the frequency of the sinusoidal disturbance. Then,
we provide a method to design the force controller that keeps the force error within desired limits
and preserves stability, despite the uneven surface. Furthermore, considering the relation between
the disturbance (ramp or sinusoidal) and the tangent velocity, we present a method to compute the
maximum velocity for which the task can be executed. Simulations exemplifying and verifying the
proposed methods are presented.

Keywords: robotics; force control; stability

1. Introduction

Robots executing contact tasks are essential to automate plenty of manufacturing
processes. Regulating the force produced during the interaction between the robot and
the environment is critical. There are principally two approaches to regulate the force;
one is called indirect force control, since the force is regulated through motion control,
i.e., changes in the position error at the end-effector, and the second one is called direct
force control, since force feedback is directly compared with a desired force to calculate the
robot’s control input [1].

Direct force control is preferred when the application requires a precise regulation of
the force. Additionally, direct force control is capable of accomplishing the contact task
without damaging the environment and the robot itself [2]. However, the advantages of
direct force control come at a price, since preserving stability is challenging, mainly because
of the presence of unavoidable dynamics such as sensor dynamics, filters, and delays [3].

On the other hand, when direct force control techniques are implemented in industrial
robots, one should design controllers that generate velocity or position inputs, since these
are the standard inputs of industrial robots [4,5]. Admittance controllers are the ones
having velocity/position as an output and force as an input [6]. Despite the fact that the
implementation of admittance-type controllers has shown efficiency and efficacy [7], there
exists a compromise between performance and stability during its design [8,9].

Recent research on force control has been focused in the design of Proportional-
Integral-Derivative (PID) controllers that reach quickly the desired force with limited
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overshoot. For example, the authors in [10] present a force control system based on PID that
ensures asymptotic convergence of the force error to zero with small overshoot and short
settling time. In [11], a force control system is presented based on PID that keeps the force
within the desired value despite uncertainty in the surface’s model. In [12], the authors
analyze the effect of the surface’s stiffness in the force control, and they present a PID
controller that reaches the desired force without overshoot. Furthermore, advanced control
techniques have been recently applied to regulate force. An application to medical robotics
in [13] presents a force controller based on sliding mode control that ensures convergence
of the force error to zero in finite time. Data-driven control is used in [14] to present a
data-driven force control that ensures global convergence of the error to a steady state.
Notwithstanding the prominent results presented in the mentioned references, the velocity
of the robot in the tangent direction (along the surface) has not been studied, although this
velocity is important since it is related to the velocity at which the task can be executed.
Furthermore, a quantitative approach to design the control gains that produces a specified
tolerance error is hardly discussed. The mentioned methods (estimation of the velocity of
the task and a quantitative design) are relevant to practical applications required to execute
the task as fast as possible and to keep the force error within acceptable limits.

In this paper, we propose a methodology to analyze and to design the force control of a
robot in contact with an uneven surface. The proposed methods are presented considering
the general contact task of maintaining a desired velocity along the surface (in the tangent
direction to the surface) while a desired force is applied on the normal direction to the
surface. This contact task properly describes applications when the priority is to regulate the
force in one direction, such as polishing and assembly tasks, as well as medical applications
(see [15]).

We study admittance direct force controllers with Proportional-Integral-Derivative
(PID) structure to have methods suitable for industrial robots allowing velocity/position
inputs and to fit our methods with the industrially accepted PID controller.

Ramp and sinusoidal signals are used to model the uneven characteristics of the
surface, and the relation between the disturbances and the velocity along the surface is
presented. Since we are considering only the regulation of the force in the normal direction,
the magnitude of the slope (values of frequency) is bounded to avoid steep slopes producing
force in a different direction than the normal one.

Then, we propose a method to compute the controller considering the performance in
terms of force error and attenuation of disturbances in the normal direction. Additionally,
we include the gain margin analysis to estimate how much the control gain/magnitude
can be modified without creating instability. In addition, the gain margin is used to predict
how much uncertainty in the stiffness the system can tolerate. Furthermore, considering
the proportional relation between the velocity along the surface, and the ramp magnitude
(or frequency of the sinusoidal), we provide a method to estimate the maximum velocity
at which the task can be executed. The proposed methods are validated via simulations.
(Preliminary results linked with this paper were presented in [16]).

