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Abstract: Single-pixel compressive imaging can recover images from fewer measurements, offering
many benefits especially for the imaging modalities where array detection is unavailable. However,
the widely used random projections fail to explore internal relations between coding patterns and
image reconstruction. Here, we propose a single-pixel imaging method based on a deterministic
origami pattern construction that can lead to a more accurate pattern ordering sequence and better
imaging quality. It can decrease the sampling ratio, closer to the upper bounds. The experimental
realization of this approach is a big step forward towards practical applications.

Keywords: single-pixel imaging; computational imaging; compressed sensing; ghost imaging;
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1. Introduction

Imaging is extremely important for acquiring the light field information of the target [1].
Single-pixel imaging (SPI) [2,3], as a novel imaging alternative, can obtain images by using only
a point detector without spatial resolution, having extraordinary application prospects, especially
at non-visible wavelengths. Except for point-by-point scanning, SPI has also developed some
imaging techniques based on Fourier [4] or Hadamard transforms [5–7] (i.e., complete orthogonal
basis modulation, full sampling). Both Fourier and Hadamard SPI are computational imaging
techniques. It is worth mentioning that there is another computational imaging technology named
ghost imaging (GI) [8], which acquires the object image by correlating the intensity signals recorded
in both reference arm and object arm. GI generally requires random modulation and oversampling,
it has several modalities, such as quantum GI [8], thermal light GI [9], pseudo-thermal light GI [10]
and computational GI [11–13]. In the first three schemes, the reference patterns usually need to be
captured by a scanning detector or a spatially resolved array imager. While in computational GI,
the reference patterns can be precomputed from a programmable spatial light modulator, thus the
imaging apparatus can be simplified to one optical beam without reference arm and one can compute
the correlation between single-pixel intensities and the known patterns. Therefore, among various
GI schemes, only computational GI can be regarded as SPI. Lately, with the rapid development of
information theory, the single-pixel camera [14] based on compressed sensing (CS) [15,16] has been
implemented. This technology can obtain images of sparse/compressive targets at very low sampling
(subsampling) rates, breaking the Nyquist-Shannon sampling limit. Generally, there is a trade-off
between sparsity and subsampling, and the optimal recovery order of M (the measurement number)
proportional to k (the object sparsity) can be cast in the phase transition framework of CS [17,18]. To our
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knowledge, the phase transition is bounded by two alternative methods: the polytope analysis [19] and
the geometric functional analysis [20]. To some extent, single-pixel compressive imaging shares the
same mathematical measurement model with thermal light, pseudo-thermal light or computational GI,
all of y = Ax + e, where y denotes the single-pixel/bucket measured vector, A is a measurement matrix
consisting of M rows, each of which is stretched from every modulated/reference pattern, and e stands
for the measurement noise. But their reconstruction principles are different, the former relies upon
sparse recovery, and the latter applies correlation functions. Generally, the computational complexity
of sparse recovery is much higher than that of correlation functions. For common resolutions, one can
obtain good performance via random compressive sampling when the sampling ratio is higher than
30% (an empirical value, because the sparsity of natural images cannot be very low) [21], which has
become the bottleneck of compressive imaging for realizing real-time practical applications, especially
in large pixel-scale imaging.

Recent studies have demonstrated that not all patterns contribute to the reconstructions of
computational imaging, resulting in a technology named correspondence imaging (CI) [22–26],
where the reference patterns with the corresponding single-pixel/bucket values well above or below
the mean of detected values are picked up for reconstruction after oversampling the object image.
Since there is such a phenomenon, why not just construct a universal deterministic (instead of random)
measurement matrix where the modulated patterns with the biggest contributions to the reconstruction
are preferentially displayed. In particular, an earlier research work [21] reported a GI method based on
“Russian Dolls” (RD) ordering of the Hadamard basis to improve imaging efficiency, which provided
us with inspiration.

