Improvements of Computational Ghost Imaging by Using Sequenced Speckle
Abstract
:1. Introduction
2. Experiment Setup and Measurement Principle
2.1. Experiment Setup
2.2. Measurement Principle
3. Experiments and Simulation Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pittman, T.B.; Shih, Y.H.; Strekalov, D.V.; Sergienko, A.V. Optical Imaging by Means of Two-Photon Quantum Entanglement. Phys. Rev. A 1995, 52, R3429–R3432. [Google Scholar] [CrossRef] [PubMed]
- Bennink, R.S.; Bentley, S.J.; Boyd, R.W. “Two-Photon” Coincidence Imaging with a Classical Source. Phys. Rev. Lett. 2002, 89, 113601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gatti, A.; Brambilla, E.; Bache, M.; Lugiato, L.A. Ghost Imaging with Thermal Light: Comparing Entanglement and ClassicalCorrelation. Phys. Rev. Lett. 2004, 93, 093602. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, D.; Chen, X.-H.; Zhai, Y.-H.; Wu, L.-A. Correlated Two-Photon Imaging with True Thermal Light. Opt. Lett. 2005, 30, 2354. [Google Scholar] [CrossRef] [Green Version]
- Ferri, F.; Magatti, D.; Gatti, A.; Bache, M.; Brambilla, E.; Lugiato, L.A. High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light. Phys. Rev. Lett. 2005, 94, 183602. [Google Scholar] [CrossRef] [Green Version]
- Xiong, J.; Cao, D.-Z.; Huang, F.; Li, H.-G.; Sun, X.-J.; Wang, K. Experimental Observation of Classical Subwavelength Interference with a Pseudothermal Light Source. Phys. Rev. Lett. 2005, 94, 173601. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Tuitje, F.; Spielmann, C. A Review of High-Resolution Microscopic Ghost Imaging with a Low-Dose Pseudothermal Light. J. Microsc. 2021, 284, 3–11. [Google Scholar] [CrossRef]
- Gatti, A.; Brambilla, E.; Bache, M.; Lugiato, L.A. Correlated Imaging, Quantum and Classical. Phys. Rev. A 2004, 70, 013802. [Google Scholar] [CrossRef] [Green Version]
- D’Angelo, M.; Valencia, A.; Rubin, M.H.; Shih, Y. Resolution of Quantum and Classical Ghost Imaging. Phys. Rev. A 2005, 72, 013810. [Google Scholar] [CrossRef]
- Moreau, P.-A.; Toninelli, E.; Morris, P.A.; Aspden, R.S.; Gregory, T.; Spalding, G.; Boyd, R.W.; Padgett, M.J. Resolution Limits of Quantum Ghost Imaging. Opt. Express 2018, 26, 7528. [Google Scholar] [CrossRef]
- Pelliccia, D.; Rack, A.; Scheel, M.; Cantelli, V.; Paganin, D.M. Experimental X-Ray Ghost Imaging. Phys. Rev. Lett. 2016, 117, 113902. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Lu, R.; Han, S.; Xie, H.; Du, G.; Xiao, T.; Zhu, D. Fourier-Transform Ghost Imaging with Hard X Rays. Phys. Rev. Lett. 2016, 117, 113901. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.-X.; He, Y.-H.; Wu, L.-A.; Chen, L.-M.; Wang, B.-B. Tabletop X-Ray Ghost Imaging with Ultra-Low Radiation. Optica 2018, 5, 374. [Google Scholar] [CrossRef] [Green Version]
- Zerom, P.; Shi, Z.; O’Sullivan, M.N.; Chan, K.W.C.; Krogstad, M.; Shapiro, J.H.; Boyd, R.W. Thermal Ghost Imaging with Averaged Speckle Patterns. Phys. Rev. A 2012, 86, 063817. [Google Scholar] [CrossRef]
- Yu, W.-K.; Liu, X.-F.; Yao, X.-R.; Wang, C.; Zhai, Y.; Zhai, G.-J. Complementary Compressive Imaging for the Telescopic System. Sci. Rep. 2014, 4, 5834. [Google Scholar] [CrossRef] [Green Version]
- Gatti, A.; Magatti, D.; Ferri, F. Three-Dimensional Coherence of Light Speckles: Theory. Phys. Rev. A 2008, 78, 063806. [Google Scholar] [CrossRef] [Green Version]
- Magatti, D.; Gatti, A.; Ferri, F. Three-Dimensional Coherence of Light Speckles: Experiment. Phys. Rev. A 2009, 79, 053831. [Google Scholar] [CrossRef] [Green Version]
