Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
2.2. Morphological Analysis
Dataset Used for the Morphological Analysis
2.3. E-Eye Analysis
Dataset Used for the E-Eye Analysis
2.4. Chemometric Modeling
3. Results
3.1. Explorative Analysis of Morphological Descriptors
3.2. SIMCA Analysis of the E-Eye Profiles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Aly, S.H.; Kandil, N.H.; Hemdan, R.M.; Kotb, S.S.; Zaki, S.S.; Abdelaziz, O.M.; AbdelRazek, M.M.M.; Almahli, H.; El Hassab, M.A.; Al-Rashood, S.T.; et al. GC/MS Profiling of the Essential Oil and Lipophilic Extract of Moricandia sinaica Boiss. and Evaluation of Their Cytotoxic and Antioxidant Activities. Molecules 2023, 28, 2193. [Google Scholar] [CrossRef]
- Davì, F.; Taviano, M.F.; Acquaviva, R.; Malfa, G.A.; Cavò, E.; Arena, P.; Ragusa, S.; Cacciola, F.; El Majdoub, Y.O.; Mondello, L.; et al. Chemical Profile, Antioxidant and Cytotoxic Activity of a Phenolic-Rich Fraction from the Leaves of Brassica fruticulosa subsp. fruticulosa (Brassicaceae) Growing Wild in Sicily (Italy). Molecules 2023, 28, 2281. [Google Scholar] [CrossRef]
- Lučić, D.; Pavlović, I.; Brkljačić, L.; Bogdanović, S.; Farkaš, V.; Cedilak, A.; Nanić, L.; Rubelj, I.; Salopek-Sondi, B. Antioxidant and Antiproliferative Activities of Kale (Brassica oleracea L. Var. acephala DC.) and Wild Cabbage (Brassica incana Ten.) Polyphenolic Extracts. Molecules 2023, 28, 1840. [Google Scholar] [CrossRef]
- Malfa, G.A.; Pappalardo, F.; Miceli, N.; Taviano, M.F.; Ronsisvalle, S.; Tomasello, B.; Bianchi, S.; Davì, F.; Spadaro, V.; Acquaviva, R. Chemical, Antioxidant and Biological Studies of Brassica incana subsp. raimondoi (Brassicaceae) Leaf Extract. Molecules 2023, 28, 1254. [Google Scholar] [CrossRef]
- Montaner, C.; Mallor, C.; Laguna, S.; Zufiaurre, R. Bioactive compounds, antioxidant activity, and mineral content of bróquil: A traditional crop of Brassica oleracea var. italica. Front. Nutr. 2022, 9, 1006012. [Google Scholar] [CrossRef] [PubMed]
- Basit, A.; Ahmad, S.; Khan, K.U.R.; Aati, H.Y.; Sherif, A.E.; Ovatlarnporn, C.; Khan, S.; Rao, H.; Arshad, M.A.; Shahzad, M.N.; et al. Evaluation of the anti-inflammatory, antioxidant, and cytotoxic potential of Cardamine amara L. (Brassicaceae): A comprehensive biochemical, toxicological, and in silico computational study. Front. Chem. 2022, 10, 1077581. [Google Scholar] [CrossRef] [PubMed]
- Hip Kam, A.; Li, W.-W.; Bahorun, T.; Neergheen, V.S. Traditional processing techniques impacted the bioactivities of selected local consumed foods. Sci. Afr. 2023, 19, e01558. [Google Scholar] [CrossRef]
- Salami, M.; Heidari, B.; Tan, H. Comparative profiling of polyphenols and antioxidants and analysis of antiglycation activities in rapeseed (Brassica napus L.) under different moisture regimes. Food Chem. 2023, 399, 133946. [Google Scholar] [CrossRef]
- Tan, J.; Jiang, H.; Li, Y.; He, R.; Liu, K.; Chen, Y.; He, X.; Liu, X.; Liu, H. Growth, Phytochemicals, and Antioxidant Activity of Kale Grown under Different Nutrient-Solution Depths in Hydroponic. Horticulturae 2023, 9, 53. [Google Scholar] [CrossRef]
- Peña, M.; Guzmán, A.; Martínez, R.; Mesas, C.; Prados, J.; Porres, J.M.; Melguizo, C. Preventive effects of Brassicaceae family for colon cancer prevention: A focus on in vitro studies. Biomed. Pharmacother. 2022, 151, 113145. [Google Scholar] [CrossRef]
- Bouranis, J.A.; Beaver, L.M.; Jiang, D.; Choi, J.; Wong, C.P.; Davis, E.W.; Williams, D.E.; Sharpton, T.J.; Stevens, J.F.; Ho, E. Interplay between Cruciferous Vegetables and the Gut Microbiome: A Multi-Omic Approach. Nutrients 2023, 15, 42. [Google Scholar] [CrossRef] [PubMed]
- Khalil, H.E.; Abdelwahab, M.F.; Emeka, P.M.; Badger-Emeka, L.I.; Abdel Hafez, S.M.N.; AlYahya, K.A.; Ahmed, A.-S.F.; Anter, A.F.; Abdel-Wahab, N.M.; Matsunami, K.; et al. Chemical Composition and Valorization of Broccoli Leaf By-Products (Brassica oleracea L. Variety: Italica) to Ameliorate Reno-Hepatic Toxicity Induced by Gentamicin in Rats. Appl. Sci. 2022, 12, 6903. [Google Scholar] [CrossRef]