The structure of the paper is the following. Section 2 presents the problem statement.
The methods of analysis and design are presented in Section 3. Section 4 contains the
simulations, and the conclusions are presented in Section 5.

2. Problem Statement

Figure 1 presents the robot in contact with the uneven surface. The robot has to execute
the following task: to exert a desired force fd in the normal direction (x direction) to the
surface while a desired velocity vd is maintained along the surface (y direction).
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Figure 1. The contact task. v is the velocity in the normal direction, and vy is the velocity along
the surface.

During the execution of the task (see Figure 1), the following assumptions are consid-
ered. First, the end-effector of the robot is always in contact with the surface; the methods
provided in this paper are not valid when the robot loses contact with the surface. Sec-
ond, it is assumed that no forces are produced along the z-axis since the end-effector is
moving along the y-axis. Third, the end-effector is in compliance with the surface in the
x-direction. The compliance in the x-direction helps to direct most of the force produced by
the curved surface to the x-direction; hence, the force along the y-axis is minimum and one
can consider that the normal force is mainly defined by the force in the x-direction. Then,
the interaction force is studied using the one-degree-of-freedom (1DOF) model presented
in Figure 2, considering only the movement in the x direction [6].

1DOF

Figure 2. The one-degree-of-freedom interaction force model.

The force exerted by the robot on the surface is described by the following elastic
model:

f = K(x− xe) (1)

where K > 0 is the accumulative stiffness of the tool plus the environment, x is the end-
effector position, and the location of the surface in xe. The control objective is to design the
robot’s input v that ensures the desired force fd is applied on the surface.

Considering the models in Figure 2 and Equation (1), the force control system pre-
sented in Figure 3 is used to study and to design the control v. The force control system is
composed of the following blocks: Gc(s) is the controller, GLP(s) describes the dynamics of
a filter used to attenuate noise from force sensor measurements, and GT(s) corresponds to
the delay produced by sensor–hardware communication. The block K corresponds to the
stiffness. The block named Robot is the single-input single-output model of the robot, and
the time-constant τ defines how fast the robot’s position x responds to the control input v.
The signals fd, f , e = fd − f , v, and xd represent the desired force, the measured force, the
force error, the control signal, and a disturbance emerging in the position x, respectively.
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Figure 3. Block diagram of the force control system.

The transfer functions of the force control system in Figure 3 are as follows.

Gc(s) = Kp + Kds +
Ki
s

(2)

GLP(s) =
1

τLPs + 1
(3)

GT(s) = e−Ts (4)

where s is the Laplace variable, Kp, Kd, Ki > 0 are control gains, τLP is the time constant of
the filter, and T is the time-delay value. The transfer functions and its parameters were
already identified and presented in [17] by our research group. Note that the controller
Gc(s) is a direct force control, and it is similar to an admittance control since its input is a
force and its output is a velocity.

Direct force control and admittance control have been studied and tested in industrial
robots; however, during the adjustment of the gains, there exists an unavoidable com-
promise between performance and stability [8,9]. Furthermore, when delays and filters
are included in the force control system (see Figure 3), these additional dynamics deterio-
rate the stability of the force control system [3]. Additionally, when disturbances emerge,
the design of the gains should consider disturbance rejection as well as the stability of
the system.

In this paper, we propose a method for the analysis and design of force control systems,
such as the one in Figure 3, considering performance, stability margins, and robustness
against disturbances. For the stability analysis, our method estimates how much the control
magnitude should be modified before losing stability. Furthermore, using stability margins,
we can estimate how much stiffness uncertainty the force control can handle. For the
robustness analysis, we considered a disturbance (xd) on the robot’s position, i.e., the
x direction. These disturbances represent the uneven nature of the surface, and then the
performance of the disturbed system is studied in terms of the force error e, and a method
is proposed to compute the control gains that keep the error within given limits and ensure
acceptable stability margins.

