Recent Progress in Synthesis and Photonic Applications of Two-Dimensional Bismuthene
Abstract
:1. Introduction
2. Structure and Properties of Bismuthene
2.1. Structure and Electronic Properties
2.2. Nonlinear Property
3. Production of 2D Bismuthene
3.1. Top-Down Approach
3.2. Bottom-Up Approach
4. Photonic Applications Based on 2D Bismuth
4.1. Nonlinear Photonic Devices
4.2. Photocatalysis
4.3. Photodetectors
5. Conclusions and Outlook
- The large-area synthesis method is one of the significant prerequisites for integrating 2D materials into practical applications. As we introduced in the article, the primary methods for the scalable growth of 2D bismuthene are mainly carried out by bottom-up techniques, including CVD, PLD, MBE, etc. However, currently, the low crystallinity and large number of defects of the obtained bismuthene limit its application in photonic and optoelectronic devices. Meanwhile, the poor controllability of the fabrication process, its slow growth rate, and its current high cost does not meet the criteria for commercialization. Therefore, developing a direct-synthesis method for realizing high quality 2D bismuthene films would be a high priority.
- During the photocatalytic experiments, 2D bismuthene is easily oxidized to amorphous bismuth oxide due to its atomically thin nature and semimetal features, which will degrade the efficiency of photocatalysts. Thus, it is a crucial to discover a method to solve the oxidation issue of 2D Bi. A straightforward approach is to package the bismuthene into porous materials, which could reduce its exposure to oxidizing conditions. Another possible method is to integrate bismuthene photocatalysts into a photoelectrochemical system, which may also prevent the oxidation of 2D Bi.
- Thanks to the weak vdWs interaction between the adjacent layers and the dangling-bond-free surface, 2D materials can form heterostructures by combining with another 2D candidate, or even materials of different dimensionality, which greatly expand the properties, functionalities, and applications of the 2D family. Considering the tunable band alignment and the combination of merits from different materials, 2D bismuthene heterostructures provide new strategies for designing high performance photonic applications. Moreover, the large contact surface and highly exposed surface atoms would create a bismuthene heterostructure with a large internal electric field, which is beneficial for photocatalytic activity. Thus, further exploration of the photonic and photocatalytic applications of 2D bismuthene heterostructures is highly desirable.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, D.C.; Zhang, A.X.; Guo, S.D.; Duan, Y.F. Thermoelectric properties of beta-As, Sb and Bi monolayers. RSC Adv. 2017, 7, 24537–24546. [Google Scholar] [CrossRef] [Green Version]
- Gui, R.J.; Jin, H.; Sun, Y.J.; Jiang, X.W.; Sun, Z.J. Two-dimensional group-VA nanomaterials beyond black phosphorus: Synthetic methods, properties, functional nanostructures and applications. J. Mater. Chem. A 2019, 7, 25712–25771. [Google Scholar] [CrossRef]
- Zhang, S.L.; Guo, S.Y.; Chen, Z.F.; Wang, Y.L.; Gao, H.J.; Gomez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H.B. Recent progress in 2D group-VA semiconductors: From theory to experiment. Chem. Soc. Rev. 2018, 47, 982–1021. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pumera, M.; Sofer, Z. 2D Monoelemental Arsenene, Antimonene, and Bismuthene: Beyond Black Phosphorus. Adv. Mater. 2017, 29, 1605299. [Google Scholar] [CrossRef]