- Koksal, E.; Gode, F.; Ozaltin, K.; Karakurt, I.; Suly, P.; Saha, P. Controlled Release of Vitamin U from Microencapsulated Brassica oleracea L. var. capitata Extract for Peptic Ulcer Treatment. Food Bioprocess Technol. 2023, 16, 677–689. [Google Scholar] [CrossRef]
- Jo, J.S.; Bhandari, S.R.; Kang, G.H.; Shin, Y.K.; Lee, J.G. Selection of broccoli (Brassica oleracea var. italica) on composition and content of glucosinolates and hydrolysates. Sci. Hortic. Amst. 2022, 298, 110984. [Google Scholar] [CrossRef]
- Favela-González, K.M.; Hernández-Almanza, A.Y.; la Fuente-Salcido, N.M. The value of bioactive compounds of cruciferous vegetables (Brassica) as antimicrobials and antioxidants: A review. J. Food Biochem. 2020, 44, e13414. [Google Scholar] [CrossRef] [PubMed]
- El-Daly, S.M.; Gamal-Eldeen, A.M.; Gouhar, S.A.; Abo-elfadl, M.T.; El-Saeed, G. Modulatory Effect of Indoles on the Expression of miRNAs Regulating G1/S Cell Cycle Phase in Breast Cancer Cells. Appl. Biochem. Biotechnol. 2020, 192, 1208–1223. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Chan, Y.S.; Wong, K.; Yoshitake, R.; Sadava, D.; Synold, T.W.; Frankel, P.; Twardowski, P.W.; Lau, C.; Chen, S. Mechanism-Driven and Clinically Focused Development of Botanical Foods as Multitarget Anticancer Medicine: Collective Perspectives and Insights from Preclinical Studies, IND Applications and Early-Phase Clinical Trials. Cancers 2023, 15, 701. [Google Scholar] [CrossRef]
- Zhou, T.; Zhou, M.; Tong, C.; Zhuo, M. Cauliflower bioactive compound sulforaphane inhibits breast cancer development by suppressing NF-κB/MMP-9 signaling pathway expression. Cell. Mol. Biol. 2022, 68, 134–143. [Google Scholar] [CrossRef]
- Khalid, W.; Iqra; Afzal, F.; Rahim, M.A.; Abdul Rehman, A.; ul Rasul, H.; Arshad, M.S.; Ambreen, S.; Zubair, M.; Safdar, S.; et al. Industrial applications of kale (Brassica oleracea var. sabellica) as a functional ingredient: A review. Int. J. Food Prop. 2023, 26, 489–501. [Google Scholar] [CrossRef]
- Bozic, D.; Živančević, K.; Baralić, K.; Miljaković, E.A.; Djordjević, A.B.; Ćurčić, M.; Bulat, Z.; Antonijević, B.; Đukić-Ćosić, D. Conducting bioinformatics analysis to predict sulforaphane-triggered adverse outcome pathways in healthy human cells. Biomed. Pharmacother. 2023, 160, 114316. [Google Scholar] [CrossRef]
- Spoor, W.; Zohary, D.; Hopf, M. Domestication of Plants in the Old World, 3rd ed.; Oxford University Press: New York, NY, USA, 2000; 316p. [Google Scholar] [CrossRef]
- Laghetti, G.; Martignano, F.; Falco, V.; Cifarelli, S.; Gladis, T.; Hammer, K. “Mugnoli”: A Neglected Race of Brassica oleracea L. from Salento (Italy). Genet. Resour. Crop Evol. 2005, 52, 635–639. [Google Scholar] [CrossRef]
- Palmitessa, O.D.; Gadaleta, A.; Leoni, B.; Renna, M.; Signore, A.; Paradiso, V.M.; Santamaria, P. Effects of Greenhouse vs. Growth Chamber and Different Blue-Light Percentages on the Growth Performance and Quality of Broccoli Microgreens. Agronomy 2022, 12, 1161. [Google Scholar] [CrossRef]
- Hammer, K.; Montesano, V.; Direnzo, P.; Laghetti, G. Conservation of crop genetic resources in Italy with a focus on vegetables and a case study of a neglected race of brassica oleracea. Agriculture 2018, 8, 105. [Google Scholar] [CrossRef]
- Argentieri, M.P.; Accogli, R.; Fanizzi, F.P.; Avato, P. Glucosinolates profile of “mugnolo”, a variety of Brassica oleracea L. native to southern Italy (Salento). Planta Med. 2011, 77, 287–292. [Google Scholar] [CrossRef]
- GIBA. Gruppo di Lavoro Biodiversità in Agricoltura. Available online: https://www.reterurale.it/flex/cm/pages/ServeBLOB.php/L/IT/IDPagina/9580 (accessed on 19 April 2023).
