Response-Surface-Methodology-Based Optimization of High-Quality Salvia hispanica L. Seed Oil Extraction: A Pilot Study
Abstract
:Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Moisture Content, Extraction, and Variables
2.3. RSM and CCD
2.4. Extraction and Determination of Total Phenolic Content (TPC)
2.5. Acid and Peroxide Values of CSO
2.6. Antioxidant Capacity of CSO
2.7. Fatty Acid Content of CSO
2.8. Statistics
3. Results
3.1. Moisture Content
3.2. Yield of CSO
3.3. Total Phenolic Content of CSO
3.4. Acidity of CSO
3.5. Peroxide Value of CSO
3.6. Pressing Time
3.7. Fatty Acid Composition
3.8. Antioxidant Capacity of CSO
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baginsky, C.; Arenas, J.; Escobar, H.; Garrido, M.; Valero, N.; Tello, D.; Pizarro, L.; Valenzuela, A.; Morales, L.; Silva, H. Growth and yield of chia (Salvia hispanica L.) in the Mediterranean and desert climates of Chile. Chil. J. Agric. Res. 2016, 76, 255–264. [Google Scholar] [CrossRef]
- Ghafoor, K.; Ahmed, I.A.M.; Özcan, M.M.; Al-Juhaimi, F.Y.; Babiker, E.E.; Azmi, I.U. An evaluation of bioactive compounds, fatty acid composition and oil quality of chia (Salvia hispanica L.) seed roasted at different temperatures. Food Chem. 2020, 333, 127531. [Google Scholar] [CrossRef] [PubMed]
- Ixtaina, V.Y.; Martínez, M.L.; Spotorno, V.; Mateo, C.M.; Maestri, D.M.; Diehl, B.W.; Nolasco, S.M.; Tomás, M.C. Characterization of chia seed oils obtained by pressing and solvent extraction. J. Food Compos. Anal. 2011, 24, 166–174. [Google Scholar] [CrossRef]
- Orona-Tamayo, D.; Valverde, M.E.; Paredes-López, O. Chia—The new golden seed for the 21st century: Nutraceutical properties and technological uses. In Sustainable Protein Sources; Elsevier: Amsterdam, The Netherlands, 2017; pp. 265–281. [Google Scholar]
- Weber, C.W.; Gentry, H.S.; Kohlhepp, E.A.; McCrohan, P.R. The nutritional and chemical evaluation of chia seeds. Ecol. Food Nutr. 1991, 26, 119–125. [Google Scholar] [CrossRef]
- Coates, W. Protein content, oil content and fatty acid profiles as potential criteria to determine the origin of commercially grown chia (Salvia hispanica L.). Ind. Crops Prod. 2011, 34, 1366–1371. [Google Scholar]
- Martínez-Cruz, O.; Paredes-López, O. Phytochemical profile and nutraceutical potential of chia seeds (Salvia hispanica L.) by ultra high performance liquid chromatography. J. Chromatogr. A 2014, 1346, 43–48. [Google Scholar] [CrossRef]
- Enes, B.N.; Moreira, L.P.; Silva, B.P.; Grancieri, M.; Lúcio, H.G.; Venâncio, V.P.; Mertens-Talcott, S.U.; Rosa, C.O.; Martino, H.S. Chia seed (Salvia hispanica L.) effects and their molecular mechanisms on unbalanced diet experimental studies: A systematic review. J. Food Sci. 2020, 85, 226–239. [Google Scholar] [CrossRef]
- Reyes-Caudillo, E.; Tecante, A.; Valdivia-Lopez, M.A. Dietary fibre content and antioxidant activity of phenolic compounds present in Mexican chia (Salvia hispanica L.) seeds. Food Chem. 2008, 107, 656–663. [Google Scholar] [CrossRef]