- Bhakhar, S.A.; Patel, N.F.; Zankat, C.K.; Tannarana, M.; Solanki, G.K.; Patel, K.D.; Pathak, V.M.; Pataniya, P. Sonochemical exfoliation and photodetection properties of MoS2 Nanosheets. Mater. Sci. Semicond. Process. 2019, 98, 13–18. [Google Scholar] [CrossRef]
- Pataniya, P.; Zankat, C.K.; Tannarana, M.; Sumesh, C.K.; Narayan, S.; Solanki, G.K.; Patel, K.D.; Pathak, V.M.; Jha, P.K. Paper-Based Flexible Photodetector Functionalized by WSe2 Nanodots. ACS Appl. Nano Mater. 2019, 2, 2758–2766. [Google Scholar] [CrossRef]
- Bansal, S.; Das, A.; Jain, P.; Prakash, K.; Sharma, K.; Kumar, N.; Sardana, N.; Gupta, N.; Kumar, S.; Singh, A.K. Enhanced Optoelectronic Properties of Bilayer Graphene/HgCdTe-Based Single- and Dual-Junction Photodetectors in Long Infrared Regime. IEEE Trans. Nanotechnol. 2019, 18, 781–789. [Google Scholar] [CrossRef]
- Li, H.R.; Yang, Z.B. Recent progress in mid-infrared photodetection devices using 2D/nD (n = 0, 1, 2, 3) heterostructures. Mater. Des. 2023, 225, 111446. [Google Scholar] [CrossRef]
- Liu, H.; Du, Y.C.; Deng, Y.X.; Ye, P.D. Semiconducting black phosphorus: Synthesis, transport properties and electronic applications. Chem. Soc. Rev. 2015, 44, 2732–2743. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ling, X.; Wang, H.; Huang, S.X.; Xia, F.N.; Dresselhaus, M.S. The renaissance of black phosphorus. Proc. Natl. Acad. Sci. USA 2015, 112, 4523–4530. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.B.; Hao, J.H. Recent Progress in Black-Phosphorus-Based Heterostructures for Device Applications. Small Methods 2018, 2, 1700296. [Google Scholar] [CrossRef]
- Yang, Z.B.; Hao, J.H.; Yuan, S.G.; Lin, S.H.; Yau, H.M.; Dai, J.Y.; Lau, S.P. Field-Effect Transistors Based on Amorphous Black Phosphorus Ultrathin Films by Pulsed Laser Deposition. Adv. Mater. 2015, 27, 3748–3754. [Google Scholar] [CrossRef] [PubMed]
- Favron, A.; Gaufres, E.; Fossard, F.; Phaneuf-L’Heureux, A.L.; Tang, N.Y.W.; Levesque, P.L.; Loiseau, A.; Leonelli, R.; Francoeur, S.; Martel, R. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 2015, 14, 826–832. [Google Scholar] [CrossRef] [PubMed]
- Ning, W.; Kong, F.Y.; Xi, C.Y.; Graf, D.; Du, H.F.; Han, Y.Y.; Yang, J.Y.; Yang, K.; Tian, M.L.; Zhang, Y.H. Evidence of Topological Two-Dimensional Metallic Surface States in Thin Bismuth Nanoribbons. ACS Nano 2014, 8, 7506–7512. [Google Scholar] [CrossRef] [Green Version]
- Lu, Y.H.; Xu, W.T.; Zeng, M.G.; Yao, G.G.; Shen, L.; Yang, M.; Luo, Z.Y.; Pan, F.; Wu, K.; Das, T.; et al. Topological Properties Determined by Atomic Buckling in Self-Assembled Ultrathin Bi(110). Nano Lett. 2015, 15, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Wang, S.H.; Wu, Z.X.; Wang, Z.X.; Wang, D.H.; Huang, H.; Zhang, F.; Ge, Y.Q.; Zhang, H. Sub-200 fs soliton mode-locked fiber laser based on bismuthene saturable absorber. Opt. Express 2018, 26, 22750–22760. [Google Scholar] [CrossRef]
- Yang, Z.B.; Wu, Z.H.; Lyu, Y.X.; Hao, J.H. Centimeter-scale growth of two-dimensional layered high-mobility bismuth films by pulsed laser deposition. Infomat 2019, 1, 98–107. [Google Scholar] [CrossRef] [Green Version]
- Guo, P.L.; Li, X.H.; Feng, T.C.; Zhang, Y.; Xu, W.X. Few-Layer Bismuthene for Coexistence of Harmonic and Dual Wavelength in a Mode-Locked Fiber Laser. ACS Appl. Mater. Interfaces 2020, 12, 31757–31763. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.D.; Shao, J.M.; Yang, G.W. Ultra-broadband and high-responsive photodetectors based on bismuth film at room temperature. Sci. Rep. 2015, 5, 12320. [Google Scholar] [CrossRef] [Green Version]