- Geladi, P.; Grahn, H.F. Multivariate Image Analysis. In Encyclopedia of Analytical Chemistry: Applications, Theory, and Instrumentation; Wiley–Blackwell: Hoboken, NJ, USA, 2006. [Google Scholar]
- Antonelli, A.; Cocchi, M.; Fava, P.; Foca, G.; Franchini, G.C.; Manzini, D.; Ulrici, A. Automated evaluation of food colour by means of multivariate image analysis coupled to a wavelet-based classification algorithm. Anal. Chim. Acta 2004, 515, 3–13. [Google Scholar] [CrossRef]
- Sohn, S.-I.; Pandian, S.; Zaukuu, J.-L.Z.; Oh, Y.-J.; Lee, Y.-H.; Shin, E.-K.; Thamilarasan, S.K.; Kang, H.-J.; Ryu, T.-H.; Cho, W.-S. Rapid discrimination of Brassica napus varieties using visible and Near-infrared (Vis-NIR) spectroscopy. J. King Saud Univ. Sci. 2023, 35, 102495. [Google Scholar] [CrossRef]
- Li Vigni, M.; Durante, C.; Cocchi, M. Exploratory Data Analysis. In Data Handling in Science and Technology; Marini, F., Ed.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 28, pp. 55–126. [Google Scholar]
- Biancolillo, A.; Marini, F.; Ruckebusch, C.; Vitale, R. Chemometric strategies for spectroscopy-based food authentication. Appl. Sci. 2020, 10, 6544. [Google Scholar] [CrossRef]
- Cocchi, M.; Biancolillo, A.; Marini, F. Chemometric Methods for Classification and Feature Selection. In Data Analysis for Omic Sciences: Methods and Applications, Comprehensive Analytical Chemistry; Jaumot, J., Bedia, C., Tauler, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 82, pp. 265–299. ISBN 9780444640444. [Google Scholar]
- Di Donato, F.; Di Cecco, V.; Torricelli, R.; D’Archivio, A.A.; Di Santo, M.; Albertini, E.; Veronesi, F.; Garramone, R.; Aversano, R.; Marcantonio, G.; et al. Discrimination of potato (Solanum tuberosum L.) accessions collected in majella national park (Abruzzo, Italy) using mid-infrared spectroscopy and chemometrics combined with morphological and molecular analysis. Appl. Sci. 2020, 10, 1630. [Google Scholar] [CrossRef]
- Calvini, R.; Orlandi, G.; Foca, G.; Ulrici, A. Colourgrams GUI: A graphical user-friendly interface for the analysis of large datasets of RGB images. Chemom. Intell. Lab. Syst. 2020, 196, 103915. [Google Scholar] [CrossRef]
- Foschi, M.; Di Maria, V.; D’Archivio, A.A.; Marini, F.; Biancolillo, A. E-Eye-Based Approach for Traceability and Annuality Compliance of Lentils. Appl. Sci. 2023, 13, 1433. [Google Scholar] [CrossRef]
- Jolliffe, I.T. A Note on the Use of Principal Components in Regression. J. R. Stat. Soc. Ser. C Applied Stat. 1982, 31, 300–303. [Google Scholar] [CrossRef]
- Kaufman, L.; Rousseeuw, P.J. Finding Groups in Data: An Introduction to Cluster Analysis, 1st ed.; John Wiley: New York, NY, USA, 1990; ISBN 0-471-87876-6. [Google Scholar]
- Wold, S.; Sjöström, M. SIMCA: A method for analysing chemical data in terms of similarity and analogy. In Chemometrics, Theory and Application; Kowalski, B.R., Ed.; American Chemical Society: Washington, DC, USA, 1977; pp. 243–282. [Google Scholar]
GLBA | Plant Part | Descriptors | Expression |
---|---|---|---|
2 | Leaf | Plant habit | Erect/semi-erect/horizontal |
3 | Leaf | curvature | Absent/weak/medium/strong/very strong |
4 | Leaf | Green color | Very light/light/medium/dark/very dark |
5 | Leaf | Leaf type | Integer/Lobed |
6 | Leaf | Number of lobes | Low/medium/high |