- Akinfenwa, A.O.; Cheikhyoussef, A.; Cheikhyoussef, N.; Hussein, A.A. Cold pressed chia (Salvia hispanica L.) seed oil. In Cold Pressed Oils; Elsevier: Amsterdam, The Netherlands, 2020; pp. 181–190. [Google Scholar]
- Martínez, M.L.; Marín, M.A.; Faller, C.M.S.; Revol, J.; Penci, M.C.; Ribotta, P.D. Chia (Salvia hispanica L.) oil extraction: Study of processing parameters. LWT-Food Sci. Technol. 2012, 47, 78–82. [Google Scholar] [CrossRef]
- Muhammad, I.; Muhammad, N.; Manzoor, M.; Amna, J.; Zafar, A.; Akhtar, M.; Muhammad, A.; Yasir, H. Fatty acids characterization, oxidative perspectives and consumer acceptability of oil extracted from pre-treated chia (Salvia hispanica L.) seeds. Lipids Health Dis. 2016, 15. [Google Scholar] [CrossRef]
- Sosa, A.; Ruiz, G.; Rana, J.; Gordillo, G.; West, H.; Sharma, M.; Liu, X.; Torre, R. Chia crop (Salvia hispanica L.): Its history and importance as a source of polyunsaturated fatty acids omega-3 around the world: A review. J Crop Res Fert 2016, 1, 1–9. [Google Scholar] [CrossRef]
- Sirilun, S.; Sivamaruthi, B.S.; Pengkumsri, N.; Saelee, M.; Chaiyasut, K.; Tuntisuwanno, N.; Suttajit, M.; Peerajan, S.; Chaiyasut, C. Impact of different pre-treatment strategies on the quality of fatty acid composition, tocols content & metabolic syndrome related activities of Perilla frutescens seed oil. J. Appl. Pharm. Sci. 2016, 6, 001–008. [Google Scholar]
- Saelee, M.; Sivamaruthi, B.S.; Tansrisook, C.; Duangsri, S.; Chaiyasut, K.; Kesika, P.; Peerajan, S.; Chaiyasut, C. Response Surface Methodological Approach for Optimizing Theobroma cacao L. Oil Extraction. Appl. Sci. 2022, 12, 5482. [Google Scholar] [CrossRef]
- Fuentes, E.; Báez, M.E.; Bravo, M.; Cid, C.; Labra, F. Determination of total phenolic content in olive oil samples by UV–visible spectrometry and multivariate calibration. Food Anal. Methods 2012, 5, 1311–1319. [Google Scholar] [CrossRef]
- Thitipramote, N.; Pradmeeteekul, P.; Nimkamnerd, J.; Chaiwut, P.; Pintathong, P.; Thitilerdecha, N. Bioactive compounds and antioxidant activities of red (Brown Red Jasmine) and black (Kam Leum Pua) native pigmented rice. Int. Food Res. J. 2016, 23, 410. [Google Scholar]
- Sivamaruthi, B.S.; Pengkumsri, N.; Saelee, M.; Kesika, P.; Sirilun, S.; Peerajan, S.; Chaiyasut, C. Impact of physical treatments on stability and radical scavenging capacity of anthocyanidins. Health 2016, 1, 2. [Google Scholar]
- Pengkumsri, N.; Chaiyasut, C.; Saenjum, C.; Sirilun, S.; Peerajan, S.; Suwannalert, P.; Sirisattha, S.; Sivamaruthi, B.S. Physicochemical and antioxidative properties of black, brown and red rice varieties of northern Thailand. Food Sci. Technol 2015, 35, 331–338. [Google Scholar] [CrossRef]
- Fernandes, S.S.; Tonato, D.; Mazutti, M.A.; de Abreu, B.R.; da Costa Cabrera, D.; D’Oca, C.D.R.M.; Prentice-Hernández, C.; de las Mercedes Salas-Mellado, M. Yield and quality of chia oil extracted via different methods. J. Food Eng. 2019, 262, 200–208. [Google Scholar] [CrossRef]
