PFAS: A Review of the State of the Art, from Legislation to Analytical Approaches and Toxicological Aspects for Assessing Contamination in Food and Environment and Related Risks
Abstract
:1. Introduction
2. Legislation
2.1. Europe—European Unions’ Countries
2.2. America
2.2.1. United States
2.2.2. Canada
2.2.3. Brazil
2.3. Asia
2.3.1. Japan
2.3.2. China
2.3.3. Taiwan
2.3.4. Singapore
2.3.5. Indonesia
2.3.6. Thailand
2.3.7. Vietnam
2.4. Africa
South Africa
2.5. Oceania
Australia
2.6. Discussion
3. Toxicity/Toxicological Effects
3.1. Toxic Effects of PFAS in Organisms
3.2. Discussion
4. Contamination in Environment and Food
4.1. Environmental Contamination
4.2. Contamination of Food and from Food Contact Materials
4.3. Discussion
5. Analytical Techniques for Detection and Quantification of PFAS
5.1. Sampling and Storage
5.2. Extraction and Clean-Up
5.3. Analytical Detection Techniques
5.4. Discussion
6. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
2D-LC | 2 dimensions Liquid Chromatography |
ACN | Acetonitrile |
AFFFs | Aqueous Film-Forming Foams |
AP | Apex Predator |
CAS | Cryogenic Air Sampler |
CCME | Canadian Council of Ministers of the Environment |
CCS | Collision Cross Section |
CERLCA | Comprehensive Environmental Response, Compensation and Liability Act |
Cl-PFESA | Chlorinated polyfluorinated ether sulfonic acids |
CONAMA | Brazilian National Council for the Environment |
CSCA | China Standard Conformity Assessment |
dSPE | dispersive Solid Phase Extraction |
DSF | Differential Scanning Fluorimetry |
DWTP | Drinking Water Treatment Plant |
ECHA | European Chemicals Agency |
EDCs | Endocrine-Disrupting Chemicals |
EEA | European Economic Area |
EFSA | European Food Safety Authority |
EHP | Environmental Health Perspectives |
EMBRAPA | Brazilian Agricultural Research Corporation |
EPA | Environmental Protection Agency |
ESI | Electronspray Ionization |
EU | European Union |
EURL | European Union Reference Laboratory |
FASA | Perfluoroalkane sulfonamide |
FCMs | Food Contact Materials |
FDA | Food and Drug Administration |
FTAB | Fluorotelomer sulfonamidoalkyl betaine |
FTOH | Fluorotelomer alcohol |
FTS | Fluorotelomer sulfonate |
FT-ICR | Fourier-Transform Ion Cyclotron Resonance |
GC MS | Gas Chromatography Mass Spectrometry |
GenX | same as HFPO-DA |
HC | Health Canada |
HDPE | High Density PolyEthylene |
HFPO-DA | Hexafluoropropylene oxide-dimer acid or GenX |
HILIC | Hydrophilic interaction liquid chromatography |
HLB | Hydrophilic-lipophilic balance |
HPLC | High Performance Liquid Chromatography |
HPFPECAs | Hydro- perfluoroether carboxylic acid |
HPFLCAs | Hydrogen-substituted polyfluoroalkyl (linear) carboxylic acids |
HRMS | High-resolution mass spectrometry |
Hydro-EVE | 2,2,3,3-Tetrafluoro-3-{[1,1,1,2,3,3-hexafluoro-3-(1,2,2,2-tetrafluoroethoxy)propan-2-yl]oxy}propanoic acid |
ICP-MS | Inductively Coupled Plasma Mass Spectrometry |
ILT | Inter-laboratory trial |
ISO | International Organization for Standardization |
ITSP | Instrument Top Sample Preparation |
LC-MS/MS | Liquid Chromatography coupled to tandem Mass Spectrometry |
L-PFOA | Linear perfluorooctanoic acid |
L-PFOS | Linear perfluorooctane sulfonic acid |
MCLs | Maximum contaminant levels |
NIAS | Non-intentionally added substances |
NMR | Nuclear Magnetic Resonance |
OBS | p-perfluorousnonenoxybenzene sulphonate |
PE | Polyethylene |
PFAAs | Long-chain perfluoroalkyl acids |
PFAS | Perfluoroalkyl substances |
PFBA | Perfluorobutanoic acid |
PFBS | Perfluorobutane sulfonic acid |
PFCAs | Perfluoroalkyl carboxylic acids |
PFDA | Perfluorodecanoic acid |
PFTrDA | Perfluorotridecanoic acid |
PFUdA | Perfluoroundecanoic acid |
PFHpA | Perfluoroheptanoic acid |
PFHxA | Perfluorohexanoic acid |
PFHxS | Perfluorohexane sulfonic acid |
PFNA | Perfluorononanoic acid |
PFOA | Perfluorooctanoic acid |
PFOS | Perfluorooctane sulfonic acid |
PFPeA | Perfluoropentanoic acid |
PFPrA | Perfluoropropionic acid |
PFSAs | Perfluoroalkyl sulfonic acids |
POCIS | Polar Organic Chemical Integrative Samplers |
POPs | Persistent Organic Pollutants |
POSF | Perfluorooctane sulfonyl fluoride |
PTFE | Polytetrafluoroethylene |
QuEChERS | Quick Easy Cheap Effective Rugged and Safe |
RAC | Committee for Risk Assessment |
REACH | European Chemicals Regulation |
ROS | Reactive Oxygen species |
SEAC | Committee for Socio-economic Analysis |
SPE | Solid Phase Extraction |
TOF | Time-of-flight |
TWI | Tolerable Weekly Intake |
WAX | Weak anion exchange |
WWTPs | Wastewater treatment plants |
US | United States |
References
- Available online: https://echa.europa.eu/it/hot-topics/perfluoroalkyl-chemicals-pfas (accessed on 12 May 2023).
- Available online: https://www.niehs.nih.gov/health/topics/agents/pfc/index.cfm (accessed on 12 May 2023).
- Buck, R.C.; Franklin, J.; Berger, U.; Conder, J.M.; Cousins, I.T.; De Voogt, P.; Jensen, A.A.; Kannan, K.; Mabury, S.A.; van Leeuwen, S.P.J. Perfluoroalkyl and polyfluoroalkyl substances in the environment: Terminology, classification, and origins. Integr. Environ. Assess. Manag. 2011, 7, 513–541. [Google Scholar] [CrossRef]
- Daly, E.R.; Chan, B.P.; Talbot, E.A.; Nassif, J.; Bean, C.; Cavallo, S.J.; Metcalf, E.; Simone, K.; Woolf, A.D. Per- and polyfluoroalkyl substance (PFAS) exposure assessment in a community exposed to contaminated drinking water, New Hampshire, 2015. Int. J. Hyg. Environ. Health 2018, 221, 569–577. [Google Scholar] [CrossRef]
- Jurikova, M.; Dvorakova, D.; Pulkrabova, J. The occurrence of perfluoroalkyl substances (PFAS) in drinking water in the Czech Republic: A pilot study. Environ. Sci. Pollut. Res. 2022, 29, 60341–60353. [Google Scholar] [CrossRef]
- Gazzotti, T.; Sirri, F.; Ghelli, E.; Zironi, E.; Zampiga, M.; Pagliuca, G. Perfluoroalkyl contaminants in eggs from backyard chickens reared in Italy. Food Chem. 2021, 362, 130178. [Google Scholar] [CrossRef]
- Available online: https://trends.google.com/trends/explore?date=all&q=PFAS (accessed on 12 May 2023).