- Sun, Z.; Tuitje, F.; Spielmann, C. Toward High Contrast and High-Resolution Microscopic Ghost Imaging. Opt. Express 2019, 27, 33652. [Google Scholar] [CrossRef]
- Sun, Z.; Tuitje, F.; Spielmann, C. Improving the Contrast of Pseudothermal Ghost Images Based on the Measured Signal Distribution of Speckle Fields. Appl. Sci. 2021, 11, 2621. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, X.; Zhong, J. Single-Pixel Imaging by Means of Fourier Spectrum Acquisition. Nat. Commun. 2015, 6, 6225. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhao, S. Fast Reconstructed and High-Quality Ghost Imaging with Fast Walsh–Hadamard Transform. Photon. Res. 2016, 4, 240. [Google Scholar] [CrossRef]
- Luo, B.; Yin, P.; Yin, L.; Wu, G.; Guo, H. Orthonormalization Method in Ghost Imaging. Opt. Express 2018, 26, 23093. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.-J.; Meng, L.-T.; Edgar, M.P.; Padgett, M.J.; Radwell, N. A Russian Dolls Ordering of the Hadamard Basis for Compressive Single-Pixel Imaging. Sci. Rep. 2017, 7, 3464. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, H.; Sang, A.; Zhou, C.; An, X.; Song, L. A Zigzag Scanning Ordering of Four-Dimensional Walsh Basis for Single-Pixel Imaging. Opt. Commun. 2019, 443, 69–75. [Google Scholar] [CrossRef]
- Yu, W.-K. Super Sub-Nyquist Single-Pixel Imaging by Means of Cake-Cutting Hadamard Basis Sort. Sensors 2019, 19, 4122. [Google Scholar] [CrossRef] [Green Version]
- Yu, W.-K.; Liu, Y.-M. Single-Pixel Imaging with Origami Pattern Construction. Sensors 2019, 19, 5135. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Stantchev, R.I.; Yang, F.; Pick well-MacPherson, E. Super Sub-Nyquist Single-Pixel Imaging by Total Variation Ascending Ordering of the Hadamard Basis. Sci. Rep. 2020, 10, 9338. [Google Scholar] [CrossRef]
- Gong, W.; Han, S. High-Resolution Far-Field Ghost Imaging via Sparsity Constraint. Sci. Rep. 2015, 5, 9280. [Google Scholar] [CrossRef] [Green Version]
- Gong, W. High-Resolution Pseudo-Inverse Ghost Imaging. Photon. Res. 2015, 3, 234. [Google Scholar] [CrossRef]
- Kim, J.; Hwang, J.; Kim, J.; Ko, K.; Ko, E.; Cho, G. Ghost Imaging with Bayesian Denoising Method. Opt. Express 2021, 29, 39323. [Google Scholar] [CrossRef]
- Nie, X.; Yang, F.; Liu, X.; Zhao, X.; Nessler, R.; Peng, T.; Zubairy, M.S.; Scully, M.O. Noise-Robust Computational Ghost Imaging with Pink Noise Speckle Patterns. Phys. Rev. A 2021, 104, 013513. [Google Scholar] [CrossRef]
- Shapiro, J.H. Computational Ghost Imaging. Phys. Rev. A 2008, 78, 061802. [Google Scholar] [CrossRef]
- Li, H.; Shi, J.; Zeng, G. Ghost Imaging with Nonuniform Thermal Light Fields. J. Opt. Soc. Am. A 2013, 30, 1854. [Google Scholar] [CrossRef]
- Sandra, P. Resolution-Definition and Nomenclature. J. High Resol. Chromatogr. 1989, 12, 82–86. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oh, S.; Sun, Z.; Tian, T.; Spielmann, C. Improvements of Computational Ghost Imaging by Using Sequenced Speckle. Appl. Sci. 2023, 13, 6954. https://doi.org/10.3390/app13126954
Oh S, Sun Z, Tian T, Spielmann C. Improvements of Computational Ghost Imaging by Using Sequenced Speckle. Applied Sciences. 2023; 13(12):6954. https://doi.org/10.3390/app13126954
Chicago/Turabian StyleOh, Sukyoon, Zhe Sun, Tong Tian, and Christian Spielmann. 2023. "Improvements of Computational Ghost Imaging by Using Sequenced Speckle" Applied Sciences 13, no. 12: 6954. https://doi.org/10.3390/app13126954
APA StyleOh, S., Sun, Z., Tian, T., & Spielmann, C. (2023). Improvements of Computational Ghost Imaging by Using Sequenced Speckle. Applied Sciences, 13(12), 6954. https://doi.org/10.3390/app13126954