Ramp and sinusoidal signals are used to disturb the system. The ramp value and
the frequency of the sinusoidal signal are used to define the velocity at which the task is
executed. Then, from the proposed design method, the maximum velocity at which the
task can be executed is estimated.

3. Analysis and Design of the Force Control System

In this section, we present the analysis of the force control system in Figure 3, the
design method to keep the force error within acceptable limits, and how to estimate the
maximum velocity at which the task can be executed.

3.1. Disturbance Rejection

Consider the uneven characteristics of the surface, a trapezoid with slopes of magni-
tude M (see Figure 4a). Then, the disturbance xd is modeled using a ramp signal Xd(s) = M

s2

with magnitude M, and s is the Laplace variable. Note that the ramp magnitude M is
proportional to the velocity vy at which the task is executed. For example, when the robot
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executes a linear movement from point A to point B, the bigger the velocity vy, the bigger
the magnitude M of the ramp in the x direction.

Point A

Point B

(a) (b)

Point A Point B

Figure 4. The uneven characteristics of the surface. (a) Ramp shape and (b) sinusoidal shape.

The performance of the force control system in Figure 3 is analyzed using the steady-
state error ess = lims→0 sE(s), where E(s) is the force error e in the Laplace domain; then

ess = lim
s→0

s
KG(s)

1 + Gc(s)KG(s)GLP(s)GT(s)
Xd(s) (5)

where Gc = Kp + Kds + Ki
s is the controller, G(s) = 1

s(τs+1) is the transfer function of the
robot, GLP(s) is the filter, GT is the transport delay, XD(s) is the external disturbance, and
K is the stiffness.

Considering the ramp disturbance Xd(s) = M
s2 , the control Gc(s) = Kp + Kds + Ki

s

ensures zero steady-state error ess [18]. However, the integral term Ki
s has a drawback since

it produces a sluggish and oscillatory response.
On the other hand, when the controller is Gc(s) = Kp + Kds, the steady-state error

is ess = M
Kp

, but it can be reduced by incrementing the control gain Kp (or the control
magnitude |Gc(s)|). In Figure 5, the curves for different values of ess are presented. These
curves are obtained from ess =

M
Kp

using different ramp values and gains Kp.

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

1

2

3

4

5

6

7

8

9

10

Figure 5. Curves of steady-state error ess in terms of control gain Kp and ramp value M.

The curves in Figure 5 represent a design tool considering the disturbance ramp
magnitude M (proportional to the velocity vy at which the task is executed) and force error
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via steady-state error. If the magnitude M is known/estimated, one can obtain the control
gain Kp that produces the steady-state error ess presented in the curves, and vice versa, if a
certain steady-state error ess is desired, one can choose the gain Kp producing this error.

Note than the stiffness value K does not appear in disturbance analysis presented in
this section. However, the value of K matters when it is big since the stability of the force
control system may be compromised. Furthermore, one should be careful when the gain
Kp is selected, since a big Kp value may affect the stability too.

Time-Varying Disturbances

Another way to study the uneven characteristics of the surface is using sinusoidal
disturbances xd(t) = sin(ωt) (see Figure 4b). In this case, the velocity vy at which the task
is executed is proportional to the frequency ω of the disturbance in the x direction. For
example, the faster the end-effector is moving on the surface from point A to point B, the
higher the frequency ω of the sinusoidal disturbance. The proportionality relation depends
on the wavelength λ of the sinusoidal, i.e., vy = λ(ω/2π).

When a sinusoidal disturbance appears, the steady-state error ess cannot be used to
analyze the force error, and the analysis presented in Section 3.1 is not valid. However, one
can find a relation between the magnitude of the time-varying disturbance and the control
gain/magnitude.

Consider the following transfer function,

F(s)
Xd(s)

=
KGLP(s)GT(s)

1 + Gc(s)G(s)KGLP(s)GT(s)
,

from the disturbance xd to f ( fd = 0). From [18], this transfer function can be approximated
by F(s)

Xd(s)
≈ 1

Gc(s)G(s) . Then, the disturbance Xd(s) can be attenuated by increasing the
magnitude of Gc(s), since the goal is to have a magnitude,

|F(s)|s=jω =
|Xd(s)|s=jω

|Gc(s)|s=jω |G(s)|s=jω
, (6)

as close as possible to zero. Again, one should be aware of stability when the magnitude of
the controller increases.