- Available online: https://www.webofscience.com/wos/woscc/basic-search (accessed on 12 May 2023).
- Fenton, S.E.; Ducatman, A.; Boobis, A.; DeWitt, J.C.; Lau, C.; Ng, C.; Smith, J.S.; Roberts, S.M. Per- and Polyfluoroalkyl Substance Toxicity and Human Health Review: Current State of Knowledge and Strategies for Informing Future Research. Environ. Toxicol. Chem. 2021, 40, 606–630. [Google Scholar] [CrossRef]
- Vélez, M.P.; Arbuckle, T.E.; Fraser, W.D. Maternal exposure to perfluorinated chemicals and reduced fecundity: The MIREC study. Hum. Reprod. 2015, 30, 701–709. [Google Scholar] [CrossRef]
- Fei, C.; McLaughlin, J.K.; Lipworth, L.; Olsen, J. Maternal levels of perfluorinated chemicals and subfecundity. Hum. Reprod. 2009, 24, 1200–1205. [Google Scholar] [CrossRef]
- Whitworth, K.W.; Haug, L.S.; Baird, D.D.; Becher, G.; Hoppin, J.A.; Skjaerven, R.; Thomsen, C.; Eggesbo, M.; Travlos, G.; Wilson, R.; et al. Perfluorinated compounds and subfecundity in pregnant women. Epidemiology 2012, 23, 257–263. [Google Scholar] [CrossRef]
- Vestergaard, S.; Nielsen, F.; Andersson, A.M.; Hjøllund, N.H.; Grandjean, P.; Andersen, H.R.; Jensen, T.K. Association between perfluorinated compounds and time to pregnancy in a prospective cohort of Danish couples attempting to conceive. Hum. Reprod. 2012, 27, 873–880. [Google Scholar] [CrossRef]
- Buck Louis, G.M.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Lynch, C.D.; Gore-Langton, R.E.; Maisog, J.; Kim, S.; Chen, Z.; Barr, D.B. Persistent environmental pollutants and couple fecundity: The LIFE study. Environ. Health Perspect. 2013, 121, 231–236. [Google Scholar] [CrossRef]
- Grandjean, P.; Heilmann, C.; Weihe, P.; Nielsen, F.; Mogensen, U.B.; Timmermann, A.; Budtz-Jørgensen, E. Estimated exposures to perfluorinated compounds in infancy predict attenuated vaccine antibody concentrations at age 5-years. J. Immunotoxicol. 2017, 14, 188–195. [Google Scholar] [CrossRef]
- Abraham, K.; Monien, B.H. Transdermal absorption of 13C4-perfluorooctanoic acid (13C4-PFOA) from a sunscreen in a male volunteer—What could be the contribution of cosmetics to the internal exposure of perfluoroalkyl substances (PFAS)? Environ. Int. 2022, 169, 107549. [Google Scholar] [CrossRef]
- Blomberg, A.J.; Haug, L.S.; Lindh, C.; Sabaredzovic, A.; Pineda, D.; Jakobsson, K.; Nielsen, C. Changes in perfluoroalkyl substances (PFAS) concentrations in human milk over the course of lactation: A study in Ronneby mother-child cohort. Environ. Res. 2023, 219, 115096. [Google Scholar] [CrossRef]
- Available online: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas#:~:text=EPA%20is%20developing%20a%20proposed,by%20the%20end%20of%202023. (accessed on 12 May 2023).
- Available online: https://www.fda.gov/food/environmental-contaminants-food/and-polyfluoroalkyl-substances-pfas (accessed on 12 May 2023).
- Schrenk, D.; Bignami, M.; Bodin, L.; Chipman, J.K.; del Mazo, J.; Grasl-Kraupp, B.; Hogstrand, C.; Hoogenboom, L.; Leblanc, J.C.; Nebbia, C.S.; et al. Risk to human health related to the presence of perfluoroalkyl substances in food. EFSA J. 2020, 18, e06223. [Google Scholar] [CrossRef]
- Jahnke, A.; Marchand, P. Guidance Document on Analytical Parameters for the Determination of Per- and Polyfluoroalkyl Substances (PFAS) in Food and Feed; EURL POPs: Freiburg, Germany, 2022; pp. 1–26. [Google Scholar]
- Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:32020L2184&from=EN (accessed on 25 May 2023).
- Available online: https://www.epa.gov/sdwa/and-polyfluoroalkyl-substances-pfas (accessed on 25 May 2023).
- National Health and Medical Research Council (Australia); Natural Resource Management Ministerial Council (Australia). Australian Drinking Water Guidelines Version 3.8; National Health and Medical Research Council: Canberra, Australia, 2022; ISBN 1864965118.
- Available online: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/water-quality/water-talk-per-polyfluoroalkyl-substances-drinking-water.html (accessed on 25 May 2023).
- Wang, X.; Zhang, H.; He, X.; Liu, J.; Yao, Z.; Zhao, H.; Yu, D.; Liu, B.; Liu, T.; Zhao, W. Contamination of per- and polyfluoroalkyl substances in the water source from a typical agricultural area in North China. Front. Environ. Sci. 2023, 10, 2545. [Google Scholar] [CrossRef]
- Available online: https://eur-lex.europa.eu/eli/reg/2022/2388/oj (accessed on 25 May 2023).
- Available online: https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=celex:32004R0850 (accessed on 12 May 2023).
- Available online: https://eur-lex.europa.eu/legal-content/en/TXT/?uri=CELEX%3A32019R1021 (accessed on 12 May 2023).
- Alexander, J.; Auðunsson, G.A.; Benford, D.; Cockburn, A.; Cravedi, J.-P.; Di Domenico, A.; Fernández-Cruz, M.L.; Fink-Gremmels, J.; Fürst, P.; Galli, C.; et al. Opinion of the Scientific Panel on Contaminants in the Food chain on Perfluorooctane sulfonate (PFOS), perfluorooctanoic acid (PFOA) and their salts. EFSA J. 2008, 653, 1–131. [Google Scholar]
- Knutsen, H.K.; Alexander, J.; Barregård, L.; Bignami, M.; Brüschweiler, B.; Ceccatelli, S.; Cottrill, B.; Dinovi, M.; Edler, L.; Grasl-Kraupp, B.; et al. Risk to human health related to the presence of perfluorooctane sulfonic acid and perfluorooctanoic acid in food. EFSA J. 2018, 16, e05194. [Google Scholar] [CrossRef]
- Available online: https://echa.europa.eu/it/registry-of-restriction-intentions/-/dislist/details/0b0236e1827f87da (accessed on 12 May 2023).
- Available online: https://echa.europa.eu/documents/10162/fdaed5b0-b6e4-9a21-b45d-ca607c05f845 (accessed on 12 May 2023).
- Available online: https://echa.europa.eu/-/proposal-to-ban-forever-chemicals-in-firefighting-foams-throughout-the-eu (accessed on 12 May 2023).
- Available online: https://echa.europa.eu/documents/10162/4524f49c-ae14-b01b-71d2-ac3fa916c4e9 (accessed on 12 May 2023).
