Materials and Technique: The First Look at Saturnino Gatti
Abstract
:1. Introduction
2. Materials and Methods
2.1. Diffuse Visible Light Photography (Vis)
2.2. Ultraviolet Fluorescence Photography (UVF)
2.3. Infrared Reflectography (IRR)
2.4. Infrared False Color (IRFC)
2.5. Hypercolorimetric Multispectral Imaging
- The first step involves the acquisition of two images; one was acquired using filter A and the other using filter B (spectra shown in the Figure 1). The filters were screwed in front of the camera lens before each shot was taken. The lighting was set up using NEEWER (Neewer, Shenzhen, China) 750II Flashes Speedlite TTL with an LCD Display and Wireless Triggers. The flashes were modified by removing their front plastic lenses, thus allowing emissions in the 300–1000 nm region. To produce radiometrically and colorimetric calibrated images, white patches and a color-checker (36 colour samples from the Natural Color System® ©, NCS catalog) were positioned in the scene around the painting.
- The second step concerns the calibration of the two acquired images using the proprietary software, SpectraPick® (v1.1, created by Profilocolore, Rome, Italy), that, at the end of the process, produces seven tiff files representing the multispectral monochromatic images centered at 350 nm (UVR), 450 nm, 550 nm, 650 nm, 750 nm (IR1), 850 nm (IR2), and 960 nm (IR3), as well as the RGB 16-bit color image [32,33].
2.6. Optical Microscopy in Visible Light (OM)
3. Results and Discussion
3.1. Material Mapping, Retouching, and Remaking
3.2. Underdrawing
3.3. HMI Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Galli, A.; Alberghina, M.F.; Re, A.; Magrini, D.; Grifa, C.; Ponterio, R.C.; La Russa, M.F. Special Issue: Results of the II National Research project of AIAr: Archaeometric study of the frescoes by Saturnino Gatti and workshop at the church of San Panfilo in Tornimparte (AQ, Italy). Appl. Sci. 2023; to be submitted. [Google Scholar]
- Bonizzoni, L.; Caglio, S.; Galli, A.; Germinario, C.; Izzo, F.; Magrini, D. Identifying original and restoration materials through spectroscopic analyses on Saturnino Gatti mural paintings: How far a non-invasive approach can go. Appl. Sci. 2023, 13, 6638. [Google Scholar] [CrossRef]
- Bersani, D.; Berzioli, M.; Caglio, S.; Casoli, A.; Lottici, P.P.; Medeghini, L.; Poldi, G.; Zannini, P. An integrated multi-analytical approach to the study of the dome wall paintings by Correggio in Parma cathedral. Microchem. J. 2014, 114, 80–88. [Google Scholar] [CrossRef]
- Ludwig, N.; Orsilli, J.; Bonizzoni, L.; Gargano, M. UV-IR Image Enhancement for Mapping Restorations Applied on an Egyptian Coffin of the XXI Dynasty. Archaeol. Anthropol. Sci. 2019, 11, 6841–6850. [Google Scholar] [CrossRef]
- Gavrilov, D.; Maev, R.G.; Almond, D.P. A review of imaging methods in analysis of works of art: Thermographic imaging method in art analysis. Can. J. Phys. 2014, 92, 341–364. [Google Scholar] [CrossRef]
- Eom, T.H.; Lee, H.S. A Study on the Diagnosis Technology for Conservation Status of Painting Cultural Heritage Using Digital Image Analysis Program. Heritage 2023, 6, 1839–1855. [Google Scholar] [CrossRef]