- Reis, F.; Li, G.; Dudy, L.; Bauernfeind, M.; Glass, S.; Hanke, W.; Thomale, R.; Schafer, J.; Claessen, R. Bismuthene on a SiC substrate: A candidate for a high-temperature quantum spin Hall material. Science 2017, 357, 287–290. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Ren, X.H.; Li, Z.J.; Wang, H.D.; Huang, Z.Y.; Qiao, H.; Tang, P.H.; Zhao, J.L.; Liang, W.Y.; Ge, Y.Q.; et al. Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance. Nanotechnology 2018, 29, 235201. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.Q.; Lu, D.L.; Tang, H.; Luo, S.W.; Li, Z.Q.; Li, H.X.; Qi, X.; Zhong, J.X. Self-Powered Ultra-Broadband and Flexible Photodetectors Based on the Bismuth Films by Vapor Deposition. ACS Appl. Electron. Mater. 2020, 2, 1254–1262. [Google Scholar] [CrossRef]
- Wang, C.; Wang, L.; Li, X.H.; Luo, W.F.; Feng, T.C.; Zhang, Y.; Guo, P.L.; Ge, Y.Q. Few-layer bismuthene for femtosecond soliton molecules generation in Er-doped fiber laser. Nanotechnology 2019, 30, 025204. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Liang, Z.M.; Wu, L.M.; Chen, Y.X.; Song, Y.F.; Dhanabalan, S.C.; Ponraj, J.S.; Dong, B.Q.; Xiang, Y.J.; Xing, F.; et al. Few-layer Bismuthene: Sonochemical Exfoliation, Nonlinear Optics and Applications for Ultrafast Photonics with Enhanced Stability. Laser Photonics Rev. 2018, 12, 1700221. [Google Scholar] [CrossRef]
- Wang, K.; Zheng, J.L.; Huang, H.; Chen, Y.X.; Song, Y.F.; Ji, J.H.; Zhang, H. All-optical signal processing in few-layer bismuthene coated microfiber: Towards applications in optical fiber systems. Opt. Express 2019, 27, 16798–16811. [Google Scholar] [CrossRef]
- Lu, L.; Wang, W.H.; Wu, L.M.; Jiang, X.T.; Xiang, Y.J.; Li, J.Q.; Fan, D.Y.; Zhang, H. All-Optical Switching of Two Continuous Waves in Few Layer Bismuthene Based on Spatial Cross-Phase Modulation. ACS Photonics 2017, 4, 2852–2861. [Google Scholar] [CrossRef]
- Zhang, D.T.; Cui, X.Q.; Liu, L.L.; Xu, Y.C.; Zhao, J.X.; Han, J.H.; Zheng, W.T. 2D Bismuthene Metal Electron Mediator Engineering Super Interfacial Charge Transfer for Efficient Photocatalytic Reduction of Carbon Dioxide. ACS Appl. Mater. Interfaces 2021, 13, 21582–21592. [Google Scholar] [CrossRef]
- Ozer, M.S.; Eroglu, Z.; Yalin, A.S.; Kilic, M.; Rothlisberger, U.; Metin, O. Bismuthene as a versatile photocatalyst operating under variable conditions for the photoredox C-H bond functionalization. Appl. Catal. B-Environ. 2022, 304, 120957. [Google Scholar] [CrossRef]
- Yue, C.L.; Zhu, L.L.; Qiu, Y.X.; Du, Z.L.; Qiu, J.L.; Liu, F.Q.; Wang, F.H. Recent advances of plasmonic elemental Bi based photocatalysts in environmental remediation and energy conversion. J. Clean. Prod. 2023, 392, 136017. [Google Scholar] [CrossRef]
- Liu, X.H.; Zhang, S.L.; Guo, S.Y.; Cai, B.; Yang, S.Y.A.; Shan, F.K.; Pumera, M.; Zeng, H.B. Advances of 2D bismuth in energy sciences. Chem. Soc. Rev. 2020, 49, 263–285. [Google Scholar] [CrossRef]
- Derakhshi, M.; Daemi, S.; Shahini, P.; Habibzadeh, A.; Mostafavi, E.; Ashkarran, A.A. Two-Dimensional Nanomaterials beyond Graphene for Biomedical Applications. J. Funct. Biomater. 2022, 13, 27. [Google Scholar] [CrossRef] [PubMed]
- He, J.S.; Tao, L.L.; Zhang, H.; Zhou, B.; Li, J.B. Emerging 2D materials beyond graphene for ultrashort pulse generation in fiber lasers. Nanoscale 2019, 11, 2577–2593. [Google Scholar] [CrossRef] [PubMed]