- Available online: https://echa.europa.eu/-/echa-adds-nine-hazardous-chemicals-to-candidate-list (accessed on 12 May 2023).
- Available online: https://echa.europa.eu/-/echa-receives-pfass-restriction-proposal-from-five-national-authorities (accessed on 12 May 2023).
- Available online: https://www.ncsl.org/environment-and-natural-resources/per-and-polyfluoroalkyl-substances (accessed on 12 May 2023).
- Available online: https://www.epa.gov/pfas/pfas-strategic-roadmap-epas-commitments-action-2021-2024 (accessed on 12 May 2023).
- Available online: https://www.stantec.com/en/ideas/topic/covid-19/pfas-in-canadian-provinces-where-are-the-regulations#:~:text=federal%20government%20doing%3F-,On%20a%20federal%20level%2C%20Canada%20took%20steps%20to%20deal%20with,environment%20or%20its%20biological%20diversity (accessed on 12 May 2023).
- Barbosa Machado Torres, F.; Guida, Y.; Weber, R.; Machado Torres, J.P. Brazilian overview of per- and polyfluoroalkyl substances listed as persistent organic pollutants in the stockholm convention. Chemosphere 2022, 291, 132674. [Google Scholar] [CrossRef]
- Ministry of the Environment. National Implementation Plan Brazil: Convention Stockholm/Ministry of the Environment; MMA, Brazilian Institute of Environment and Natural Renewable Resources: Brasilia, Brazil, 2015; p. 178.
- Available online: https://enviliance.com/regions/others/asia-pfoa (accessed on 12 May 2023).
- Available online: https://www.tcsb.gov.tw/fp-288-5776-06543-2.html (accessed on 12 May 2023).
- Groffen, T.; Nkuba, B.; Wepener, V.; Bervoets, L. Risks posed by per- and polyfluoroalkyl substances (PFAS) on the African continent, emphasizing aquatic ecosystems. Integr. Environ. Assess. Manag. 2021, 17, 726–732. [Google Scholar] [CrossRef]
- Ssebugere, P.; Sillanpää, M.; Matovu, H.; Wang, Z.; Schramm, K.W.; Omwoma, S.; Wanasolo, W.; Ngeno, E.C.; Odongo, S. Environmental levels and human body burdens of per- and poly-fluoroalkyl substances in Africa: A critical review. Sci. Total Environ. 2020, 739, 139913. [Google Scholar] [CrossRef]
- Meyer, T.; Roos, C. Regulation and management of hazardous chemical substances in South Africa. In Fundamentals of Ecotoxicology: The Science of Pollution, 4th ed.; Newman, M., Ed.; CRC Press: Boca Raton, FL, USA, 2015; pp. 463–469. [Google Scholar]
- Claassen, M.; Dabrowski, J.M.; Nepfumbada, T.; van der Laan, M.; Shadung, J.; Thwala, M. Incorporating Environmental Fate Models into Risk Assessment for Pesticide Registration in South Africa; Water Research Commission: Pretoria, South Africa, 2020; ISBN 9780639201351. [Google Scholar]
- Available online: https://federation.gov.au/about/agreements/intergovernmental-agreement-national-framework-responding-pfas-contamination (accessed on 12 May 2023).
- Briels, N.; Ciesielski, T.M.; Herzke, D.; Jaspers, V.L.B. Developmental Toxicity of Perfluorooctanesulfonate (PFOS) and Its Chlorinated Polyfluoroalkyl Ether Sulfonate Alternative F-53B in the Domestic Chicken. Environ. Sci. Technol. 2018, 52, 12859–12867. [Google Scholar] [CrossRef] [PubMed]
- Bursian, S.J.; Link, J.E.; McCarty, M.; Simcik, M.F. The Subacute Toxicity of Perfluorooctane Sulfonate and/or Perfluorooctanoic Acid and Legacy Aqueous Film-Forming Foams to Japanese Quail (Coturnix japonica) Chicks. Environ. Toxicol. Chem. 2021, 40, 695–710. [Google Scholar] [CrossRef] [PubMed]
- Bartlett, A.J.; De Silva, A.O.; Schissler, D.M.; Hedges, A.M.; Brown, L.R.; Shires, K.; Miller, J.; Sullivan, C.; Spencer, C.; Parrott, J.L. Lethal and sublethal toxicity of perfluorooctanoic acid (PFOA) in chronic tests with Hyalella azteca (amphipod) and early-life stage tests with Pimephales promelas (Fathead minnow). Ecotoxicol. Environ. Saf. 2021, 207, 111250. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Niu, J.; Li, Y.; Wang, Y.; Sun, D. Evaluating the sub-lethal toxicity of PFOS and PFOA using rotifer Brachionus calyciflorus. Environ. Pollut. 2013, 180, 34–40. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Du, Y.; Lam, P.K.S.; Wu, R.S.S.; Zhou, B. Developmental toxicity and alteration of gene expression in zebrafish embryos exposed to PFOS. Toxicol. Appl. Pharmacol. 2008, 230, 23–32. [Google Scholar] [CrossRef]
- Laine, M.B.; Vesamäki, J.S.; Puupponen, V.M.; Tiirola, M.; Taipale, S.J. Comparing the Ecotoxicological Effects of Perfluorooctanoic Acid (PFOA) and Perfluorohexanoic Acid (PFHxA) on Freshwater Microbial Community. Front. Environ. Sci. 2022, 10, 516. [Google Scholar] [CrossRef]
- Cara, B.; Lies, T.; Thimo, G.; Robin, L.; Lieven, B. Bioaccumulation and trophic transfer of perfluorinated alkyl substances (PFAS) in marine biota from the Belgian North Sea: Distribution and human health risk implications. Environ. Pollut. 2022, 311, 119907. [Google Scholar] [CrossRef]
- United Nations Industrial Development Organization (UNIDO). Preparing for HCFC Phase-Out: Fundamentals of Uses, Alternatives, Implications and Funding for Article 5 Countries; UNIDO: Vienna, Austria, 2009. [Google Scholar]
- Li, L.; Yu, N.; Wang, X.; Shi, W.; Liu, H.; Zhang, X.; Yang, L.; Pan, B.; Yu, H.; Wei, S. Comprehensive Exposure Studies of Per- and Polyfluoroalkyl Substances in the General Population: Target, Nontarget Screening, and Toxicity Prediction. Environ. Sci. Technol. 2022, 56, 14617–14626. [Google Scholar] [CrossRef]
- Eick, S.M.; Goin, D.E.; Trowbridge, J.; Cushing, L.; Smith, S.C.; Park, J.S.; DeMicco, E.; Padula, A.M.; Woodruff, T.J.; Morello-Frosch, R. Dietary predictors of prenatal per- and poly-fluoroalkyl substances exposure. J. Expo. Sci. Environ. Epidemiol. 2023, 33, 32–39. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, Q.; Li, Y.; Hao, Y.; Li, J.; Zhang, L.; Wang, P.; Yin, Y.; Zhang, S.; Li, T.; et al. Occurrence of per- and polyfluoroalkyl substances (PFASs) in raw milk and feed from nine Chinese provinces and human exposure risk assessment. Chemosphere 2022, 300, 134521. [Google Scholar] [CrossRef]
- Chen, Q.; Chou, W.C.; Lin, Z. Integration of Toxicogenomics and Physiologically Based Pharmacokinetic Modeling in Human Health Risk Assessment of Perfluorooctane Sulfonate. Environ. Sci. Technol. 2022, 56, 3623–3633. [Google Scholar] [CrossRef] [PubMed]
- Amstutz, V.H.; Cengo, A.; Gehres, F.; Sijm, D.T.H.M.; Vrolijk, M.F. Investigating the cytotoxicity of per- and polyfluoroalkyl substances in HepG2 cells: A structure-activity relationship approach. Toxicology 2022, 480, 153312. [Google Scholar] [CrossRef] [PubMed]
- Solan, M.E.; Senthilkumar, S.; Aquino, G.V.; Bruce, E.D.; Lavado, R. Comparative cytotoxicity of seven per- and polyfluoroalkyl substances (PFAS) in six human cell lines. Toxicology 2022, 477, 153281. [Google Scholar] [CrossRef] [PubMed]
- Batzella, E.; Girardi, P.; Russo, F.; Pitter, G.; Da Re, F.; Fletcher, T.; Canova, C. Perfluoroalkyl substance mixtures and cardio-metabolic outcomes in highly exposed male workers in the Veneto Region: A mixture-based approach. Environ. Res. 2022, 212, 113225. [Google Scholar] [CrossRef]
- Lin, C.Y.; Wang, C.; Sung, F.C.; Su, T.C. Association between serum per- and polyfluoroalkyl substances and thrombograms in young and middle-aged Taiwanese populations. Ecotoxicol. Environ. Saf. 2022, 236, 113457. [Google Scholar] [CrossRef]
- Available online: https://www.canada.ca/en/health-canada/services/environmental-workplace-health/reports-publications/environmental-contaminants/human-biomonitoring-resources/per-polyfluoroalkyl-substances-canadians.html (accessed on 25 May 2023).