- Piroddi, L.; Abu Zeid, N.; Calcina, S.V.; Capizzi, P.; Capozzoli, L.; Catapano, I.; Cozzolino, M.; D’Amico, S.; Lasaponara, R.; Tapete, D. Imaging Cultural Heritage at Different Scales: Part I, the Micro-Scale (Manufacts). Remote Sens. 2023, 15, 2586. [Google Scholar] [CrossRef]
- Jones, C.; Duffy, C.; Gibson, A.; Terras, M. Understanding multispectral imaging of cultural heritage: Determining best practice in MSI analysis of historical artefacts. J. Cult. Herit. 2020, 45, 339–350. [Google Scholar] [CrossRef]
- Aldovrandi, D.; Cetica, M.; Matteini, M. Multispectral image processing of paintings. Stud. Conserv. 1988, 33, 154–159. [Google Scholar]
- Casini, A.; Lotti, F.; Picollo, M. Imaging Spectroscopy for the Non-invasive Investigation of Paintings. In International Trends in Optics and Photonics; Asakura, T., Ed.; Springer Series in Optical Sciences; Springer: Berlin/Heidelberg, Germany, 1999; Volume 74. [Google Scholar] [CrossRef]
- Picollo, M.; Cucci, C.; Casini, A.; Stefani, L. Hyper-Spectral Imaging Technique in the Cultural Heritage Field: New Possible Scenarios. Sensors 2020, 20, 2843. [Google Scholar] [CrossRef]
- Lanteri, L.; Agresti, G.; Pelosi, C. A new practical approach for 3D documentation in ultraviolet fluorescence and infrared reflectography of polychromatic sculptures as fundamental step in restoration. Heritage 2019, 2, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Colantonio, C.; Lanteri, L.; Ciccola, A.; Serafini, I.; Postorino, P.; Censorii, E.; Rotari, D.; Pelosi, C. Imaging Diagnostics Coupled with Non-Invasive and Micro-Invasive Analyses for the Restoration of Ethnographic Artifacts from French Polynesia. Heritage 2022, 5, 215–232. [Google Scholar] [CrossRef]
- Cosentino, A. Effects of Different Binders on Technical Photography and Infrared Reflectography of 54 Historical Pigments. Int. J. Conserv. Sci. 2015, 6, 287–298. [Google Scholar]
- Lanteri, L.; Pelosi, C. 2D and 3D ultraviolet fluorescence applications on cultural heritage paintings and objects through a low-cost approach for diagnostics and documentation. In Proceedings of the Optics for Arts, Architecture, and Archaeology VIII, Munich, Germany, 8 July 2021; SPIE: Bellingham, WA, USA, 2021; p. 1178417. [Google Scholar] [CrossRef]
- Peeters, J.; Steenackers, G.; Sfarra, S.; Legrand, S.; Ibarra-Castanedo, C.; Janssens, K.; Van der Snickt, G. IR Reflectography and Active Thermography on Artworks: The Added Value of the 1.5–3 µm Band. Appl. Sci. 2018, 8, 50. [Google Scholar] [CrossRef] [Green Version]
- Van Asperen de Boer, J.R.J. Infrared reflectography: A method for the examination of paintings. Appl. Opt. 1968, 7, 1711–1714. [Google Scholar] [CrossRef] [PubMed]
- Moon, T.; Schilling, M.R.; Thirkettle, S. A Note on the Use of False-Color Infrared Photography in Conservation. Stud. Conserv. 1992, 37, 42–52. [Google Scholar] [CrossRef]
- Melis, M.; Babbi, A.; Miccoli, M. Development of a UV to IR extension to the standard colorimetry, based on a seven band modified DSLR camera to better characterize surfaces, tissues and fabrics. In Proceedings of the SPIE 8084, Optics for Arts, Architecture, and Archaeology III, Munich, Germany, 6 June 2011; pp. 1–11. [Google Scholar] [CrossRef]