- Scott, S.A.; Kral, M.V.; Brown, S.A. A crystallographic orientation transition and early stage growth characteristics of thin Bi films on HOPG. Surf. Sci. 2005, 587, 175–184. [Google Scholar] [CrossRef]
- Yang, F.; Elnabawy, A.O.; Schimmenti, R.; Song, P.; Wang, J.W.; Peng, Z.Q.; Yao, S.; Deng, R.P.; Song, S.Y.; Lin, Y.; et al. Bismuthene for highly efficient carbon dioxide electroreduction reaction. Nat. Commun. 2020, 11, 1088. [Google Scholar] [CrossRef] [Green Version]
- Ersan, F.; Akturk, E.; Ciraci, S. Stable single-layer structure of group-V elements. Phys. Rev. B 2016, 94, 245417. [Google Scholar] [CrossRef]
- Guo, Y.; Pan, F.; Ye, M.; Sun, X.T.; Wang, Y.Y.; Li, J.Z.; Zhang, X.Y.; Zhang, H.; Pan, Y.Y.; Song, Z.G.; et al. Monolayer Bismuthene-Metal Contacts: A Theoretical Study. ACS Appl. Mater. Interfaces 2017, 9, 23128–23140. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.Y.; Huang, Y.; Chen, Q.Y.; Li, Z.Y.; Cao, C.; He, Y. Strain and electric field tunable electronic structure of buckled bismuthene. RSC Adv. 2017, 7, 39546–39555. [Google Scholar] [CrossRef] [Green Version]
- Kecik, D.; Ozcelik, V.O.; Durgun, E.; Ciraci, S. Structure dependent optoelectronic properties of monolayer antimonene, bismuthene and their binary compound. Phys. Chem. Chem. Phys. 2019, 21, 7907–7917. [Google Scholar] [CrossRef] [Green Version]
- Qiao, J.S.; Kong, X.H.; Hu, Z.X.; Yang, F.; Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 2014, 5, 4475. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akturk, E.; Akturk, O.U.; Ciraci, S. Single and bilayer bismuthene: Stability at high temperature and mechanical and electronic properties. Phys. Rev. B 2016, 94, 014115. [Google Scholar] [CrossRef]
- Peng, L.; Xian, J.J.; Tang, P.Z.; Rubio, A.; Zhang, S.C.; Zhang, W.H.; Fu, Y.S. Visualizing topological edge states of single and double bilayer Bi supported on multibilayer Bi(111) fi lms. Phys. Rev. B 2018, 98, 245108. [Google Scholar] [CrossRef] [Green Version]
- Rasche, B.; Seifert, G.; Enyashin, A. Stability and Electronic Properties of Bismuth Nanotubes. J. Phys. Chem. C 2010, 114, 22092–22097. [Google Scholar] [CrossRef]
- Zhang, J.D.; Yu, X.F.; Han, W.J.; Lv, B.S.; Li, X.H.; Xiao, S.; Gao, Y.L.; He, J. Broadband spatial self-phase modulation of black phosphorous. Opt. Lett. 2016, 41, 1704–1707. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Xie, M.Q.; Li, F.Y.; Yan, Z.; Li, Y.F.; Kan, E.J.; Liu, W.; Chen, Z.F.; Zeng, H.B. Semiconducting Group 15 Monolayers: A Broad Range of Band Gaps and High Carrier Mobilities. Angew. Chem.-Int. Ed. 2016, 55, 1666–1669. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Chen, J.C.; Chen, M.X.; Wang, J.; Liu, X.Z.; Wei, B.; Wang, Z.C.; Li, J.J.; Gu, L.; Zhang, Q.H.; et al. Few-Layer Bismuthene with Anisotropic Expansion for High-Areal-Capacity Sodium-Ion Batteries. Adv. Mater. 2019, 31, e1807874. [Google Scholar] [CrossRef]
- Zhang, W.J.; Hu, Y.; Ma, L.B.; Zhu, G.Y.; Zhao, P.Y.; Xue, X.L.; Chen, R.P.; Yang, S.Y.; Ma, J.; Liu, J.; et al. Liquid-phase exfoliated ultrathin Bi nanosheets: Uncovering the origins of enhanced electrocatalytic CO2 reduction on two-dimensional metal nanostructure. Nano Energy 2018, 53, 808–816. [Google Scholar] [CrossRef]
- Walker, E.S.; Na, S.R.; Jung, D.; March, S.D.; Kim, J.S.; Trivedi, T.; Li, W.; Tao, L.; Lee, M.L.; Liechti, K.M.; et al. Large-Area Dry Transfer of Single-Crystalline Epitaxial Bismuth Thin Films. Nano Lett. 2016, 16, 6931–6938. [Google Scholar] [CrossRef]