- Boone, J.S.; Vigo, C.; Boone, T.; Byrne, C.; Ferrario, J.; Benson, R.; Donohue, J.; Simmons, J.E.; Kolpin, D.W.; Furlong, E.T.; et al. Per- and polyfluoroalkyl substances in source and treated drinking waters of the United States. Sci. Total Environ. 2019, 653, 359–369. [Google Scholar] [CrossRef]
- Schaefer, C.E.; Hooper, J.L.; Strom, L.E.; Abusallout, I.; Dickenson, E.R.V.; Thompson, K.A.; Mohan, G.R.; Drennan, D.; Wu, K.; Guelfo, J.L. Occurrence of quantifiable and semi-quantifiable poly- and perfluoroalkyl substances in united states wastewater treatment plants. Water Res. 2023, 233, 119724. [Google Scholar] [CrossRef]
- Wang, S.; Cai, Y.; Ma, L.; Lin, X.; Li, Q.; Li, Y.; Wang, X. Perfluoroalkyl substances in water, sediment, and fish from a subtropical river of China: Environmental behaviors and potential risk. Chemosphere 2022, 288, 132513. [Google Scholar] [CrossRef]
- Park, H.; Choo, G.; Kim, H.; Oh, J.E. Evaluation of the current contamination status of PFASs and OPFRs in South Korean tap water associated with its origin. Sci. Total Environ. 2018, 634, 1505–1512. [Google Scholar] [CrossRef]
- Wang, R.; Zhang, J.; Yang, Y.; Chen, C.E.; Zhang, D.; Tang, J. Emerging and legacy per-and polyfluoroalkyl substances in the rivers of a typical industrialized province of China: Spatiotemporal variations, mass discharges and ecological risks. Front. Environ. Sci. 2022, 10, 11. [Google Scholar] [CrossRef]
- Lalonde, B.; Garron, C. Perfluoroalkyl Substances (PFASs) in the Canadian Freshwater Environment. Arch. Environ. Contam. Toxicol. 2022, 82, 581–591. [Google Scholar] [CrossRef]
- Semerád, J.; Hatasová, N.; Grasserová, A.; Černá, T.; Filipová, A.; Hanč, A.; Innemanová, P.; Pivokonský, M.; Cajthaml, T. Screening for 32 per- and polyfluoroalkyl substances (PFAS) including GenX in sludges from 43 WWTPs located in the Czech Republic—Evaluation of potential accumulation in vegetables after application of biosolids. Chemosphere 2020, 261, 128018. [Google Scholar] [CrossRef]
- Aro, R.; Eriksson, U.; Kärrman, A.; Chen, F.; Wang, T.; Yeung, L.W.Y. Fluorine Mass Balance Analysis of Effluent and Sludge from Nordic Countries. ACS ES&T Water 2021, 1, 2087–2096. [Google Scholar] [CrossRef]
- Fredriksson, F.; Eriksson, U.; Kärrman, A.; Yeung, L.W.Y. Per- and polyfluoroalkyl substances (PFAS) in sludge from wastewater treatment plants in Sweden—First findings of novel fluorinated copolymers in Europe including temporal analysis. Sci. Total Environ. 2022, 846, 157406. [Google Scholar] [CrossRef]
- Lenka, S.P.; Kah, M.; Padhye, L.P. Occurrence and fate of poly- and perfluoroalkyl substances (PFAS) in urban waters of New Zealand. J. Hazard. Mater. 2022, 428, 128257. [Google Scholar] [CrossRef]
- Mussabek, D.; Söderman, A.; Imura, T.; Persson, K.M.; Nakagawa, K.; Ahrens, L.; Berndtsson, R. PFAS in the Drinking Water Source: Analysis of the Contamination Levels, Origin and Emission Rates. Water 2023, 15, 137. [Google Scholar] [CrossRef]
- McMahon, P.B.; Tokranov, A.K.; Bexfield, L.M.; Lindsey, B.D.; Johnson, T.D.; Lombard, M.A.; Watson, E. Perfluoroalkyl and Polyfluoroalkyl Substances in Groundwater Used as a Source of Drinking Water in the Eastern United States. Environ. Sci. Technol. 2022, 56, 2279–2288. [Google Scholar] [CrossRef]
- Available online: https://www3.epa.gov/carbon-footprint-calculator/tool/definitions/crude-oil.html#:~:text=Crude%20oil%20means%20a%20mixture,passing%20through%20surface%20separating%20facilities (accessed on 12 May 2023).