Note that the computation of the magnitude |F(jω)| depends on the parameters of the
controller Gs, the dynamics of the robot G, and the frequency ω. Whenever the mentioned
parameters are available, one can obtain curves similar to those presented in Figure 5; an
example of the curves is presented in Section 4.

3.2. Stability Analysis

In this section, the relative stability analysis of the force control system in Figure 3 is
performed. Then, we find how much the control gain/magnitude Kp (also stiffness K) can
be incremented without damaging stability.

3.2.1. Stability in Terms of K

The gain margin is computed using the open-loop transfer function L(s). For the force
control system in Figure 3, the transfer function L(s) is as follows (see [18]):

L(s) = KGc(s)G(s)G f (s)Gd(s). (7)

Considering s = jω, the gain margin is obtained using the magnitude of L(jω),

|L(jω)| = K|Gc(jω)||G(jω)||G f (jω)||Gd(jω)|,

where ω is the frequency associated with the frequency response of L(s). Note that the
magnitude |L(jω)| is directly proportional to the gain K independent of the frequency ω.
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From the definition of the gain margin [18], the gain margin is the biggest increment
of magnitude |L(jω)| that conserves stability. The condition for stability is |L(jω)| < 1,
and this condition can be tested in the following way. First, a multiplicative gain KGM is
added to |L(jω)|, and second, KGM is increased until the stability condition is violated, i.e.,
KGM|L(jω)| ≥ 1 [19]. The magnitude |L(jω)|test,

|L(jω)|test = KGMK|Gc(jω)||G(jω)||G f (jω)||Gd(jω)|,

is used to check the gain margin, and the stability is ensured if |L(jω)|test < 1. Note that
the stability condition will be violated for certain KGM = KGMmax producing |L(jω)|test = 1,
and the value of the gain margin will be KGMmax .

One can observe that the term KGMK affects the whole magnitude |L(jω)|test. There-
fore, when the gain margin KGMmax is known, one can use KGMmax to estimate the maximum
increment/change in stiffness K that maintains the stability.

3.2.2. Stability in Terms of Kp

For the computation of the gain margin in terms of Kp, the stiffness K is consid-
ered constant and the frequency response Gc(jω) is divided in real and imaginary parts,

Gc(jω) = Kp +
(

Kdω2−Ki
ω

)
j. Adding the multiplicative gain KGM to Gc(jω), the magnitude

|Gc(jω)|KGM is defined as

|Gc(jω)|KGM = KGM|Gc(jω)| =
∣∣∣∣KGMKp +

(
KGMKdω2 − KGMKi

ω

)
j
∣∣∣∣,

= KGM

∣∣∣∣Kp +

(
Kdω2 − Ki

ω

)
j
∣∣∣∣.

Note that the gain KGM is directly proportional to the control magnitude |Gc(jω)|KGM
or directly proportional to each control gain Kp,Kd, and Ki.

Using |Gc(jω)|KGM , the transfer function to test and compute the gain margin is

|L(jω)|test = KGM|Gc(jω)|K|G(jω)||G f (jω)||Gd(jω)|,

where KGM represents an increment/change in the magnitude |Gc(jω)|. Since the stability
condition is |L(jω)|test < 1, the gain margin is the gain KGM = KGMmax that produces
|L(jω)|test = 1. Therefore, the gain margin computation gives an estimate of how much
one can modify the control gain/magnitude without producing instability.

3.3. Design Method

Considering the stability analysis presented in the preceding section and the design
curve in Figure 5, one can observe a compromise between stability and error attenuation.
Selecting a big value of control magnitude |Gc(jω)|might result in an acceptable force error
but this magnitude may deteriorate the stability.