- Noshe, A.S.; Al-Bayyar, A.H. Effect of extraction method of Chia seeds Oil on its content of fatty acids and antioxidants. Int. Res. J. Eng. Technol. 2017, 234, 1–9. [Google Scholar]
- Ixtaina, V.Y.; Vega, A.; Nolasco, S.M.; Tomás, M.C.; Gimeno, M.; Bárzana, E.; Tecante, A. Supercritical carbon dioxide extraction of oil from Mexican chia seed (Salvia hispanica L.): Characterization and process optimization. J. Supercrit. Fluids 2010, 55, 192–199. [Google Scholar] [CrossRef]
- Uribe, J.A.R.; Perez, J.I.N.; Kauil, H.C.; Rubio, G.R.; Alcocer, C.G. Extraction of oil from chia seeds with supercritical CO2. J. Supercrit. Fluids 2011, 56, 174–178. [Google Scholar] [CrossRef]
- Silva, C.; Garcia, V.; Zanette, C. Chia (Salvia hispanica L.) oil extraction using different organic solvents: Oil yield, fatty acids profile and technological analysis of defatted meal. Int. Food Res. J. 2016, 23, 998–1004. [Google Scholar]
- Aranibar, C.; Pigni, N.B.; Martínez, M.L.; Aguirre, A.; Ribotta, P.D.; Wunderlin, D.A.; Borneo, R. Influence of the extraction conditions on chia oil quality and partially defatted flour antioxidant properties. J. Food Sci. Technol. 2021, 59, 1982–1993. [Google Scholar] [CrossRef] [PubMed]
- Capitani, M.; Spotorno, V.; Nolasco, S.M.; Tomás, M.C. Physicochemical and functional characterization of by-products from chia (Salvia hispanica L.) seeds of Argentina. LWT-Food Sci. Technol. 2012, 45, 94–102. [Google Scholar] [CrossRef]
- Özcan, M.M.; Al-Juhaimi, F.Y.; Ahmed, I.A.M.; Osman, M.A.; Gassem, M.A. Effect of soxhlet and cold press extractions on the physico-chemical characteristics of roasted and non-roasted chia seed oils. J. Food Meas. Charact. 2019, 13, 648–655. [Google Scholar] [CrossRef]
- Kaleem, A.; Aziz, S.; Iqtedar, M. Investigating changes and effect of peroxide values in cooking oils subject to light and heat. FUUAST J. Biol. 2015, 5, 191–196. [Google Scholar]
- Guillén, M.A.D.; Cabo, N. Fourier transform infrared spectra data versus peroxide and anisidine values to determine oxidative stability of edible oils. Food Chem. 2002, 77, 503–510. [Google Scholar] [CrossRef]
- Cerretani, L.; Bendini, A.; Rodriguez-Estrada, M.T.; Vittadini, E.; Chiavaro, E. Microwave heating of different commercial categories of olive oil: Part I. Effect on chemical oxidative stability indices and phenolic compounds. Food Chem. 2009, 115, 1381–1388. [Google Scholar] [CrossRef]
- da Silva Marineli, R.; Moraes, É.A.; Lenquiste, S.A.; Godoy, A.T.; Eberlin, M.N.; Maróstica Jr, M.R. Chemical characterization and antioxidant potential of Chilean chia seeds and oil (Salvia hispanica L.). LWT-Food Sci. Technol. 2014, 59, 1304–1310. [Google Scholar] [CrossRef]
- Santoso, H.; Inggrid, M. Effects of temperature, pressure, preheating time and pressing time on rubber seed oil extraction using hydraulic press. Procedia Chem. 2014, 9, 248–256. [Google Scholar] [CrossRef]
- Shen, Y.; Zheng, L.; Jin, J.; Li, X.; Fu, J.; Wang, M.; Guan, Y.; Song, X. Phytochemical and biological characteristics of mexican chia seed oil. Molecules 2018, 23, 3219. [Google Scholar] [CrossRef] [PubMed]