- Yao, Y.; Meng, Y.; Chen, H.; Zhu, L.; Sun, H. Non-target discovery of emerging PFAS homologues in Dagang Oilfield: Multimedia distribution and profiles in crude oil. J. Hazard. Mater. 2022, 437, 129300. [Google Scholar] [CrossRef]
- Ng, K.; Alygizakis, N.; Androulakakis, A.; Galani, A.; Aalizadeh, R.; Thomaidis, N.S.; Slobodnik, J. Target and suspect screening of 4777 per- and polyfluoroalkyl substances (PFAS) in river water, wastewater, groundwater and biota samples in the Danube River Basin. J. Hazard. Mater. 2022, 436, 129276. [Google Scholar] [CrossRef]
- Moretti, S.; Barola, C.; Giusepponi, D.; Paoletti, F.; Piersanti, A.; Tcheremenskaia, O.; Brambilla, G.; Galarini, R. Target determination and suspect screening of legacy and emerging per- and poly-fluoro poly-ethers in wild boar liver, in Italy. Chemosphere 2023, 312, 137214. [Google Scholar] [CrossRef]
- Arioli, F.; Ceriani, F.; Nobile, M.; Vigano’, R.; Besozzi, M.; Panseri, S.; Chiesa, L.M. Presence of organic halogenated compounds, organophosphorus insecticides and polycyclic aromatic hydrocarbons in meat of different game animal species from an Italian subalpine area. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2019, 36, 1244–1252. [Google Scholar] [CrossRef] [PubMed]
- Rupp, J.; Guckert, M.; Berger, U.; Drost, W.; Mader, A.; Nödler, K.; Nürenberg, G.; Schulze, J.; Söhlmann, R.; Reemtsma, T. Comprehensive target analysis and TOP assay of per- and polyfluoroalkyl substances (PFAS) in wild boar livers indicate contamination hot-spots in the environment. Sci. Total Environ. 2023, 871, 162028. [Google Scholar] [CrossRef] [PubMed]
- Pitter, G.; Da Re, F.; Canova, C.; Barbieri, G.; Jeddi, M.Z.; Daprà, F.; Manea, F.; Zolin, R.; Bettega, A.M.; Stopazzolo, G.; et al. Serum levels of perfluoroalkyl substances (PFAS) in adolescents and young adults exposed to contaminated drinking water in the Veneto region, Italy: A cross-sectional study based on a health surveillance program. Environ. Health Perspect. 2020, 128, 027007. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, S.; Smurthwaite, K.; Aylward, L.L.; Kay, M.; Toms, L.M.; King, L.; Marrington, S.; Barnes, C.; Kirk, M.D.; Mueller, J.F.; et al. Serum concentration trends and apparent half-lives of per- and polyfluoroalkyl substances (PFAS) in Australian firefighters. Int. J. Hyg. Environ. Health 2022, 246, 114040. [Google Scholar] [CrossRef]
- Kotlarz, N.; McCord, J.; Collier, D.; Suzanne Lea, C.; Strynar, M.; Lindstrom, A.B.; Wilkie, A.A.; Islam, J.Y.; Matney, K.; Tarte, P.; et al. Measurement of novel, drinking water-associated pfas in blood from adults and children in Wilmington, North Carolina. Environ. Health Perspect. 2020, 128, 077005. [Google Scholar] [CrossRef]
- Graber, J.M.; Alexander, C.; Laumbach, R.J.; Black, K.; Strickland, P.O.; Georgopoulos, P.G.; Marshall, E.G.; Shendell, D.G.; Alderson, D.; Mi, Z.; et al. Per and polyfluoroalkyl substances (PFAS) blood levels after contamination of a community water supply and comparison with 2013–2014 NHANES. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 172–182. [Google Scholar] [CrossRef]
- Genualdi, S.; Beekman, J.; Carlos, K.; Fisher, C.M.; Young, W.; DeJager, L.; Begley, T. Analysis of per- and poly-fluoroalkyl substances (PFAS) in processed foods from FDA’s Total Diet Study. Anal. Bioanal. Chem. 2022, 414, 1189–1199. [Google Scholar] [CrossRef]
- Sharma, B.M.; Bharat, G.K.; Tayal, S.; Larssen, T.; Bečanová, J.; Karásková, P.; Whitehead, P.G.; Futter, M.N.; Butterfield, D.; Nizzetto, L. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environ. Pollut. 2016, 208, 704–713. [Google Scholar] [CrossRef]
- Reade, A.; Quinn, T.; Schreiber, J.S. PFAS in Drinking Water 2019: Scientific and Policy Assessment for Addressing Per- and Polyfluoroalkyl Substances (PFAS) in Drinking Water; Natural Resources Defense Council: New York, NY, USA, 2019; pp. 1–102. [Google Scholar]
- Ji, K.; Kim, S.; Kho, Y.; Sakong, J.; Paek, D.; Choi, K. Major perfluoroalkyl acid (PFAA) concentrations and influence of food consumption among the general population of Daegu, Korea. Sci. Total Environ. 2012, 438, 42–48. [Google Scholar] [CrossRef]
- Liu, L.; Qu, Y.; Huang, J.; Weber, R. Per- and polyfluoroalkyl substances (PFASs) in Chinese drinking water: Risk assessment and geographical distribution. Environ. Sci. Eur. 2021, 33, 6. [Google Scholar] [CrossRef]
- Domingo, J.L.; Ericson-Jogsten, I.; Perelló, G.; Nadal, M.; Van Bavel, B.; Kärrman, A. Human exposure to perfluorinated compounds in Catalonia, Spain: Contribution of drinking water and fish and shellfish. J. Agric. Food Chem. 2012, 60, 4408–4415. [Google Scholar] [CrossRef]
- Scher, D.P.; Kelly, J.E.; Huset, C.A.; Barry, K.M.; Hoffbeck, R.W.; Yingling, V.L.; Messing, R.B. Occurrence of perfluoroalkyl substances (PFAS) in garden produce at homes with a history of PFAS-contaminated drinking water. Chemosphere 2018, 196, 548–555. [Google Scholar] [CrossRef]
- Babayev, M.; Capozzi, S.L.; Miller, P.; McLaughlin, K.R.; Medina, S.S.; Byrne, S.; Zheng, G.; Salamova, A. PFAS in drinking water and serum of the people of a southeast Alaska community: A pilot study. Environ. Pollut. 2022, 305, 119246. [Google Scholar] [CrossRef]
- Post, G.B. Invited Perspective: Current Breast Milk PFAS Levels in the United States and Canada Indicate Need for Additional Monitoring and Actions to Reduce Maternal Exposures. Environ. Health Perspect. 2022, 130, 2021–2022. [Google Scholar] [CrossRef]
- Han, F.; Wang, Y.; Li, J.; Lyu, B.; Liu, J.; Zhang, J.; Zhao, Y.; Wu, Y. Occurrences of legacy and emerging per- and polyfluoroalkyl substances in human milk in China: Results of the third National Human Milk Survey (2017–2020). J. Hazard. Mater. 2023, 443, 130163. [Google Scholar] [CrossRef]
- Giari, L.; Guerranti, C.; Perra, G.; Cincinelli, A.; Gavioli, A.; Lanzoni, M.; Castaldelli, G. PFAS levels in fish species in the Po River (Italy): New generation PFAS, fish ecological traits and parasitism in the foreground. Sci. Total Environ. 2023, 876, 162828. [Google Scholar] [CrossRef]
- Barbo, N.; Stoiber, T.; Naidenko, O.V.; Andrews, D.Q. Locally caught freshwater fish across the United States are likely a significant source of exposure to PFOS and other perfluorinated compounds. Environ. Res. 2023, 220, 115165. [Google Scholar] [CrossRef]
- Kumar, E.; Koponen, J.; Rantakokko, P.; Airaksinen, R.; Ruokojärvi, P.; Kiviranta, H.; Vuorinen, P.J.; Myllylä, T.; Keinänen, M.; Raitaniemi, J.; et al. Distribution of perfluoroalkyl acids in fish species from the Baltic Sea and freshwaters in Finland. Chemosphere 2022, 291, 132688. [Google Scholar] [CrossRef]
- Semerád, J.; Horká, P.; Filipová, A.; Kukla, J.; Holubová, K.; Musilová, Z.; Jandová, K.; Frouz, J.; Cajthaml, T. The driving factors of per- and polyfluorinated alkyl substance (PFAS) accumulation in selected fish species: The influence of position in river continuum, fish feed composition, and pollutant properties. Sci. Total Environ. 2022, 816, 151662. [Google Scholar] [CrossRef]