The proposed design method for the controller Gc = Kp + Kds is obtained, when one
includes in the curves of Figure 5 the maximum value of magnitude/gain KGMmax that
preserves stability (see Figure 6). The set of gains Kp presented in Figure 6 is selective since
it considers only the gains Kp that guarantee stability. The values of ess corresponding to
the gain KGMmaxKp are the minimum values one can have in the force error considering
the disturbance magnitude M and the stability margin. Therefore, the curves in Figure 6
provide a better design method for the controller Gc(s) compared with the curves in
Figure 5.
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Figure 6. Design method: steady-state error ess in terms of control gain Kp and ramp value M Kp

considering gain margin.

Selecting Gains of Gc Considering Stiffness K

From Equation (7), one can observe how the product of K and |Gc(jω)| affects the gain
margin. Therefore, when the control gains in Equation (2) are selected/adjusted, one should
consider the value of stiffness K in order to preserve the relative stability of the system.

Assume the stiffness K can be modified/adjusted (adding elasticity to the end-effector
using a spring). Then, from Equation (7), the magnitude |L(jω)| contains two adjustable
terms (its parameters are at hand); the first one is the controller Gc and the second one is
the stiffness K.

If the goal is to preserve a desired gain margin, one should keep the magnitude |L(jω)|
as close as possible to its value associated with the desired gain margin. Therefore, when
the control gains are adjusted (or the stiffness is adjusted), one should keep a balance
between the magnitude of the controller Gc and the value of stiffness K. For example, if the
magnitude of Gc increases, one should balance/compensate this change with a decrease in
K to preserve the desired magnitude |L(jω)| associated with the desired gain margin.

Therefore, in order to preserve a stable contact force, the following relations between
the stiffness and the controller exist:

• For a rigid surface/environment, a compliant controller is needed, i.e., K >> |Gc|.
• For a compliant surface/environment, a rigid controller is needed, i.e., K << |Gc|.

3.4. Estimation of the Maximum Velocity at Which the Task Is Executed

Assume emax is the maximum tolerable force error in the force control system in
Figure 3. Then, all the errors ess < emax are acceptable.

On the other hand, when one selects the maximum gain KGMmaxKp from Figure 6, this
gain is the critical gain since it corresponds to the case |L(jω)|test = 1. In practice, one
should avoid having a critical gain, since the system may have an oscillatory response, and
a small disturbance may cause instability. Therefore, the selection of the controller gain
should be Kp < KGMmaxKp.

Considering the maximum error emax and the recommended selection of the gain
Kp < KGMmaxKp, it is possible to obtain a more selective set of gains Kp from Figure 6. In
Figure 7, certain values for emax and Kp < KGMmaxKp are presented. One can observe a
selective set of gains Kp defined by the limits emax and Kp < KGMmaxKp. The mentioned
region contains the set of gains that ensure an acceptable force error and a safer response,
since Kp is far from the critical gain. Additionally, there are curves corresponding to
different values of M, and a maximum value Mmax can be obtained from the region. In
Figure 7, Mmax = 1.5M. Since M is proportional to the velocity at which the task is executed
(see Section 3.1), the maximum velocity can be estimated from Mmax.
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Figure 7. Curves including maximum tolerable error emax and recommended Kp < KGMmaxKp.

4. Simulations

Firstly, using the pidTuner of Matlab, we tuned three controllers Gc(s), a Proportional
(P), Proportional-Derivative (PD), and Proportional-Integral-Derivative (PID) to havethe
same settling time ts ≈ 0.8 seconds and overshoot of 15%. The gains of the mentioned
controllers are presented in Table 1.

Table 1. Control gains.

Kp Kd Ki ts Overshoot

P 0.002229 0 0 0.88 s 14.8% (7.4 N)

PD 0.004211 0.001111 0 0.71 s 14.4% (7.2 N)

PID 0.0053947 0.0005154 0.01411 0.88 s 15.4% (7.7 N)

For the simulation, the force control system in Figure 3 is built in Simulink, and
the simulation is executed using the solver ode1(euler) with a fixed sampling time of
1 millisecond. The parameters of the force control system used in the simulation are
τ = 0.05, T = 0.008, K = 3000, and τLP = 0.05. We test a step input of 50 N at 30 s. Figure 8
shows the time response; one can see that the settling time and overshoot are similar but
the PD controller is faster than P and PID.