In this paper, we propose an origami model to construct deterministic patterns for SPI. The row
vectors stretched from each constructed pattern happen to be orthogonal to each other. It turns out
that the origami patterns are reordered Hadamard patterns. Under the CS framework, the sampling
ratio required by this method can approach the bounds limited by phase transition. This technique
may open a door to practical compressive video applications [27,28] with fewer measurements.

2. Theory and Methods

Before we start introducing our approach, we first need to present some GI principles and related
consensus. Given the consistency of the measurement models of GI and CS, some conclusions found
in GI can be easily extended to CS. In GI fields, according to the theory of CI [22–26], a positive
(or negative) ghost image can be retrieved by only averaging some small fractions of the reference
subset I+R (or I−R ), i.e.,

〈
IR+

〉
(or

〈
IR−
〉
), corresponding to {S+

B |SB � 〈SB〉} (or {S−B |SB � 〈SB〉}).
Although only a small number of patterns are involved in the calculation, the total number of
measurements is not reduced, and the conditional averaging of reference patterns is made after
oversampling. The mechanism behind it was firstly elucidated with some attempts [24,25], and recently
was strictly explained through a probability theory, which regards the light intensities as stochastic
variables and uses a joint probability density function, followed by an analysis of the visibility and
contrast-to-noise ratio (reconstruction quality) vs. the threshold parameter (i.e., former percentage)
and the pixel number of the object part [29]. According to this theory, it can be concluded that not
all the measured bucket/single-pixel intensities are necessary for reconstruction, and that the bucket
signal with larger values generally has a higher reconstruction contribution.

Now, let us review the definition of differential ghost imaging (DGI) [30], which greatly
improves the quality of conventional GI. The bucket/single-pixel signal is defined as SB =∫∫

IB(xo, yo)T(xo, yo)dxodyo, where IB(xo, yo) and T(xo, yo) represents the intensity and transmission
function at the spatial position (xo, yo) of the object x of p × q = N pixels, respectively. Similarly,
the reference bucket signal (the total intensity of corresponding reference pattern) can be defined
as SR =

∫∫
IR(x, y)dxdy, where IR(x, y) stands for the values at the spatial position (x, y) of

reference speckle patterns. By using a differential bucket signal S∆ = SB − 〈SB〉
〈SR〉

SR instead of

SB in second-order correlation 〈SB IR(x, y)〉, where 〈· · · 〉 signifies the ensemble average and 〈SB〉
〈SR〉
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is a constant, we can compute a differential ghost image ŨDGI from M � N measurements via
ŨDGI = 〈S∆ IR(x, y)〉 = 〈SB IR(x, y)〉 − 〈SB〉

〈SR〉
〈SR IR(x, y)〉. A high image quality can be guaranteed by

DGI, but at the cost of oversampling. Assume that the light field distribution of the source and the
object beam are O and Ob, and that the minimum variation of the object transmission function T is
denoted by ∆Tmin, then we can get the signal-to-noise ratio (SNR) of recovered ghost image

SNRGI =
[∆〈Ob〉]2min
〈∆O2〉 =

M
Nspeckle

∆T2
min

T2
, (1)

where Nspeckle = Abeam/Acoh indicates the number of speckles in the area of the light beam
Abeam. Acoh equals the square of each speckle size δ0, which can be determined by calculating
the autocorrelation half height width of each point in the light field. For a fixed object, the term
∆T2

min/T2 is constant, then SNR scales as M
Nspeckle

. It means that making the speckle coherence area
in each group change from large to small (i.e., making Nspeckle in each group change from small to
large) can achieve better performance. Let us recall the RD method, it first divides the Hadamard
basis sequence into four quarters and splits the first quarters in the next layer, and finally reorders
the patterns within each quarter, also following the above rule, i.e., making the speckle coherence
area for each pattern in every quarter change from large to small. Although this sorting method can
produce a good image quality relative to that of CS, all quadrants (quarters) in each layer except the
first quadrant are rough and contain too many patterns, which will cause many patterns in every
quadrant of equal speckle coherence areas (i.e., resulting in multiple feasible solutions).