- Stahl, L.L.; Snyder, B.D.; McCarty, H.B.; Kincaid, T.M.; Olsen, A.R.; Cohen, T.R.; Healey, J.C. Contaminants in fish from U.S. rivers: Probability-based national assessments. Sci. Total Environ. 2023, 861, 160557. [Google Scholar] [CrossRef]
- Hoa, N.T.Q.; Lieu, T.T.; Anh, H.Q.; Huong, N.T.A.; Nghia, N.T.; Chuc, N.T.; Quang, P.D.; Vi, P.T.; Tuyen, L.H. Perfluoroalkyl substances (PFAS) in freshwater fish from urban lakes in Hanoi, Vietnam: Concentrations, tissue distribution, and implication for risk assessment. Environ. Sci. Pollut. Res. 2022, 29, 52057–52069. [Google Scholar] [CrossRef] [PubMed]
- Rüdel, H.; Radermacher, G.; Fliedner, A.; Lohmann, N.; Koschorreck, J.; Duffek, A. Tissue concentrations of per- and polyfluoroalkyl substances (PFAS) in German freshwater fish: Derivation of fillet-to-whole fish conversion factors and assessment of potential risks. Chemosphere 2022, 292, 133483. [Google Scholar] [CrossRef] [PubMed]
- Van der Schyff, V.; Kwet Yive, N.S.C.; Polder, A.; Cole, N.C.; Bouwman, H. Perfluoroalkyl substances (PFAS) in tern eggs from St. Brandon’s Atoll, Indian Ocean. Mar. Pollut. Bull. 2020, 154, 111061. [Google Scholar] [CrossRef] [PubMed]
- Mikolajczyk, S.; Pajurek, M.; Warenik-Bany, M. Perfluoroalkyl substances in hen eggs from different types of husbandry. Chemosphere 2022, 303, 134950. [Google Scholar] [CrossRef]
- Miller, A.; Elliott, J.E.; Elliott, K.H.; Lee, S.; Cyr, F. Temporal trends of perfluoroalkyl substances (PFAS) in eggs of coastal and offshore birds: Increasing PFAS levels associated with offshore bird species breeding on the Pacific coast of Canada and wintering near Asia. Environ. Toxicol. Chem. 2015, 34, 1799–1808. [Google Scholar] [CrossRef]
- Pereira, M.G.; Lacorte, S.; Walker, L.A.; Shore, R.F. Contrasting long term temporal trends in perfluoroalkyl substances (PFAS) in eggs of the northern gannet (Morus bassanus) from two UK colonies. Sci. Total Environ. 2021, 754, 141900. [Google Scholar] [CrossRef]
- Available online: https://www.food.dtu.dk/english/news/pfas-found-in-organic-eggs-in-denmark?id=789f9ba1-bdfc-4a7d-908b-fc6cccff4742 (accessed on 12 May 2023).
- Androulakakis, A.; Alygizakis, N.; Gkotsis, G.; Nika, M.C.; Nikolopoulou, V.; Bizani, E.; Chadwick, E.; Cincinelli, A.; Claßen, D.; Danielsson, S.; et al. Determination of 56 per- and polyfluoroalkyl substances in top predators and their prey from Northern Europe by LC-MS/MS. Chemosphere 2022, 287, 131775. [Google Scholar] [CrossRef]
- Galbiati, E.; Tietz, T.; Zellmer, S.; Merkel, S. Risk Assessment of Food Contact Materials II. EFSA J. 2022, 20, e200408. [Google Scholar] [CrossRef]
- Lerch, M.; Nguyen, K.H.; Granby, K. Is the use of paper food contact materials treated with per- and polyfluorinated alkyl substances safe for high-temperature applications?—Migration study in real food and food simulants. Food Chem. 2022, 393, 133375. [Google Scholar] [CrossRef]
- Minet, L.; Wang, Z.; Shalin, A.; Bruton, T.A.; Blum, A.; Peaslee, G.F.; Schwartz-Narbonne, H.; Venier, M.; Whitehead, H.; Wu, Y.; et al. Use and release of per- and polyfluoroalkyl substances (PFASs) in consumer food packaging in U.S. and Canada. Environ. Sci. Process. Impacts 2022, 24, 2032–2042. [Google Scholar] [CrossRef]
- Schwartz-Narbonne, H.; Xia, C.; Shalin, A.; Whitehead, H.D.; Yang, D.; Peaslee, G.F.; Wang, Z.; Wu, Y.; Peng, H.; Blum, A.; et al. Per- and Polyfluoroalkyl Substances in Canadian Fast Food Packaging. Environ. Sci. Technol. Lett. 2023, 10, 343–349. [Google Scholar] [CrossRef]
- Hu, X.C.; Dassuncao, C.; Zhang, X.; Grandjean, P.; Weihe, P.; Webster, G.M.; Nielsen, F.; Sunderland, E.M. Can profiles of poly- and Perfluoroalkyl substances (PFASs) in human serum provide information on major exposure sources? Environ. Health A Glob. Access Sci. Source 2018, 17, 11. [Google Scholar] [CrossRef]
- D’Eon, J.C.; Mabury, S.A. Is indirect exposure a significant contributor to the burden of perfluorinated acids observed in humans? Environ. Sci. Technol. 2011, 45, 7974–7984. [Google Scholar] [CrossRef]
- Boronow, K.E.; Brody, J.G.; Schaider, L.A.; Peaslee, G.F.; Havas, L.; Cohn, B.A. Serum concentrations of PFASs and exposure-related behaviors in African American and non-Hispanic white women. J. Expo. Sci. Environ. Epidemiol. 2019, 29, 206–217. [Google Scholar] [CrossRef]
- Tittlemier, S.A.; Pepper, K.; Seymour, C.; Moisey, J.; Bronson, R.; Cao, X.L.; Dabeka, R.W. Dietary exposure of Canadians to perfluorinated carboxylates and perfluorooctane sulfonate via consumption of meat, fish, fast foods, and food items prepared in their packaging. J. Agric. Food Chem. 2007, 55, 3203–3210. [Google Scholar] [CrossRef]
- Schaider, L.A.; Balan, S.A.; Blum, A.; Andrews, D.Q.; Strynar, M.J.; Dickinson, M.E.; Lunderberg, D.M.; Lang, J.R.; Peaslee, G.F. Fluorinated Compounds in U.S. Fast Food Packaging. Environ. Sci. Technol. Lett. 2017, 4, 105–111. [Google Scholar] [CrossRef]
- Susmann, H.P.; Schaider, L.A.; Rodgers, K.M.; Rudel, R.A. Dietary habits related to food packaging and population exposure to PFASs. Environ. Health Perspect. 2019, 127, 107003. [Google Scholar] [CrossRef]
- Richterová, D.; Govarts, E.; Fábelová, L.; Rausová, K.; Rodriguez Martin, L.; Gilles, L.; Remy, S.; Colles, A.; Rambaud, L.; Riou, M.; et al. PFAS levels and determinants of variability in exposure in European teenagers—Results from the HBM4EU aligned studies (2014–2021). Int. J. Hyg. Environ. Health 2023, 247, 114057. [Google Scholar] [CrossRef]
- Zacs, D.; Bartkevics, V. Trace determination of perfluorooctane sulfonate and perfluorooctanoic acid in environmental samples (surface water, wastewater, biota, sediments, and sewage sludge) using liquid chromatography—Orbitrap mass spectrometry. J. Chromatogr. A 2016, 1473, 109–121. [Google Scholar] [CrossRef]
- Xiao, F.; Golovko, S.A.; Golovko, M.Y. Identification of novel non-ionic, cationic, zwitterionic, and anionic polyfluoroalkyl substances using UPLC–TOF–MS E high-resolution parent ion search. Anal. Chim. Acta 2017, 988, 41–49. [Google Scholar] [CrossRef]
- Yong, Z.Y.; Kim, K.Y.; Oh, J.E. The occurrence and distributions of per- and polyfluoroalkyl substances (PFAS) in groundwater after a PFAS leakage incident in 2018. Environ. Pollut. 2021, 268, 115395. [Google Scholar] [CrossRef] [PubMed]
- Janda, J.; Nödler, K.; Brauch, H.J.; Zwiener, C.; Lange, F.T. Robust trace analysis of polar (C2–C8) perfluorinated carboxylic acids by liquid chromatography-tandem mass spectrometry: Method development and application to surface water, groundwater and drinking water. Environ. Sci. Pollut. Res. 2019, 26, 7326–7336. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://phenomenex.blob.core.windows.net/documents/7dc5a613-2fbf-4664-bed6-d0dc4f8ca05c.pdf (accessed on 12 May 2023).