- Sun, X.H.; Zhao, H.L.; Chen, J.Y.; Zhong, W.; Zhu, B.B.; Tao, L. Effects of the thickness and laser irradiation on the electrical properties of e-beam evaporated 2D bismuth. Nanoscale 2021, 13, 2648–2657. [Google Scholar] [CrossRef] [PubMed]
- Shen, J.F.; He, Y.M.; Wu, J.J.; Gao, C.T.; Keyshar, K.; Zhang, X.; Yang, Y.C.; Ye, M.X.; Vajtai, R.; Lou, J.; et al. Liquid Phase Exfoliation of Two-Dimensional Materials by Directly Probing and Matching Surface Tension Components. Nano Lett. 2015, 15, 5449–5454. [Google Scholar] [CrossRef]
- Huang, Y.X.; Zhu, C.Y.; Zhang, S.L.; Hu, X.M.; Zhang, K.; Zhou, W.H.; Guo, S.Y.; Xu, F.; Zeng, H.B. Ultrathin Bismuth Nanosheets for Stable Na-Ion Batteries: Clarification of Structure and Phase Transition by in Situ Observation. Nano Lett. 2019, 19, 1118–1123. [Google Scholar] [CrossRef]
- Huo, C.X.; Yan, Z.; Song, X.F.; Zeng, H.B. 2D materials via liquid exfoliation: A review on fabrication and applications. Sci. Bull. 2015, 60, 1994–2008. [Google Scholar] [CrossRef]
- Li, L.; Zhang, D.; Cao, M.H.; Deng, J.P.; Ji, X.H.; Wang, Q. Electrochemical synthesis of 2D antimony, bismuth and their compounds. J. Mater. Chem. C 2020, 8, 9464–9475. [Google Scholar] [CrossRef]
- Wu, D.; Shen, X.Q.; Liu, J.W.; Wang, C.; Liang, Y.; Fu, X.Z.; Luo, J.L. Electrochemical exfoliation from an industrial ingot: Ultrathin metallic bismuth nanosheets for excellent CO2 capture and electrocatalytic conversion. Nanoscale 2019, 11, 22125–22133. [Google Scholar] [CrossRef] [PubMed]
- Baboukani, A.R.; Khakpour, I.; Drozd, V.; Wang, C.L. Liquid-Based Exfoliation of Black Phosphorus into Phosphorene and Its Application for Energy Storage Devices. Small Struct. 2021, 2, 2000148. [Google Scholar] [CrossRef]
- Yang, Z.B.; Hao, J.H. Progress in pulsed laser deposited two-dimensional layered materials for device applications. J. Mater. Chem. C 2016, 4, 8859–8878. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.J.; Liu, Z.; Lupini, A.R.; Shi, G.; Lin, J.H.; Najmaei, S.; Lin, Z.; Elias, A.L.; Berkdemir, A.; You, G.; et al. Band Gap Engineering and Layer-by-Layer Mapping of Selenium-Doped Molybdenum Disulfide. Nano Lett. 2014, 14, 442–449. [Google Scholar] [CrossRef]
- Cai, Z.Y.; Liu, B.L.; Zou, X.L.; Cheng, H.M. Chemical Vapor Deposition Growth and Applications of Two-Dimensional Materials and Their Heterostructures. Chem. Rev. 2018, 118, 6091–6133. [Google Scholar] [CrossRef]
- Zhu, F.F.; Chen, W.J.; Xu, Y.; Gao, C.L.; Guan, D.D.; Liu, C.H.; Qian, D.; Zhang, S.C.; Jia, J.F. Epitaxial growth of two-dimensional stanene. Nat. Mater. 2015, 14, 1020–1025. [Google Scholar] [CrossRef]
- Saito, Y.; Nojima, T.; Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2017, 2, 16094. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.-H.; Wang, M.-X.; Zhu, F.; Wang, G.-Y.; Ma, H.-Y.; Xu, Z.-A.; Liao, Q.; Lu, Y.; Gao, C.-L.; Li, Y.-Y.; et al. Coexistence of Topological Edge State and Superconductivity in Bismuth Ultrathin Film. Nano Lett. 2017, 17, 3035–3039. [Google Scholar] [CrossRef]
- Yaegashi, K.; Sugawara, K.; Kato, T.; Takahashi, T.; Sato, T. Selective Fabrication of Bismuthene and ?-Bi on Hydrogen-Terminated SiC(0001). Langmuir 2022, 38, 13401–13406. [Google Scholar] [CrossRef]
- Nagao, T.; Sadowski, J.T.; Saito, M.; Yaginuma, S.; Fujikawa, Y.; Kogure, T.; Ohno, T.; Hasegawa, Y.; Hasegawa, S.; Sakurai, T. Nanofilm allotrope and phase transformation of ultrathin Bi film on Si(111)-7x7. Phys. Rev. Lett. 2004, 93, 105501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jankowski, M.; Kaminski, D.; Vergeer, K.; Mirolo, M.; Carla, F.; Rijnders, G.; Bollmann, T.R.J. Controlling the growth of Bi(110) and Bi(111) films on an insulating substrate. Nanotechnology 2017, 28, 15. [Google Scholar] [CrossRef]