- Vettraino, R.; Valentini, V.; Pogliani, P.; Ricci, M.; Laureti, S.; Calvelli, S.; Zito, R.; Lanteri, L.; Pelosi, C. Multi-Technique Approach by Traditional and Innovative Methodologies to Support the Restoration of a Wall Painting from the 16th Century at Palazzo Gallo in Bagnaia, Viterbo, Central Italy. Buildings 2023, 13, 783. [Google Scholar] [CrossRef]
- Pelagotti, A.; Mastio, A.D.; Rosa, A.D.; Piva, A. Multispectral imaging of paintings. IEEE Signal Process. Mag. 2008, 25, 27–36. [Google Scholar] [CrossRef]
- Briani, F.; Caridi, F.; Ferella, F.; Gueli, A.M.; Marchegiani, F.; Nisi, S.; Paladini, G.; Pecchioni, E.; Politi, G.; Santo, A.P.; et al. Multi-technique characterization of painting drawings of the pictorial cycle at the San Panfilo Church in Tornimparte (AQ). Appl. Sci. 2023, 13, 6492. [Google Scholar] [CrossRef]
- Arbace, L.; Di Paolo, G. I Volti Dell’anima, Saturnino Gatti: Vita e Opere Di Un Artista Del Rinascimento; De Siena Editore, Ed.; De Siena: Pescara, Italy, 2012; ISBN 8896341116. [Google Scholar]
- Mannetti, T.R.; Chelli, N.; Vecchioli, G. Saturnino Gatti Nella Chiesa di San Panfilo a Tornimparte; Cedrone, E.d.G., Ed.; L’Aquila Publishing: L’Aquila, Italy, 1992. [Google Scholar]
- Lanteri, L.; Calandra, S.; Briani, F.; Germinario, C.; Izzo, F.; Pagano, S.; Pelosi, C.; Santo, A.P. 3D Photogrammetric Survey, Raking Light Photography and Mapping of Degradation Phenomena of the Early Renaissance Wall Paintings by Saturnino Gatti—Case Study of the St. Panfilo Church in Tornimparte (L’Aquila, Italy). Appl. Sci. 2023, 13, 5689. [Google Scholar] [CrossRef]
- Groppi, F.; Vigliotti, D.; Lanteri, L.; Agresti, G.; Casoli, A.; Laureti, S.; Ricci, M.; Pelosi, C. Advanced documentation methodologies combined with multi-analytical approach for the preservation and restoration of 18th century architectural decorative elements at Palazzo Nuzzi in Orte (Central Italy). Int. J. Conserv. Sci. 2021, 12, 921–934. [Google Scholar]
- Poldi, G.; Villa, G.C.F. Riflettografia: Esempi Applicativi, in Dalla Conservazione Alla Storia Dell’arte; Edizioni della Normale: Pisa, Italy, 2006; pp. 69–126. [Google Scholar]
- Poldi, G.; Villa, G.C.F. Infrarosso in Falso Colore, in Dalla Conservazione Alla Storia Dell’arte; Edizioni della Normale: Pisa, Italy, 2006; pp. 127–138. [Google Scholar]
- Laureti, S.; Colantonio, C.; Burrascano, P.; Melis, M.; Calabrò, G.; Malekmohammadi, H.; Sfarra, S.; Ricci, M.; Pelosi, C. Development of integrated innovative techniques for the examination of paintings: The case studies of The Resurrection of Christ attributed to Andrea Mantegna and the Crucifixion of Viterbo attributed to Michelangelo’s workshop. J. Cult. Herit. 2019, 40, 1–16. [Google Scholar] [CrossRef]
- Ricci, M.; Laureti, S.; Malekmohammadi, H.; Sfarra, S.; Lanteri, L.; Colantonio, C.; Calabrò, G.; Pelosi, C. Surface and Interface Investigation of a 15th Century Wall Painting Using Multispectral Imaging and Pulse-Compression Infrared Thermography. Coatings 2021, 11, 546. [Google Scholar] [CrossRef]
- Annarilli, S.; Casoli, A.; Colantonio, C.; Lanteri, L.; Marseglia, A.; Pelosi, C.; Sottile, S. A Multi-Instrument Analysis of the Late 16th Canvas Painting, “Coronation of the Virgin with the Saints Ambrose and Jerome”, Attributed to the Tuscany-Umbria Area to Support the Possibility of Bio-Cleaning Using a Bacteria-Based System. Heritage 2022, 5, 2904–2921. [Google Scholar] [CrossRef]