0 10 20 30 40 50 60
-40

-20

0

20

40

60

80

100

120

140

160

P
PD
PID

29 29.5 30 30.5 31 31.5 32
0

20

40

60

Figure 8. Simulation results: force f with P, PD, and PID.
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4.1. Disturbance Rejection

Consider the controller Gc = Kp + Kds with the parameters of Table 1, and a ramp
disturbance of magnitude M = 3.14× 10−3 emerging at t = 20 s. Then, the simulation
is performed, and Figure 9 presents the disturbance xd(t) and the force error e from the
simulation. Note that the disturbance xd(t) produces a force error of ess ≈ 0.74 [N]. This
error corresponds with that estimated theoretically using M = 0.00314 and Kp = 0.004211,
i.e., ess ≈ 0.00314

0.004211 ≈ 0.74.
Considering the design curves of Figure 6, if we want to reduce the error ess, we

need to increment the gain Kp. Then, increasing the gain Kp to Kpa = Kp + 0.002 and
Kpb = Kp + 0.004, the simulation of the force control system using these gains is performed,
and the resulting error is shown in Figure 9. One can observe that ess is reduced when the
value of Kp is increased.

0 10 20 30 40 50 60
0

0.01

0.02

0.03

0 10 20 30 40 50 60
0

20

40

60

20 30 40 50
-1

0

1

Figure 9. Force error ess in presence of ramp disturbance and disturbance xd(t).

Time-Varying Disturbances

Considering a sinusoidal disturbance xd(t) = 0.01 sin(0.628t) emerging at t = 20 s,
and the controller Gc = Kp + Kds + Ki

s with the gains in Table 1, the simulation of the
force control system is performed. The resulting force error e is presented in Figure 10 for
different values of control magnitude. One can observe that the error decreases when the
gains of magnitude of Gc(s) increase, as expected from Equation (6).

0 10 20 30 40 50 60
-0.01

-0.005

0

0.005

0.01

0 10 20 30 40 50 60
-20

0

20

40

60

20 30 40 50

-0.2

0

0.2

Figure 10. Force error ess in presence of sinusoidal disturbance xd(t) = 0.01 sin(0.628t) and distur-
bance xd (t).
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4.2. Stability

In this subsection, we compute the gain margin of the force control system in Figure 3.
Figure 11 presents the Bode plot of the system with controller Gc = Kp + Kds and
Gc = Kp + Kds + Ki

s . The gain margin is computed in the crossing of the magnitude
Bode plot with zero decibels (see [18]); this intersection is indicated with an arrow in
Figure 11. For the PD controller, the gain margin is equal to 11.1 dB, which is equivalent
to 3.6 (10(11.1/20)) in magnitude. For the PID controller, the gain margin is equal to 16 dB,
which is equivalent to 6.3 (10(16/20)) in magnitude. This gain margin represents the maxi-
mum value of the control gain (magnitude) that one can use without compromising the
stability of the system. From the analysis presented in Section 3.3, the gain for the system
with the PD controller is KGMmax = 3.6, and for PID, the magnitude is KGMmax = 6.3. From
the design curves in Figure 5, the control gain Kp can be increased until 3.6 times without
losing stability when the PD controller is used.

Figure 11. Bode plot and stability margins.