- Xuan, T.D.; Gangqiang, G.; Minh, T.N.; Quy, T.N.; Khanh, T.D. An overview of chemical profiles, antioxidant and antimicrobial activities of commercial vegetable edible oils marketed in Japan. Foods 2018, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Ayerza, R.; Coates, W. Ground chia seed and chia oil effects on plasma lipids and fatty acids in the rat. Nutr. Res. 2005, 25, 995–1003. [Google Scholar] [CrossRef]
STD | Size of the Restriction Die (cm) | Temperature (°C) | Duration of Dry Heat Exposure at 100 °C (min) |
---|---|---|---|
1 | 1 | 40 | 0 |
2 | 1.4 | 40 | 0 |
3 | 1 | 60 | 0 |
4 | 1.4 | 60 | 0 |
5 | 1 | 40 | 30 |
6 | 1.4 | 40 | 30 |
7 | 1 | 60 | 30 |
8 | 1.4 | 60 | 30 |
9 | 1 | 50 | 15 |
10 | 1.4 | 50 | 15 |
11 | 1.2 | 40 | 15 |
12 | 1.2 | 60 | 15 |
13 | 1.2 | 50 | 0 |
14 | 1.2 | 50 | 30 |
15 | 1.2 | 50 | 15 |
16 | 1.2 | 50 | 15 |
17 | 1.2 | 50 | 15 |
STD | Yield (%) | Acid Value (mg KOH/g of Oil) | Peroxide Value (mEq/Kg of Oil) | TPC (µg GAE/g of Oil) | Pressing Time (min) | |||||
---|---|---|---|---|---|---|---|---|---|---|
Observed | Predicted | Observed | Predicted | Observed | Predicted | Observed | Predicted | Observed | Predicted | |
1 | 29.86 | 29.88 | 1.02 | 1.02 | 3.58 | 3.54 | 1.60 | 1.87 | 50.00 | 51.71 |
2 | 27.74 | 27.81 | 0.85 | 0.86 | 3.71 | 3.47 | 1.61 | 1.71 | 69.00 | 69.31 |
3 | 27.59 | 27.66 | 0.84 | 0.84 | 3.53 | 3.35 | 1.72 | 1.52 | 58.00 | 59.11 |
4 | 28.44 | 28.46 | 0.91 | 0.91 | 4.38 | 4.26 | 1.39 | 1.38 | 60.00 | 62.21 |
5 | 26.70 | 26.77 | 0.85 | 0.50 | 3.89 | 3.96 | 1.94 | 1.52 | 74.00 | 72.10 |
6 | 29.16 | 29.17 | 0.91 | 0.91 | 3.94 | 3.87 | 1.29 | 1.38 | 105.00 | 104.20 |
7 | 23.86 | 23.87 | 0.85 | 0.84 | 4.23 | 4.50 | 0.97 | 1.22 | 80.00 | 46.00 |
8 | 28.52 | 28.60 | 0.80 | 1.48 | 6.22 | 5.83 | 1.21 | 1.10 | 65.00 | 63.60 |
9 | 28.82 | 28.63 | 0.80 | 0.80 | 5.97 | 5.79 | 1.23 | 2.44 | 58.00 | 57.23 |
10 | 29.11 | 28.92 | 1.06 | 1.04 | 5.47 | 6.55 | 2.29 | 2.24 | 75.00 | 74.83 |
11 | 28.24 | 28.06 | 0.85 | 0.82 | 8.08 | 8.71 | 1.66 | 1.61 | 68.00 | 74.33 |
12 | 29.08 | 28.89 | 0.90 | 1.02 | 4.20 | 4.47 | 1.29 | 1.30 | 54.00 | 57.73 |
13 | 28.35 | 28.84 | 0.88 | 0.91 | 3.12 | 3.64 | 2.60 | 2.57 | 70.00 | 60.58 |
14 | 29.83 | 30.35 | 0.88 | 0.93 | 4.48 | 4.46 | 1.87 | 2.11 | 59.00 | 71.48 |
15 | 29.48 | 29.58 | 1.18 | 0.92 | 6.37 | 6.15 | 2.86 | 2.33 | 80.00 | 66.03 |
16 | 29.75 | 29.58 | 0.93 | 0.92 | 6.64 | 6.15 | 2.09 | 2.33 | 51.00 | 66.03 |
17 | 30.15 | 29.58 | 0.95 | 0.92 | 7.39 | 6.15 | 2.31 | 2.33 | 68.00 | 66.03 |
Duration (min) | Moisture Content (% MC) |
---|---|
0 | 4.64 ± 0.17 a |
15 | 4.49 ± 0.18 a |
30 | 4.01 ± 0.50 b |
Response | Models | Model (p-Value) | Lack of Fit (p-Value) | R2 | Adjusted R2 | Predicted R2 | Adequate Precision |
---|---|---|---|---|---|---|---|
Yield (%) | Reduced Cubic | 0.0021 | 0.2967 | 0.9771 | 0.9268 | 0.7595 | 18.9895 |
Acid value | 2FI | 0.0056 | 0.2351 | 0.9139 | 0.8279 | 0.6874 | 10.5796 |