- Available online: https://www.restek.com/globalassets/pdfs/literature/EVAN3220A-UNV.pdf (accessed on 12 May 2023).
- Gobelius, L.; Persson, C.; Wiberg, K.; Ahrens, L. Calibration and application of passive sampling for per- and polyfluoroalkyl substances in a drinking water treatment plant. J. Hazard. Mater. 2019, 362, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Kaserzon, S.L.; Vijayasarathy, S.; Bräunig, J.; Mueller, L.; Hawker, D.W.; Thomas, K.V.; Mueller, J.F. Calibration and validation of a novel passive sampling device for the time integrative monitoring of per- and polyfluoroalkyl substances (PFASs) and precursors in contaminated groundwater. J. Hazard. Mater. 2019, 366, 423–431. [Google Scholar] [CrossRef]
- Woudneh, M.B.; Chandramouli, B.; Hamilton, C.; Grace, R. Effect of Sample Storage on the Quantitative Determination of 29 PFAS: Observation of Analyte Interconversions during Storage. Environ. Sci. Technol. 2019, 53, 12576–12585. [Google Scholar] [CrossRef]
- Yu, N.; Wen, H.; Wang, X.; Yamazaki, E.; Taniyasu, S.; Yamashita, N.; Yu, H.; Wei, S. Nontarget Discovery of Per- And Polyfluoroalkyl Substances in Atmospheric Particulate Matter and Gaseous Phase Using Cryogenic Air Sampler. Environ. Sci. Technol. 2020, 54, 3103–3113. [Google Scholar] [CrossRef]
- Simon, F.; Gehrenkemper, L.; von der Au, M.; Wittwer, P.; Roesch, P.; Pfeifer, J.; Cossmer, A.; Meermann, B. A fast and simple PFAS extraction method utilizing HR–CS–GFMAS for soil samples. Chemosphere 2022, 295, 133922. [Google Scholar] [CrossRef]
- Johnson, G.R. PFAS in soil and groundwater following historical land application of biosolids. Water Res. 2022, 211, 118035. [Google Scholar] [CrossRef]
- Taniyasu, S.; Yeung, L.W.Y.; Lin, H.; Yamazaki, E.; Eun, H.; Lam, P.K.S.; Yamashita, N. Quality assurance and quality control of solid phase extraction for PFAS in water and novel analytical techniques for PFAS analysis. Chemosphere 2022, 288, 132440. [Google Scholar] [CrossRef]
- Nassazzi, W.; Lai, F.Y.; Ahrens, L. A novel method for extraction, clean-up and analysis of per- and polyfluoroalkyl substances (PFAS) in different plant matrices using LC-MS/MS. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2022, 1212, 123514. [Google Scholar] [CrossRef]
- Drábová, L.; Dvořáková, D.; Urbancová, K.; Gramblička, T.; Hajšlová, J.; Pulkrabová, J. Critical Assessment of Clean-Up Techniques Employed in Simultaneous Analysis of Persistent Organic Pollutants and Polycyclic Aromatic Hydrocarbons in Fatty Samples. Toxics 2022, 10, 12. [Google Scholar] [CrossRef]
- Taylor, R.B.; Sapozhnikova, Y. Comparison and validation of the QuEChERSER mega-method for determination of per- and polyfluoroalkyl substances in foods by liquid chromatography with high-resolution and triple quadrupole mass spectrometry. Anal. Chim. Acta 2022, 1230, 340400. [Google Scholar] [CrossRef]
- Gallocchio, F.; Moressa, A.; Zonta, G.; Angeletti, R.; Lega, F. Fast and Sensitive Analysis of Short- and Long-Chain Perfluoroalkyl Substances in Foods of Animal Origin. Molecules 2022, 27, 7899. [Google Scholar] [CrossRef]
- Askeland, M.; Clarke, B.; Paz-Ferreiro, J. A serial PFASs sorption technique coupled with adapted high volume direct aqueous injection LCMS method. MethodsX 2020, 7, 100886. [Google Scholar] [CrossRef]
- Piva, E.; Fais, P.; Cecchetto, G.; Montisci, M.; Viel, G.; Pascali, J.P. Determination of perfluoroalkyl substances (PFAS) in human hair by liquid chromatography-high accurate mass spectrometry (LC-QTOF). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2021, 1172, 122651. [Google Scholar] [CrossRef]
- Berger, U.; Haukås, M. Validation of a screening method based on liquid chromatography coupled to high-resolution mass spectrometry for analysis of perfluoroalkylated substances in biota. J. Chromatogr. A 2005, 1081, 210–217. [Google Scholar] [CrossRef]
- Getzinger, G.J.; Higgins, C.P.; Ferguson, P.L. Structure Database and in Silico Spectral Library for Comprehensive Suspect Screening of Per- And Polyfluoroalkyl Substances (PFASs) in Environmental Media by High-resolution Mass Spectrometry. Anal. Chem. 2021, 93, 2820–2827. [Google Scholar] [CrossRef]
- Zhu, P.; Yue, Z.; Zheng, Z.; Zhang, Y.; Li, W.; Zhao, F.; Xiao, C.; Bai, R.; Lin, W. Determination of perfluoroalkyl acids in lamb liver by high performance liquid chromatography-tandem mass spectrometry combined with dispersive solid phase extraction. Chin. J. Chromatogr. 2015, 33, 494–500. [Google Scholar] [CrossRef]
- Mottaleb, M.A.; Ding, Q.X.; Pennell, K.G.; Haynes, E.N.; Morris, A.J. Direct injection analysis of per and polyfluoroalkyl substances in surface and drinking water by sample filtration and liquid chromatography-tandem mass spectrometry. J. Chromatogr. A 2021, 1653, 462426. [Google Scholar] [CrossRef]
- Wu, C.; Wang, Q.; Chen, H.; Li, M. Rapid quantitative analysis and suspect screening of per-and polyfluorinated alkyl substances (PFASs) in aqueous film-forming foams (AFFFs) and municipal wastewater samples by Nano-ESI-HRMS. Water Res. 2022, 219, 118542. [Google Scholar] [CrossRef]