It is easy to understand that the random patterns are obviously not the best choices to minimize
the number of measurements, because there is a high probability that half of all pixels transmit or reflect
the light, which is more likely to generate an averaged single-pixel value, undoubtedly degrading
image quality or weakening imaging efficiency. Moreover, the random sampling can be regarded as
a relatively blind process with a large amount of redundant measurements. And it is really difficult
for us to determine which random pattern has a higher reconstruction contribution or produces a
higher bucket intensity. Although there are some definite matrices such as Toeplitz matrix [31] and
polynomial matrix [32], which have been used in SPI and are much easier to be implemented, but their
reconstruction qualities are generally much poorer than that of random measurement matrix. Recently,
it was found that by using the two-dimensional polynomial to characterize optical aberrations at the
pupil plane helps to recover more details of the object images and to decrease the average error [33].

According to common sense, the patterns that are highly similar or correlated with the object have
a higher reconstruction contribution, i.e., there are many effective modulation spots falling within the
object area. This undoubtedly requires us to know the object contour beforehand and let the shape
of the patterns change with the target object, which is the main idea of adaptive compressive ghost
imaging [12], i.e., adaptively sample the significant object regions at multi-scales. However, if the
object is unknown or there is no rough profile measurements in advance, how can we generate a
pattern that produces a higher measured value or reconstruction contribution? Fortunately, we find
that, if we encode on the spatial light modulator (SLM) with a pattern consisting of all-one, which
can be treated as a connected domain (CD, or block, which will be elaborated below), the detected
intensity value will be the highest. If the pattern is divided equally into two CDs with the white-black
pixels 50%:50%, then the detected value will be the second highest with a high probability. On this
basis, a good construction of CDs in patterns can make a positive contribution to the image quality.
To some extent, the area of CD is equivalent to the speckle coherence area. Therefore, the patterns
with smaller number of CDs generally have the larger contributions to the recovery. Following above
reasons and ideas, here we propose a novel origami pattern construction method, which makes full
use of symmetric reverse folding (reverse the values on the corresponding pixels at the symmetric
positions) and the axial symmetry of the rescaled pattern. The steps of our origami pattern construction
are as follows.
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Step 1: Assume that the pixel-sizes of patterns are all p× q = n square matrices, with the same
size as the object, where p, q (p = q) are all even numbers. Suppose there are n patterns in total,
we divide them into n/4 groups, each of which with four patterns. The group number is denoted by
i = 1, 2, 3, · · · , n/4. Note, as an initial setting, the first pattern P1,1 in the first group is a matrix with all
ones. Then, the second and the third patterns in this group P1,2, P1,3 are obtained by inversely folding
the first one P1,1 in this group up and down, left and right, respectively. That is, keeping the upper (or
the left) half unchanged while the lower (or right) half is axisymmetric with the upper (or left) half but
with its values in the lower (or right) half taking the opposite. By this means, we realize black (−1)
and white (+1) inverting. The fourth pattern P1,4 in this group is formed by performing both up-down
and left-right reverse folding operations (the sequence of operations is interchangeable) on the first
pattern P1,1. Similarly, for all the subsequent groups, the last three patterns in the ith group, Pi,2, Pi,3
and Pi,4 will be generated from Pi,1 following the same processes:

Pi,2 =

[
Pupper

i,1
−Plower

i,1

]
, Pi,3 =

[
Pleft

i,1 −Pright
i,1

]
, (2)

Pi,4 =
[

Pleft
i,2 −Pright

i,2

]
=

[
Pupper

i,3
−Plower

i,3

]
. (3)

Step 2: The first pattern Pi,1 in the ith group (also the 4(i− 1) + 1th pattern in the complete sequence)
is built on the basis of the ith pattern in the current complete sequence:

Pi,1 =

[
Pscaled

ith Pscaled
ith

−Pscaled
ith −Pscaled

ith

]
. (4)

Take P2,1 in the second group for example; we firstly scale both horizontal and vertical pixel
dimensions of the second pattern in the complete sequence (i.e., P1,2) to their 1

2 size, and place the
scaled one on the upper left 1/4 part of a p× q square matrix with all zeros. Secondly, we perform
the up and down, left and right axial symmetry about the midline lines on the vertical and horizontal
axes of the matrix. After that, the pattern P2,1 (also the 5th pattern in the complete sequence) is
generated. Then, repeat Step 1 to acquire the second to fourth patterns in the second group, P2,2,
P2,3 and P2,4 (also the 6th to 8th patterns in complete sequence). By analogy, we can create all n/4
groups. Figure 1a gives a good illustration of Steps 1 and 2, and Figure 1b shows the result obtained
after Step 2. To some extent, Step 2 is similar to the multiscale/pyramid methods, such as wavelet
transforms. The front pattern with the absolute subscript i in the current complete sequence actually
captures low-frequency characteristics (rough contours) of the target object, while the four patterns Pi,1
Pi,2, Pi,3 and Pi,4 in the ith group are actually generated from their front pattern Pith but with finer CDs
and will undoubtedly add the details of high-frequency components with respect to the object. This
also explains the operational mechanism of our method.

Step 3: Adjust the pattern sequence to ensure that the number of CDs for each pattern in the
ith group is in an incremental order. Here, a CD is defined as an up-down-left-right connected area
consisting of equal values (see the upper right corner of Figure 2, which is just an example to illustrate
how a CD works, but not related to the actual patterns used). The neighborhoods on both sides of the
axis may cause the partition of CDs, which is worth of investigating. Let us first look at the pattern Pi,1
whose pixel values on both sides of the symmetry axis are the same, its contribution to the recovery is
the largest in the ith group. Since the pattern Pi,4 needs double symmetric reverse folding, its number
of CDs is largest (with lowest reconstruction contribution) in the ith group. The patterns Pi,2 and Pi,3
are produced by only once symmetric reverse folding, whether to first perform up-down or left-right
operation is approximately equivalent, thus they are particularly worth considering. As shown in
Figure 2, the patterns Pi,2 and Pi,3 with a group indication (ID) (note: not the absolute subscript)
i = 3, 9 ∼ 12, 15 need to be order-reversed for the case of n = 64, while those with a group ID
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i = 3, 9 ∼ 12, 15, 33 ∼ 48, 51, 57 ∼ 60, 63 require adjustments for the case of n = 256. This rule also
exists in the higher-order cases. Given this, we set fourfold as a level. From top to bottom, the total
n/4 groups (as a whole) can be catalogued into four parts: only the second part remains unchanged,
the groups in the third part all need to be adjusted, while the groups in the first and fourth parts also
need to be adjusted but with the same group IDs, depending on the recursive layer. Then, repeat the
operation for the first part (as a new whole) until the number of groups in each new quarter part equals
to 1. In the last layer, only the third part needs to be adjusted. Then, switch the order of the patterns
Pi,2 and Pi,3 in these found groups.

Figure 1. Origami pattern construction. (a) Pattern forming process for Steps 1–2. (b) Results obtained
after Step 2.