- Ahmad, H.; Azali, N.A.; Bayang, L.; Yusoff, N. Generation of mode-locked thulium/holmium-doped fiber laser assisted by bismuthene/side polished fiber as saturable absorber. Laser Phys. Lett. 2022, 19, 7. [Google Scholar] [CrossRef]
- Song, Y.F.; Liang, Z.M.; Jiang, X.T.; Chen, Y.X.; Li, Z.J.; Lu, L.; Ge, Y.Q.; Wang, K.; Zheng, J.L.; Lu, S.B.; et al. Few-layer antimonene decorated microfiber: Ultra-short pulse generation and all-optical thresholding with enhanced long term stability. 2D Mater. 2017, 4, 045010. [Google Scholar] [CrossRef]
- Xu, W.X.; Guo, P.L.; Li, X.H.; Hui, Z.Q.; Wang, Y.M.; Shi, Z.J.; Shu, Y.Q. Sheet-structured bismuthene for near-infrared dual-wavelength harmonic mode-locking. Nanotechnology 2020, 31, 225209. [Google Scholar] [CrossRef] [PubMed]
- Chai, T.; Li, X.H.; Feng, T.C.; Guo, P.L.; Song, Y.F.; Chen, Y.X.; Zhang, H. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale 2018, 10, 17617–17622. [Google Scholar] [CrossRef]
- Yang, Q.Q.; Liu, R.T.; Huang, C.; Huang, Y.F.; Gao, L.F.; Sun, B.; Huang, Z.P.; Zhang, L.; Hu, C.X.; Zhang, Z.Q.; et al. 2D bismuthene fabricated via acid-intercalated exfoliation showing strong nonlinear near-infrared responses for mode-locking lasers. Nanoscale 2018, 10, 21106–21115. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ni, W.J.; Set, S.Y.; Yamashita, S.J. Mode-Locked Thulium-Doped Fiber Laser Using a Single-Layer-Graphene-Covered Tapered Fiber. IEEE Photonics Technol. Lett. 2017, 29, 913–916. [Google Scholar] [CrossRef]
- Du, L.; Lu, D.L.; Li, J.; Yang, K.; Yang, L.L.; Huang, B.; Yi, J.; Yi, Q.; Miao, L.L.; Qi, X.; et al. Broadband Nonlinear Optical Response of Single-Crystalline Bismuth Thin Film. ACS Appl. Mater. Interfaces 2019, 11, 35863–35870. [Google Scholar] [CrossRef]
- Chen, H.L.; Zhou, M.; Zhang, P.X.; Yin, H.; Zhu, S.Q.; Li, Z.; Chen, Z.Q. Passively Q-switched Nd:GYAP laser at 1.3 mu m with bismuthene nanosheets as a saturable absorber. Infrared Phys. Technol. 2022, 121, 104023. [Google Scholar] [CrossRef]
- Dong, L.; Li, D.C.; Pan, H.; Li, Y.; Zhao, S.Z.; Li, G.Q.; Chu, H.W. Pulse characteristics from a MoSe2 Q-switched Nd:GdVO4 laser at 1.3 mu m. Appl. Opt. 2019, 58, 8194–8199. [Google Scholar] [CrossRef]
- Lin, M.X.; Peng, Q.Q.; Hou, W.; Fan, X.W.; Liu, J. 1.3 mu m Q-switched solid-state laser based on few-layer ReS2 saturable absorber. Opt. Laser Technol. 2019, 109, 90–93. [Google Scholar] [CrossRef]
- Feng, X.Y.; Hao, Q.Q.; Lin, Y.K.; Yu, X.R.; Wu, Q.H.; Huang, H.; Zhang, F.; Liu, J.; Su, L.B.; Zhang, H. Bismuth nanosheets Q-switched Nd:BGO laser operating at 1065 nm with 880 nm laser-diode pumping. Opt. Laser Technol. 2020, 127, 106152. [Google Scholar] [CrossRef]
- Du, J.; Wang, Q.K.; Jiang, G.B.; Xu, C.W.; Zhao, C.J.; Xiang, Y.J.; Chen, Y.; Wen, S.C.; Zhang, H. Ytterbium-doped fiber laser passively mode locked by few-layer Molybdenum Disulfide (MoS2) saturable absorber functioned with evanescent field interaction. Sci. Rep. 2014, 4, 6346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.T.; Jiang, Z.K.; Chen, H.; Li, J.R.; Yin, J.D.; Wang, J.Z.; He, T.C.; Yan, P.G.; Ruan, S.C. High energy soliton pulse generation by a magnetron-sputtering-deposition-grown MoTe2 saturable absorber. Photonics Res. 2018, 6, 535–541. [Google Scholar] [CrossRef]