- Melis, M.; Miccoli, M.; Quarta, D. Multispectral hypercolorimetry and automatic guided pigment identification: Some mas-terpieces case studies. In Proceedings of the SPIE 8790, Optics for Arts, Architecture, and Archaeology IV, Munich, Germany, 30 May 2013; Pezzati, L., Targowski, P., Eds.; SPIE: Bellingham, WA, USA, 2013; Volume 33, pp. 1–14. [Google Scholar]
- Kühn, H. “Zinc White”. In Artists’ Pigments: A Handbook of Their History and Characteristics; Feller, R.L., Ed.; National Gallery of Art in association with Archetype Publications Ltd.: London, UK, 2012; Volume 1, pp. 169–186. [Google Scholar]
- Melis, M.; Miccoli, M. Trasformazione evoluzionistica di una fotocamera reflex digitale in un sofisticato strumento per misure fotometriche e colorimetriche. In Proc. Colore e Colorimetria Contributi Multidisciplinari; Rossi, M., Siniscalco, A., Eds.; Maggioli Editore: Santarcangelo di Romagna, Italy, 2013; Volume IXA, pp. 28–38. [Google Scholar]
- Sandu, I.C.A.; de Sá, M.H.; Costa Pereira, M. Ancient ‘gilded’ art objects from European cultural heritage: A review on different scales of characterization. Surf. Interface Anal. 2011, 43, 1134–1151. [Google Scholar] [CrossRef]
- Darque-Ceretti, E.; Felder, E.; Aucouturier, M. Gilding of cultural heritage artefacts: An elaborated technology. Surf. Eng. 2013, 29, 146–152. [Google Scholar] [CrossRef]
- Brocchieri, J.; Scialla, E.; Manzone, A.; Graziano, G.O.; D’Onofrio, A.; Sabbarese, C. An analytical characterization of different gilding techniques on artworks from the Royal Palace (Caserta, Italy). J. Cult. Herit. 2022, 57, 213–225. [Google Scholar] [CrossRef]
- Daffara, C.; Fontana, R. Multispectral infrared reflectography to differentiate features in paintings. Microsc. Microanal. 2011, 17, 691–695. [Google Scholar] [CrossRef]
- Melada, J.; Gargano, M.; Ludwig, N. Pulsed thermography and infrared reflectography: Comparative results for underdrawing visualization in paintings. Appl. Opt. 2022, 61, E33–E38. [Google Scholar] [CrossRef]
- Chaban, A.; Tserevelakis, G.J.; Klironomou, E.; Fontana, R.; Zacharakis, G.; Striova, J. Revealing Underdrawings in Wall Paintings of Complex Stratigraphy with a Novel Reflectance Photoacoustic Imaging Prototype. J. Imaging 2021, 7, 250. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bonizzoni, L.; Caglio, S.; Galli, A.; Lanteri, L.; Pelosi, C. Materials and Technique: The First Look at Saturnino Gatti. Appl. Sci. 2023, 13, 6842. https://doi.org/10.3390/app13116842
Bonizzoni L, Caglio S, Galli A, Lanteri L, Pelosi C. Materials and Technique: The First Look at Saturnino Gatti. Applied Sciences. 2023; 13(11):6842. https://doi.org/10.3390/app13116842
Chicago/Turabian StyleBonizzoni, Letizia, Simone Caglio, Anna Galli, Luca Lanteri, and Claudia Pelosi. 2023. "Materials and Technique: The First Look at Saturnino Gatti" Applied Sciences 13, no. 11: 6842. https://doi.org/10.3390/app13116842
APA StyleBonizzoni, L., Caglio, S., Galli, A., Lanteri, L., & Pelosi, C. (2023). Materials and Technique: The First Look at Saturnino Gatti. Applied Sciences, 13(11), 6842. https://doi.org/10.3390/app13116842