If we perform left-right and up-down reverse folding to generate Pi,2 and Pi,3 in Step 1, respectively,
then the ID positions should be adjusted accordingly in Step 3. After the above three steps, we will get
the final pattern sequence. Figure 3 gives an example of the final pattern sequence for n = 64. In order
to deeply analyze the advantages of our method, we compare it with the RD method. It is interesting
to find that these two approaches have similar numbers of CDs in the low-order part (especially for
the first 16 patterns, they are the same). Since their subsequent results are both derived from these first
16 patterns, it is advisable to set each 16 patterns as a comparison unit. Figure 4 shows the differences
in their high-order parts (the last 64 patterns in 256-order sequence which also comprises the largest
division of the RD method). As shown in Figure 4a, the RD ordering becomes very rough in this part,
and has a lot of pattern pairs with the same number of CDs in each comparison unit. Because the
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maximum partition length of RD is n/4 and its minimum segmentation length is 4, it will inevitably
incur too much uncertainty. Although the internal order exchange in these pattern pairs does not affect
the RD sorting too much, it does bring hundreds of millions of possibilities of finding the optimal
pattern sequence to get the best imaging quality, while in our scheme, each four patterns are treated as
a group, i.e., the partition length is always 4. As shown in Figure 4b, there are only four red marks
in our method for the high-order part, with only 24 uncertainty. An intuitive explanation is that
we rearrange the patterns into n/4 groups, each of which comprises four patterns, since the folding
projections are implemented in the entire part or the first half part of one previous pattern with only
four limited combinations. Fewer patterns with the same number of CDs in much smaller groups
may make our method more accurate. Further mathematical interpretation will be the focus of our
future work.

Figure 2. Group numbers for the cases of n = 64, 256. The patterns Pi2 and Pi3 with red marked group
numbers need to be order exchanged. The subgraph in the upper right corner illustrates an example of
connected domains with a number of 5, but not related to the actual patterns used.

Figure 3. Numbers of CDs for a final pattern sequence of n = 64.

Now, each pattern IR can be sequentially reshaped into a row vector of 1× n, and then n such
row vectors constitute a full-rank square matrix. It happens to be an orthogonal matrix and turns
out to be a row-reordered Hadamard matrix in which only the row order is different from that of a
natural-ordered Hadamard matrix. Such matrix is quite suitable for forming a measurement matrix
A ∈ Rm×n of CS by just selecting the first m row vectors. Here, we use TVAL3 solver [34] to recover
the image, in which our row number arrangement can be easily combined with its large-scale image
reconstruction algorithm, and of course, our origami patterns are also available for GI.
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Figure 4. Comparison of the number of CDs between Russian dolls (RD) ordering of the Hadamard
basis (a) and our method (b) in the high-order part. The patterns with the same CDs are circled by the
red ellipses.

3. Results

3.1. Numerical Simulations

Here, we introduce a unitless performance quantitative measure, the root mean square error

(RMSE), which is defined as RMSE =
√

1
pq ∑

p,q
i,j=1[Ũ(i, j)−Uo(i, j)]2. It describes the square root

of differences between the recovered image Ũ and the original image Uo for all pixels. Generally,
the smaller the RMSE value, the better the quality of the recovered image.

To test whether the measurement data acquired by our sensing method can generate better
reconstruction performance than other approaches, some numerical calculations were performed.
All calculations were performed on an ordinary laptop with an Inter Core i7-8650U central processing
unit (CPU) @ 1.90 GHz and a random access memory (RAM) of 16 GB. For a fair comparison, we also
combined the RD ordering of the Hadamard basis with CS, instead of second-order correlation used
in the original version [21], and we call it the Russian dolls compressed sensing (RDCS). In the
first simulation, a head phantom image on a black background of 128× 128 pixels was used as an
original image, thus, the reconstructed images also had resolutions of 128× 128 pixels. In Figure 5,
for conventional CS, we used a totally random 0/1 binary measurement matrix, which is widely
applied in SPI schemes because the digital micromirror device (DMD) can only be encoded with 0/1
patterns. For implementing positive–negative light intensity modulation with the matrices consisting
of positive and negative binary numbers, one needs to make a differential measurement between
two patterns, which requires twice the actual amount of measurements. That is, to align to a 100%
sampling rate of 0/1 random matrices, we should double the 50% sampling rate of positive-negative
matrices. All sampling rates below were calculated in this way. The RMSE curves of CS, RDCS and
origami compressed sensing (ORCS) as a function of the sampling ratio (from 0.5% to 10%) were
given in Figure 5a, and their retrieved images at different sampling ratios from 1 to 17% with a 4%
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stepping increase are presented in Figure 5(b1–d5). All these methods show a similar trend that the
image quality is approximatively proportional to the sampling ratio. For the small sampling ratios,
conventional CS and RDCS perform very similarly. When the sampling ratio is large enough, the RDCS
will perform better than traditional CS. From the data, it can also be seen that the performance of our
method outperforms those of CS and RDCS for the simple object. For this case, only 9% measurements
are enough for ORCS to obtain a nice reconstruction. The reason why ORCS exhibits less noise than
RDCS is that ORCS performs the reordering of the Hadamard matrix with only four patterns in each
group, and its sort is much more refined than that of RDCS.