Peroxide value | Reduced Cubic | 0.0005 | 0.2604 | 0.9094 | 0.8389 | 0.7110 | 11.7801 |
TPC | Reduced Quadratic | 0.0004 | 0.7247 | 0.8205 | 0.7553 | 0.5608 | 10.2480 |
Pressing time | 2FI | 0.0233 | 0.9798 | 0.7814 | 0.6175 | 0.5119 | 8.9976 |
Variable | Yield | p-Value | Acid Value | p-Value | Peroxide Value | p-Value | TPC | p-Value | Time | p-Value |
---|---|---|---|---|---|---|---|---|---|---|
A | −0.0005 | 0.6673 | 0.1187 | 0.0007 | −0.0098 | 0.1463 | −0.0102 | 0.3742 | 8.7998 | 0.0258 |
B | −0.0016 | 0.2378 | 0.0968 | 0.0032 | 0.0528 | 0.0039 | −0.0233 | 0.0465 | −8.2998 | 0.0328 |
C | −0.0027 | 0.0680 | 0.0121 | 0.3457 | −0.0181 | 0.0161 | −0.0232 | 0.0470 | 5.4478 | 0.1623 |
AB | −0.0027 | 0.0059 | 0.0573 | 0.0058 | −0.0117 | 0.1223 | −3.6253 | 0.3600 | ||
AC | −0.0042 | 0.0008 | 0.1400 | 0.0008 | 3.6247 | 0.3601 | ||||
BC | 0.0011 | 0.1056 | 0.1297 | 0.0012 | −0.0081 | 0.2680 | −8.3747 | 0.0552 | ||
A2 | 0.0029 | 0.0265 | ||||||||
B2 | 0.0041 | 0.0076 | −0.1082 | <0.0001 | ||||||
C2 | 0.0712 | <0.0001 | ||||||||
A2B | 0.0041 | 0.0244 | ||||||||
A2C | 0.0055 | 0.0082 | ||||||||
AB2 | −0.0026 | 0.1070 | ||||||||
BC2 | −0.0676 | 0.0017 |
Fatty Acid | Fatty Acid Content (%) | |
---|---|---|
Oil Extracted under the Optimal Condition * | Oil Extracted under the Condition of STD 13 ** | |
α-Linolenic acid (C18:3 n − 3) | 58.62 | 58.46 |
Linoleic acid (C18:2 n − 6 cis) | 20.81 | 20.93 |
Palmitic acid (C16:0) | 7.84 | 7.73 |
Oleic acid (C18:1 n − 9 cis) | 7.49 | 7.52 |
Stearic acid (C18:0) | 3.55 | 3.64 |
Eicosenoic acid (C20:1 n − 9) | 0.13 | 0.10 |
Palmitoleic acid (C16:1) | 0.04 | 0.04 |
Myristic acid (C14:0) | 0.03 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saelee, M.; Sivamaruthi, B.S.; Kesika, P.; Peerajan, S.; Tansrisook, C.; Chaiyasut, C.; Sittiprapaporn, P. Response-Surface-Methodology-Based Optimization of High-Quality Salvia hispanica L. Seed Oil Extraction: A Pilot Study. Appl. Sci. 2023, 13, 6600. https://doi.org/10.3390/app13116600
Saelee M, Sivamaruthi BS, Kesika P, Peerajan S, Tansrisook C, Chaiyasut C, Sittiprapaporn P. Response-Surface-Methodology-Based Optimization of High-Quality Salvia hispanica L. Seed Oil Extraction: A Pilot Study. Applied Sciences. 2023; 13(11):6600. https://doi.org/10.3390/app13116600
Chicago/Turabian StyleSaelee, Manee, Bhagavathi Sundaram Sivamaruthi, Periyanaina Kesika, Sartjin Peerajan, Chawin Tansrisook, Chaiyavat Chaiyasut, and Phakkharawat Sittiprapaporn. 2023. "Response-Surface-Methodology-Based Optimization of High-Quality Salvia hispanica L. Seed Oil Extraction: A Pilot Study" Applied Sciences 13, no. 11: 6600. https://doi.org/10.3390/app13116600
APA StyleSaelee, M., Sivamaruthi, B. S., Kesika, P., Peerajan, S., Tansrisook, C., Chaiyasut, C., & Sittiprapaporn, P. (2023). Response-Surface-Methodology-Based Optimization of High-Quality Salvia hispanica L. Seed Oil Extraction: A Pilot Study. Applied Sciences, 13(11), 6600. https://doi.org/10.3390/app13116600