- Liu, W.J.; Pang, L.H.; Han, H.N.; Bi, K.; Lei, M.; Wei, Z.Y. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale 2017, 9, 5806–5811. [Google Scholar] [CrossRef] [PubMed]
- Niu, K.D.; Sun, R.Y.; Chen, Q.Y.; Man, B.Y.; Zhang, H.N. Passively mode-locked Er-doped fiber laser based on SnS2 nanosheets as a saturable absorber. Photonics Res. 2018, 6, 72–76. [Google Scholar] [CrossRef]
- Xu, Y.H.; Xie, H.H.; Jiang, G.B.; Miao, L.L.; Wang, K.; Tang, S.Y.; Yu, X.F.; Zhang, H.; Bao, Q.L. Bilayer Bismuth Selenide nanoplatelets based saturable absorber for ultra-short pulse generation (Invited). Opt. Commun. 2017, 395, 55–60. [Google Scholar] [CrossRef]
- Tian, X.L.; Wei, R.F.; Liu, M.; Zhu, C.H.; Luo, Z.C.; Wang, F.Q.; Qiu, J.R. Ultrafast saturable absorption in TiS2 induced by non-equilibrium electrons and the generation of a femtosecond mode-locked laser. Nanoscale 2018, 10, 9608–9615. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.C.; Zhu, J.; Wang, M.K.; Hu, L.P.; Tang, Y.F.; Shu, Y.Q.; Xie, Z.J.; Zhang, H. Emerging Mono-Elemental Bismuth Nanostructures: Controlled Synthesis and Their Versatile Applications. Adv. Funct. Mater. 2021, 31, 2007584. [Google Scholar] [CrossRef]
- Babu, S.S.; Muthuraja, P.; Yadav, P.; Gopinath, P. Aryldiazonium Salts in Photoredox Catalysis—Recent Trends. Adv. Synth. Catal. 2021, 363, 1782–1809. [Google Scholar] [CrossRef]
- Mo, F.Y.; Qiu, D.; Zhang, L.; Wang, J.B. Recent Development of Aryl Diazonium Chemistry for the Derivatization of Aromatic Compounds. Chem. Rev. 2021, 121, 5741–5829. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Li, C.; Domen, K. Recent developments in heterogeneous photocatalysts for solar-driven overall water splitting. Chem. Soc. Rev. 2019, 48, 2109–2125. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.Y.; Fan, J.S.; Tan, R.Q.; Yao, H.C.; Peng, Y.; Liu, Q.C.; Li, Z.J. Selective Photocatalytic Reduction of CO2 to CH4 Modulated by Chloride Modification on Bi2WO6 Nanosheets. ACS Appl. Mater. Interfaces 2020, 12, 54507–54516. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, F.; Cao, Y.H.; Zhang, F.Y.; Zou, Y.Z.; Huang, Z.A.; Ye, L.Q.; Zhou, Y. Interfacial Oxygen Vacancy Engineered Two-Dimensional g-C3N4/BiOCl Heterostructures with Boosted Photocatalytic Conversion of CO2. ACS Appl. Energy Mater. 2020, 3, 4610–4618. [Google Scholar] [CrossRef]
- Ma, Z.Y.; Li, P.H.; Ye, L.Q.; Zhou, Y.; Su, F.Y.; Ding, C.H.; Xie, H.Q.; Bai, Y.; Wong, P.K. Oxygen vacancies induced exciton dissociation of flexible BiOCl nanosheets for effective photocatalytic CO2 conversion. J. Mater. Chem. A 2017, 5, 24995–25004. [Google Scholar] [CrossRef]
- Ge, M.; Yang, C.L.; Wang, M.S.; Ma, X.G. Photocatalytic hydrogen generation from overall water splitting with direct Z-scheme driven by two-dimensional InTe/Bismuthene heterostructure. Int. J. Hydrog. Energy 2023, 48, 138–146. [Google Scholar] [CrossRef]
- Xie, Z.J.; Xing, C.Y.; Huang, W.C.; Fan, T.J.; Li, Z.J.; Zhao, J.L.; Xiang, Y.J.; Guo, Z.N.; Li, J.Q.; Yang, Z.G.; et al. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705833. [Google Scholar] [CrossRef]
- Xing, C.Y.; Huang, W.C.; Xie, Z.J.; Zhao, J.L.; Ma, D.T.; Fan, T.J.; Liang, W.Y.; Ge, Y.Q.; Dong, B.Q.; Li, J.Q.; et al. Ultrasmall Bismuth Quantum Dots: Facile Liquid-Phase Exfoliation, Characterization, and Application in High-Performance UV-Vis Photodetector. ACS Photonics 2018, 5, 621–629. [Google Scholar] [CrossRef]