- Dodds, J.N.; Hopkins, Z.R.; Knappe, D.R.U.; Baker, E.S. Rapid Characterization of Per- And Polyfluoroalkyl Substances (PFAS) by Ion Mobility Spectrometry-Mass Spectrometry (IMS-MS). Anal. Chem. 2020, 92, 4427–4435. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.W.; Scheibly, C.M.; Polera, M.E.; Belcher, S.M. Rapid Characterization of Human Serum Albumin Binding for Per- And Polyfluoroalkyl Substances Using Differential Scanning Fluorimetry. Environ. Sci. Technol. 2021, 55, 12291–12301. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Yang, K.A.; Choi, Y.; Choe, J.K. Novel ssDNA aptamer-based fluorescence sensor for perfluorooctanoic acid detection in water. Environ. Int. 2022, 158, 107000. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Cui, D.; Ng, B.; Ogunbiyi, O.D.; De Navarro, M.G.; Gardinali, P.; Quinete, N. Non-targeted Analysis for the Screening and Semi-quantitative Estimates of Per-and Polyfluoroalkyl Substances in Water Samples From South Florida Environments. J. Hazard. Mater. 2023, 452, 131224. [Google Scholar] [CrossRef]
- Dickman, R.A.; Aga, D.S. Efficient workflow for suspect screening analysis to characterize novel and legacy per- and polyfluoroalkyl substances (PFAS) in biosolids. Anal. Bioanal. Chem. 2022, 414, 4497–4507. [Google Scholar] [CrossRef]
- Kunzelmann, M.; Winter, M.; Åberg, M.; Hellenäs, K.E.; Rosén, J. Non-targeted analysis of unexpected food contaminants using LC-HRMS. Anal. Bioanal. Chem. 2018, 410, 5593–5602. [Google Scholar] [CrossRef]
- Kim, Y.; Pike, K.A.; Gray, R.; Sprankle, J.W.; Faust, J.A.; Edmiston, P.L. Non-targeted identification and semi-quantitation of emerging per- and polyfluoroalkyl substances (PFAS) in US rainwater. In Environmental Science: Processes & Impacts; The Royal Society of Chemistry: London, UK, 2023; pp. 2050–7887. [Google Scholar] [CrossRef]
- Xiao, H.M.; Zhao, S.; Hussain, D.; Chen, J.L.; Luo, D.; Wei, F.; Wang, X. Fluoro-cotton assisted non-targeted screening of organic fluorine compounds from rice (Oryza sativa L.) grown in perfluoroalkyl substance polluted soil. Environ. Res. 2023, 216, 114801. [Google Scholar] [CrossRef]
- Renai, L.; Del Bubba, M.; Samanipour, S.; Stafford, R.; Gargano, A.F.G. Development of a comprehensive two-dimensional liquid chromatographic mass spectrometric method for the non-targeted identification of poly- and perfluoroalkyl substances in aqueous film-forming foams. Anal. Chim. Acta 2022, 1232, 340485. [Google Scholar] [CrossRef]
- Young, R.B.; Pica, N.E.; Sharifan, H.; Chen, H.; Roth, H.K.; Blakney, G.T.; Borch, T.; Higgins, C.P.; Kornuc, J.J.; McKenna, A.M.; et al. PFAS Analysis with Ultrahigh Resolution 21T FT-ICR MS: Suspect and Nontargeted Screening with Unrivaled Mass Resolving Power and Accuracy. Environ. Sci. Technol. 2022, 56, 2455–2465. [Google Scholar] [CrossRef]
- Jamari, N.L.A.; Dohmann, J.F.; Raab, A.; Krupp, E.M.; Feldmann, J. Novel non-targeted analysis of perfluorinated compounds using fluorine-specific detection regardless of their ionisability (HPLC-ICPMS/MS-ESI-MS). Anal. Chim. Acta 2019, 1053, 22–31. [Google Scholar] [CrossRef]
Compound | Europe | US | Canada | China | Japan | Australia |
---|---|---|---|---|---|---|
PFOA | x | 0.0040 | x | 0.080 | 0.050 | 0.56 |
PFOS | x | 0.0040 | x | 0.040 | 0.050 | 0.070 * |
PFNA | x | 0.0010 | x | x | x | x |
PFHxS | x | 0.0010 | x | x | x | 0.070 * |
Total PFAS | 0.50 | x | 0.030 | x | x | x |
Compound | Europe | America | Asia | Africa | Oceania |
---|---|---|---|---|---|
PFOA | 1.0 | x | x | x | x |
PFOS | 0.30 | x | x | x | x |
PFNA | 0.70 | x | x | x | x |
PFHxS | 0.30 | x | x | x | x |
Total PFAS | x | x | x | x | x |
Compound | Europe | America | Asia | Africa | Oceania |
---|---|---|---|---|---|
PFOA | 2.0 | x | x | x | x |
PFOS | 1.0 | x | x | x | x |
PFNA | 2.5 | x | x | x | x |
PFHxS | 0.20 | x | x | x | x |
Total PFAS | x | x | x | x | x |
Source | GenX or Novel PFAS | Sum of PFAS |
---|---|---|
WWTPs | EU, New Zealand | EU, New Zealand, US |
Groundwater (freshwaters) | EU, US, China | EU, US, China, Canada, and India |
Crude oil | China | China |
Wild animals | EU | EU |
Source | GenX or Novel PFAS | Sum of PFAS |
---|---|---|
Drinking water | US, Korea | EU, US, China, Korea |
Blood serum | N.A. * | EU, US, China, Canada |
Breast milk | China | EU, US, China, Canada |
Fish | EU | EU, US, China, Vietnam |
Eggs | N.A. * | EU |
Sampling and Storage | Extraction and Clean-Up | Analytical Detection Techniques |
---|---|---|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schiavone, C.; Portesi, C. PFAS: A Review of the State of the Art, from Legislation to Analytical Approaches and Toxicological Aspects for Assessing Contamination in Food and Environment and Related Risks. Appl. Sci. 2023, 13, 6696. https://doi.org/10.3390/app13116696
Schiavone C, Portesi C. PFAS: A Review of the State of the Art, from Legislation to Analytical Approaches and Toxicological Aspects for Assessing Contamination in Food and Environment and Related Risks. Applied Sciences. 2023; 13(11):6696. https://doi.org/10.3390/app13116696
Chicago/Turabian StyleSchiavone, Consolato, and Chiara Portesi. 2023. "PFAS: A Review of the State of the Art, from Legislation to Analytical Approaches and Toxicological Aspects for Assessing Contamination in Food and Environment and Related Risks" Applied Sciences 13, no. 11: 6696. https://doi.org/10.3390/app13116696