Figure 5. Reconstruction comparisons of the simple object, using CS, RDCS and ORCS. (a) gives
an original head phantom image of 128 × 128 pixels and multiple RMSE curves as a function of
the sampling ratio. (b1–b5), (c1–c5) and (d1–d5) are the CS, RDCS and ORCS reconstructions of
128× 128 pixels at 1%–17% sampling ratios, respectively. The digits below (b1–d5) are the RMSE values.

In the next simulation, we investigated the average imaging performance of our method for more
general complex scenes. To exclude that the proposed method only works well for simple images that
are similar to the head phantom, we chose three typical gray-scale test images, i.e., the pictures of
peppers, mandrill and man. Figure 6 illustrates the comparison results of these objects. As we know,
RMSE as a pixel-wise performance metric may fail to describe the visible structures or perceptual
quality of natural images, and somtimes cannot correctly tell the image quality. Therefore, in addition
to RMSE, another quantitative measure mean structural similarity (MSSIM) is also used to evaluate
the image quality, based on the perceptual difference between a reference and a processed image.
To some extent, the MSSIM value reveals not only the reconstruction error, but also the structural
distortion of the recovered images. Its value ranges from 0 to 1; the larger the MSSIM value, the better
the image quality. Since the traditional CS for SPI uses a binary measurement matrix consisting
of 0 or 1, while the Hadamard matrix takes values of −1 or 1. For the sake of fairness, we added
the differential CS (DCS) [35–37] to the comparison. The DCS applies a measurement matrix that
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follows positive-negative distribution, take the ±1 measurement matrix IR as an example, it can subtly
shift and stretch IR to two complementary matrices ÎR = (IR + 1)/2 and ǏR = 1N×N − ÎR, where
1N×N stands for an all 1 matrix, then followed by their difference to realize differential modulation
IR = ÎR − ǏR.

The reconstruction comparisons of CS, DCS, RDCS and ORCS for more general scenes at the
sampling ratios of 9%, 25%, 41% and 57% are presented in Figure 6(a1–c4,d1–f4,g1–i4,j4–l4), with the
RMSE and MSSIM values being indicated below each image. In terms of images and performance
evaluation parameters, we can clearly see that the image quality of ORCS is much better than those
of other three approaches under the same sampling ratios. We further drew their RMSE and MSSIM
curves of recovered images as a function of the sampling ratio, as shown in Figure 6m–n. Although the
scene has more spatial complexity, the performance trends of these methods keep in accordance with
the case of simple object. From Figure 6n, we can see that the performance of ORCS is generally
better than the other three methods with an overwhelming superiority for all sampling ratios, while
the reconstruction quality of RDCS and DCS is very close, which is coincident with the theory of
RD [21]. In other words, to acquire the same reconstruction quality, our ORCS requires a sampling
ratio that is much closer to the upper bound specified by the phase transition of CS reconstruction.
In addition, when the sampling rate is below 49%, CS, DCS and RDCS behave similarly, while for the
sampling ratios above 49%, both RDCS and DCS outperform the traditional CS. This is because both
the RDCS and DCS actually realize positive–negative intensity modulation, and the RD reordering
of the Hadamard matrix is too rough, thus, the RDCS cannot show obvious advantages over the
DCS. When the sampling ratio is large enough, the RMSE and MSSIM values of all approaches tend
to saturate.