- Wang, B.; Zhou, Y.; Huang, Z.; Qiao, H.; Duan, C.; Ren, X.; Wang, Z.; Zhong, J.; Qi, X. Photoelectrochemical self-powered photodetector based on 2D liquid-exfoliated bismuth nanosheets: With novel structures for portability and flexibility. Mater. Today Nano 2021, 14, 100109. [Google Scholar] [CrossRef]
- Ren, X.H.; Li, Z.J.; Huang, Z.Y.; Sang, D.; Qiao, H.; Qi, X.; Li, J.Q.; Zhong, J.X.; Zhang, H. Environmentally Robust Black Phosphorus Nanosheets in Solution: Application for Self-Powered Photodetector. Adv. Funct. Mater. 2017, 27, 1606834. [Google Scholar] [CrossRef]
- Yao, J.D.; Zheng, Z.Q.; Shao, J.M.; Yang, G.W. Promoting Photosensitivity and Detectivity of the Bi/Si Heterojunction Photodetector by Inserting a WS2 Layer. ACS Appl. Mater. Interfaces 2015, 7, 26701–26708. [Google Scholar] [CrossRef] [PubMed]
- Pataniya, P.M.; Sumesh, C.K. WS2 Nanosheet/Graphene Heterostructures for Paper-Based Flexible Photodetectors. ACS Appl. Nano Mater. 2020, 3, 6935–6944. [Google Scholar] [CrossRef]
- Pataniya, P.; Solanki, G.K.; Patel, K.D.; Pathak, V.M.; Sumesh, C.K. Crystal growth, characterization and photo detection properties of 2H-V0.75W0.25Se2 ternary alloy with 1T-VSe2 secondary phase. Mater. Res. Express 2017, 4, 106306. [Google Scholar] [CrossRef]
- Chauhan, B.L.; Bhakhar, S.A.; Pataniya, P.M.; Gupta, S.U.; Solanki, G.K.; Pathak, V.M.; Patel, V. Liquid-phase exfoliation of WSe2 nanosheets for ITO/WSe2 photodetector. J. Mater. Sci.-Mater. Electron. 2022, 33, 10314–10322. [Google Scholar] [CrossRef]
Size | Throughput | Thickness Homogeneity | Fabrication Rate | Processing Temperature | Refs | |
---|---|---|---|---|---|---|
Liquid exfoliation | 1–10 μm | High | Moderate | Moderate | RT | [24] [50] |
Electrochemical exfoliation | 1–10 μm | High | Moderate | Moderate | RT | [53] |
CVD | Over 1 cm | High | Very High | Slow | High | [56] |
PLD | Over 1 cm | High | High | Fast | Moderate | [17] |
MBE | High | High | Slow | High | [61] |
2D Materials | Pulse Width [fs] | Output Power [mW] | Single Pulse Energy [nJ] | frep [MHz] | Refs | |
---|---|---|---|---|---|---|
Bismuthene | 1561 | 193 | 5.6 | 8.85 | [16] | |
Bismuthene | 1557.5 | 621.5 | 122.1 | 22.74 | [23] | |
Bismuthene | 2789 | 645 | [70] | |||
Bismuthene | 1065 | 2.56 × 105 | 590 | 0.2237 | [74] | |
Antimonene | 1557.7 | 552 | 0.66 | 6.43 × 10−2 | ~25 | [65] |
BP | 1532 | 940 | 5.6 | 4.69 | ||
MoS2 | 1042.6 | 6.56 × 105 | 2.37 | 0.35 | 6.74 | [75] |
MoTe2 | 1559.5 | 229 | 57 | 2.14 | 26.601 | [76] |
WS2 | 1561 | 246 | 18 | 0.178 | 80 | [77] |
SnS2 | 1562 | 623 | 1.2 | 4.09 × 10−2 | 29.33 | [78] |
MoSe2 | 1340 | 4.2 × 105 | 52.6 | 238 | [72] | |
ReS2 | 1300 | 4.03 × 105 | 420 | 0.214 | [73] | |
Bi2Se3 | 1571 | 579 | 1.56 | 0.112 | 12.54 | [79] |
TiS2 | 1544.5 | 402 | ~5.7 | [80] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Yang, Z. Recent Progress in Synthesis and Photonic Applications of Two-Dimensional Bismuthene. Appl. Sci. 2023, 13, 6885. https://doi.org/10.3390/app13126885
Li H, Yang Z. Recent Progress in Synthesis and Photonic Applications of Two-Dimensional Bismuthene. Applied Sciences. 2023; 13(12):6885. https://doi.org/10.3390/app13126885
Chicago/Turabian StyleLi, Haoran, and Zhibin Yang. 2023. "Recent Progress in Synthesis and Photonic Applications of Two-Dimensional Bismuthene" Applied Sciences 13, no. 12: 6885. https://doi.org/10.3390/app13126885
APA StyleLi, H., & Yang, Z. (2023). Recent Progress in Synthesis and Photonic Applications of Two-Dimensional Bismuthene. Applied Sciences, 13(12), 6885. https://doi.org/10.3390/app13126885