Now, the simulation is executed with Gc = Kp + Kds, and two values of Kp, i.e.,
Kp1 = 3Kp and Kp2 = 3.45Kp. The resulting force error e = fd − f is presented in
Figure 12a,b. One can observe that the higher the gain, the more oscillations in the force
error e. Furthermore, a gain of Kp3 = 3.6Kp was tested, but these results are not presented in
Figure 12, since this gain produces instability. Note that the simulation results correspond
with the gain margin presented in Figure 11, since oscillations appear when the control
gains are closer to the gain margin.
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Figure 12. Force error e = fd − f with PD controller. (a,b) The control gain Kp increases. (c,d) The
stiffness K increases.
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In accordance with Section 3.3, one can relate the gain margin shown in Figure 11 with
the maximum value of stiffness that preserves stability. This value is Kmax ≈ KGMmax K ≈
3.6 K. Figure 12c,d present the simulation of the force control system with two different
values of stiffness, Ka = 3.2 K and Kb = 3.45 K, where K = 3000. The resulting force error e
presents oscillations when K increases. For stiffness values higher than 3.5 K, the system
lost stability. This unstable case is not presented in Figure 12 for visibility purposes. The
simulation matches with the estimated gain margin, since oscillations/instability appear
when the value of stiffness K approaches/reaches the gain margin.

4.3. Design Method

In Section 4.2, a gain margin of 3.6 was obtained. Considering a constant stiffness
K, the maximum gain Kpmax that preserves stability is Kpmax ≈ 3.6Kp. Then, adding this
maximum gain Kpmax ≈ 3.6Kp into the design curves in Figure 6, one can obtain the gain
that keeps the error within desired values while preserving stability. Figure 13 shows the
design curves, including the stability margin bound Kpmax ≈ 3.6(0.004211) ≈ 0.0152. The
curves are obtained considering a value of M = 0.00314.
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Figure 13. Design method: steady-state error ess in terms of control gain Kp and ramp value M,
considering gain margin.

The curves in Figure 13 can be used to find the control gain Kp that gives a desired
force error. Assume the magnitude of the disturbance is provided, for example, 4M. Then,
if one selects a control gain of Kp = 0.013, the expected steady-state error is ess ≈ 0.96 N
(see the curve 4M in Figure 13).

Considering the disturbance of magnitude 4M and the controller Gc = Kp + Kds with
Kp = 0.013, the force control system is simulated. Figure 14 presents the disturbance
and the resulting force error e. Note that the force error e in Figure 14, when Kp = 0.013,
corresponds to the value of e ≈ 1 in the curves of Figure 13.

Since Kp = 0.013 is close to Kpmax , a small increase in Kp can cause oscillations and
instability in the system. The presented technique can be combined with root-locus analysis
to make an adjustment of Kp to have a desired damping. Figure 15 presents the root-
locus of the force control system, computed from the open-loop transfer function L(s) in
Equation (7) with Gc = Kp + Kds and using a second-order Padé approximation of GT(s),

i.e., GT(s) =≈ Nr(sL)
Dr(sL) , where Nr(sL) = ∑r

k=0
(2r−K)!
k!(r−k)! (−sT)k, Dr(sL) = ∑r

k=0
(2r−K)!
k!(r−k)! (sT)k,

T is the value of the delay, and r is the order of the approximation (see [18]). Figure 15
contains three markers showing the critical gain value 6.3 (similar to the gain margin),
the gain 3.08 corresponding to Kp = 0.013, and the gain value 0.231 corresponding to a
damping factor of 0.7.
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Figure 14. Force error ess in presence of ramp disturbance and disturbance xd(t).

Figure 14 presents the simulation when Kp is adjusted by the gain value 0.231, i.e.,
Kp = 0.231× 0.004422 = 9.9× 10−4. One can see that the force error e has a damped
response when Kp = 9.9× 10−4 but the value of e is bigger than the case when KP is
close to the gain margin value. Therefore, one can observe the compromise between force
regulation and stability.

Figure 15. Root-locus analysis computed with L(s) in Equation (7). Bottom part: zoom-in around
the origin.

Time-Varying Disturbances

The design curves, such as those in Figure 5, for the case of time-varying disturbance
are computed as follows. Considering the disturbance xd(t) = 0.01 sin(0.628t) and the
controller Gc = Kp + Kds + Ki

s with the gains presented in Table 1, Equation (6) can be
used to obtained the curves presented in Figure 16. These curves are computed for a fixed
frequency of 0.628 and different sinusoidal amplitudes (from 0.005 to 0.08). The horizontal
axis represents the controller magnitude, and the vertical axis represents the deviation of
the force from its desired value.
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Figure 16. Curves of steady-state error ess in terms of control gain Kp and sinusoidal amplitude.