The proposed method provides an alternative row-reordering of the Hadamard matrix.
To compare with the classic Walsh–Hadamard patterns, we gave the pattern number of each
Walsh–Hadamard pattern and origami pattern with respect to the original sequence of natural-ordered
Hadamard patterns, as shown in Figure 7. As we know, the Walsh-ordered Hadamard matrix also
performs row-reordering of natural-ordered Hadamard matrix, by rearranging the rows based on
an increasing order of the number of ±1 sign changes of each row via the bit-reversal permutation
followed by the Gray-code permutation. Therefore, whether in principle or in the reordering sequences,
the origami sort and the Walsh sort are different. Next, we presented the image reconstructions
using natural-ordered, Walsh–Hadamard patterns and origami patterns, respectively, as shown in
Figure 7a–x. It is obviously seen from the recovered images that when we perform the subsampling,
their reconstruction results are definitely different from each other. When using the natural-ordered
Hadamard patterns, there exists some periodic silhouette ghosting in the recovered images, caused by
the periodic structure of the matrix itself. When using the Walsh–Hadamard patterns, the reconstructed
images at low sampling ratios have horizontal stripes. Our origami patterns can avoid these negative
effects and yield relatively better performance. Now, let us delve into the essence of our method.
As we know, the Hadamard patterns generally have various spatial frequencies. In each group of the
origami patterns, the front patterns have a smaller number of CDs (i.e., larger blocks), forming the
low-frequency components (rough contour) of the object, and the following patterns have a larger
number of CDs (i.e., smaller blocks), contributing to the high-frequency components (details) of the
target. Since the first origami pattern in the ith group is derived from the ith origami pattern in the
complete sequence, the mean of the number of CDs in each group is also increasing with the group
number. Therefore, patterns with a smaller group number capture low-frequency features of the
object image, while those with larger group number will supplement the details of high-frequency
components. This explains how our method works and why it outperforms the others.
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Figure 6. Reconstruction comparisons for general scenes. (a1–c4), (d1–f4), (g1–i4) and (j4–l4) are the
recovered images of 128× 128 pixels at the sampling ratios of 9%, 25%, 41% and 57%, using CS, DCS,
RDCS and ORCS, respectively. Below each image, the RMSE and MSSIM values are also provided.
(m) and (n) are the comparisons based on the RMSE and MSSIM value as a function of the sampling
ratio, respectively. The sampling ratio ranges from 1 to 97% with an 8% stepping increase. Every data
is acquired by averaging the RMSE or MSSIM values of three different object samples, along with a
error bar whose height indicates the standard deviation of each point.
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Figure 7. Comparisons of reconstruction results using natural-ordered (a–h), Walsh-ordered (i–p) and
origami-ordered (q–x) Hadamard patterns. For comparison, the pattern number of each Walsh–Hadamard
pattern and origami pattern with respect to the original sequence of the natural-ordered Hadamard
patterns is given at the top.

Next, we simulated the influence of illumination fluctuation noise on image reconstructions.
As we know, in mathematical models, all noise in SPI system can be regarded as the additive noise,
thus, the effects of different noise sources involved in the imaging process are similar. Here, we directly
added the illumination fluctuation noise [38] on the target to be detected. The SNR of the spatial light
field distribution I(j) of illumination fluctuation noise can be calculated by SNRI = 10 log10

〈I(j)〉
Std(noise) ,

where Std signifies the standard deviation. Two kinds of noise which follow the normal and Poisson
distributions are set for both RDCS and ORCS methods. In Figure 8, compared with RDCS, the details
of reconstructed images using ORCS is much easier to identify from the enlarged part of the white
square frame in the lower left corner of each image, under the same SNRI for either of the above two
types of noise, and the image quality gradually improves with the increase of the SNRI value.

Figure 8. Reconstructed images of both RDCS and ORCS of 128× 128 pixels, all with a 90% sampling
ratio, under different illumination fluctuation noise. (a1–a4) and (b1–b4) illustrate the reconstructions
of RDCS under the noise that follows the normal and Poisson distribution, respectively. (c1–c4) and
(d1–d4) separately present the recovered images of ORCS under the normal and Poisson noise.
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3.2. Experimental Setup and Results

Our experimental realization was based on a conventional single-pixel camera, as shown in
Figure 9. The thermal light from a stabilized halogen tungsten lamp with a wavelength of 360∼2600 nm
was collimated and attenuated via a beam expander and a neutral density filter (NDF), respectively.
Here, the NDF was used to attenuate the light to the ultra-weak light level. The attenuated light passed
through a negative 1951 USAF resolution test chart, and then was imaged onto the DMD (one SLM) via
an imaging lens and a mirror. The applied DMD consists of 1024× 768 micromirrors, each of which can
be switched between two directions of ±12◦, corresponding to 1 and 0. Since the values of our patterns
are either 1 or −1, we needed to divide each generated ±1 pattern IR into a complementary matrix
pair [35–37] ÎR and ǏR, which was sequentially encoded on the DMD. A counter-type Hamamatsu
H10682-210 PMT was placed on one of the reflection orientations to accordingly make a differential
measurement of two adjacent total photon counts. By using the ORCS method, we acquired a very
satisfactory image quality, as shown in the right illustration of Figure 9. For comparison, we also gave
the experimental results of RDCS and ORCS at different sampling ratios, as presented in Figure 10.
It can be easily seen that the image quality is proportional to the number of measurements, and our
ORCS outperforms RDCS, which is consistent with the simulation results. When we perform full
sampling, the performance of RDCS and ORCS will be almost the same, because their measurement
matrices in this case only have inconsistencies in the row order. In our experiment, the sampling
frequency of the PMT is set to 500 Hz. For the object of 128× 128 pixel-size with a total sampling
ratio of 32%, it only takes 10.49 s for both RDCS and ORCS to finish data acquisition and takes 31.90 s
(averaged calculation time) for image reconstruction running on an ordinary laptop, i.e., the total
imaging time is 42.39 s. It is worth mentioning that the maximal binary pattern switching rate of the
DMD is 32550 Hz, if we set the working frequency of the PMT to 32550 Hz and use a computing device
with a better configuration, the total imaging time can be further reduced.

Figure 9. Schematic of the experimental setup. After being collimated and broadened, the light
illuminated the object (a negative 1951 USAF resolution test chart of 3 inch × 3 inch) and then it was
imaged on the DMD. A PMT collected the differential photon counts via a focusing lens. The ORCS
reconstructed image of 128× 128 pixel-size at 60% sampling ratio is given in the lower right corner.
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Figure 10. Experimental results of RDCS and ORCS under varying sampling ratios changing from
0.3276% to 200% with a 2.5× stepping increase. The RMSE and MSSIM values are also given, treating
the reconstructed image with full sampling as a reference image. The image quality progressively
improves with the increasing number of measurements.

4. Conclusions

In conclusion, a single-pixel compressive imaging method with origami pattern construction
is proposed, where the patterns with the biggest contributions to the recovery are preferentially
displayed. By symmetric reverse folding, axial symmetry and partial pattern order adjustment,
the generated deterministic patterns ensure better image quality but with less uncertainty of the
pattern sequence, compared with traditional CS, DCS and RDCS. The ORCS approach has been
demonstrated experimentally with a classic SPI setup using differential modulation technique. Both
simulation and experimental results prove that the sampling ratio of the proposed method can be
reduced, much closer to the upper bound specified by the phase transition of CS reconstruction, with a
potential of promoting single-pixel compressive video applications.
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