The simulation of the force control system with disturbance xd(t) = sin(0.628t) for
different amplitudes (0.01, 0.02, 0.04, and 0.08) is performed, and the results are presented
in Figure 17. Note that the deviation of the force f with respect to the reference fd = 50 N
corresponds with the deviation predicted by the curves in Figure 16 for the case KGM = 1,
since the control magnitude was not changed. Specifically, Figure 16 predicts an approxi-
mated deviation of 0.25, 0.5, 1, and 2, when a sinusoidal disturbance with magnitude 0.01,
0.02, 0.04, and 0.08, respectively, appears in the system. This prediction matched with the
simulation results presented in Figure 17; see the zoom-in of the figure.
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Figure 17. Simulation of the force control system: sinusoidal disturbance with variable amplitude.

When the amplitude of the sinusoidal disturbance is fixed, one can obtain curves
similar to those presented in Figure 16 for several frequency values. Figure 18 presents the
mentioned curves, when the sinusoidal disturbance has an amplitude of 0.01 and different
frequency values. Then, whenever the amplitude and frequency are known, the curves
in Figure 18 can be used to tune the control magnitude in accordance with the desired
force error.
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Figure 18. Curves of steady-state error ess in terms of control magnitude KGM and sinusoidal
frequency.

Figure 19 presents the results of the simulation of the force control system with the
sinusoidal disturbance of amplitude of 0.01 and different values of frequency. One can see
that the simulation results matched with the predicted force error of the design curves in
Figure 18. For a control magnitude of one, i.e., KGM = 1, the predicted force errors are 0.5, 1,
3.5, and 10 [N], when a disturbance with frequency 0.628, 1.25, 2.5, and 5 rad/s, respectively,
emerges. These force errors are similar to the ones obtained in the simulation presented
in Figure 19; see the zoom-in. Note that the gain margin of 6.3 (see Figure 11) must be
considered during the selection of the control magnitude KGM in the curves presented in
Figures 16 and 18.
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Figure 19. Simulation of the force control system: sinusoidal disturbance with variable frequency.

4.4. Maximum Speed along the Surface

The maximum speed at which the task can be executed is computed as follows.
Consider that the maximum force error tolerated by the system is emax = 3 N, and controller
gain Kp = 0.005 (close to the one in Table 1). Then, locating these values in the design
curves of Figure 13, one obtains a region containing the possible values of disturbance
magnitude M that can be compensated (see Figure 20). The maximum value of M is the
one located in the upper right corner of the rectangular region delimited by emax = 3 N and
Kp = 0.005. Note that the maximum value is 4M. Then, the maximum speed at which the
task can be executed is computed as 4M = 4× 0.00314 = 0.0126 m/s.
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Figure 20. Computing the maximum speed using the curves of steady-state error ess in terms of
control gain Kp and ramp value M.

For the case of time-varying disturbances, the maximum speed at which the task
can be executed is computed using the curves presented in Figure 18. Considering a
maximum error of emax = 3 N and a selection of control magnitude KGM = 1.5, the
maximum velocity can be estimated with the frequency value associated with the closest
curve to the upper right corner of the rectangular region delimited by emax = 3 N and
KGM = 1.5. In Figure 21, this frequency value is 2.5 rad/s. Then, assuming a wavelength
λ = 0.1 m and considering the maximum frequency of 2.5 rad/s, the maximum velocity is
0.1× (2.5/2π) = 0.0199 m/s.
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Figure 21. Computing the maximum speed using the curves of steady-state error ess in terms of
control magnitude KGM and disturbance frequency.

5. Conclusions

The methods of analysis and design presented in this paper are useful to keep the force
error within desired limits while guaranteeing stability. Furthermore, the presented design
curves can be used to estimate the maximum velocity at which the task can be executed.
Since this method is model-based, its application requires certain knowledge about the
disturbances acting on the system, such as maximum magnitude and frequency. However,
these parameters might be available in practical applications or not difficult to estimate.
The simulations presented in the paper verify the effectiveness of the proposed methods.
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