7 | Leaf | Incisions | Very superficial/superficial/medium/deep/very deep |
8 | Leaf | Waviness of the leaf margin | Absent/weak/medium/strong/very strong |
9 | Leaf | Serrated margin | Absent/weak/medium/strong/very strong |
10 | Leaf | Length | Short/medium/long |
11 | Leaf | Width | Small/medium/large |
12 | Leaf | Length of the terminal lobe | Narrow/medium/wide |
13 | Leaf | Width of the terminal lobe | Narrow/medium/wide |
14 | Leaf | Villous surface upper leaf | Absent/weak/medium/strong/very strong |
15 | Leaf | Anthocyanin pigmentation | Absent/weak/medium/strong/very strong |
16 | Root | Position | Very shallow/shallow/medium/deep/very deep |
17 | Root | Suborous layer of the epidermis | Absent/present |
18 | Root | Color of the epidermis outside the soil | White/green/yellow/orange/bronze/scarlet/red/purple red/purple blue |
19 | Root | Intensity of the color of the epidermis outside the soil | Light/medium/dark |
20 | Root | Color of the epidermis inside the soil | White/yellow/red/purple |
21 | Root | Color of flesh | White/yellow |
24 | Root | Shape in longitudinal section | narrow transverse elliptical/transverse elliptical/rounded/oval/squared/wide oblong/narrow oblong/obtriangular |
25 | Root | Length | Very short/Short/medium/long/very long |
26 | Root | Diameter | Small/medium/large |
27 | Root | Position of the widest part of the root | above the central part/in the center/below the central part |
28 | Root | Curvature of the main axis | Absent/present |
29 | Root | collar shape | Very depressed/Depressed/Flattened/Prominent/Very Prominent |
30 | Root | Shape of the base | Depressed/truncated/rounded/obtuse/pointed |
Class | PCs | Senscv | Speccv | Effcv | Senspred | Specpred |
---|---|---|---|---|---|---|
A | 6 | 55.0 | 45.0 | 39.7 | 30.0 | 37.1 |
B | 4 | 90.0 | 86.9 | 88.4 | 100.0 | 92.8 |
C | 4 | 75.0 | 75.4 | 75.2 | 70.0 | 77.1 |
D | 6 | 55.0 | 39.2 | 46.4 | 70.0 | 32.8 |
E | 4 | 80.0 | 69.1 | 74.3 | 90.0 | 68.6 |
F | 6 | 75.0 | 61.3 | 63.1 | 80.0 | 68.6 |
G | 4 | 75.0 | 60.8 | 67.5 | 90.0 | 67.1 |
H | 4 | 80.0 | 68.2 | 73.8 | 80.0 | 65.7 |
SpecwrtA | SpecwrtB | SpecwrtC | SpecwrtD | SpecwrtE | SpecwrtF | SpecwrtG | SpecwrtH | |
---|---|---|---|---|---|---|---|---|
A | -- | 0.0 | 30.0 | 80.0 | 50.0 | 20.0 | 30.0 | 50.0 |
B | 100.0 | -- | 70.0 | 100.0 | 100.0 | 90.0 | 90.0 | 100.0 |
C | 90.0 | 0.0 | -- | 90.0 | 100.0 | 70.0 | 100.0 | 90.0 |
D | 80.0 | 30.0 | 50.0 | -- | 20.0 | 20.0 | 10.0 | 20.0 |
E | 100.0 | 80.0 | 80.0 | 90.0 | -- | 70.0 | 40.0 | 20.0 |
F | 100.0 | 10.0 | 60.0 | 80.0 | 70.0 | -- | 80.0 | 80.0 |
G | 90.0 | 90.0 | 90.0 | 70.0 | 30.0 | 70.0 | -- | 30.0 |
H | 100.0 | 70.0 | 80.0 | 80.0 | 20.0 | 60.0 | 50.0 | -- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Biancolillo, A.; Ferretti, R.; Scappaticci, C.; Foschi, M.; D’Archivio, A.A.; Di Santo, M.; Di Martino, L. Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces. Appl. Sci. 2023, 13, 6591. https://doi.org/10.3390/app13116591
Biancolillo A, Ferretti R, Scappaticci C, Foschi M, D’Archivio AA, Di Santo M, Di Martino L. Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces. Applied Sciences. 2023; 13(11):6591. https://doi.org/10.3390/app13116591
Chicago/Turabian StyleBiancolillo, Alessandra, Rossella Ferretti, Claudia Scappaticci, Martina Foschi, Angelo Antonio D’Archivio, Marco Di Santo, and Luciano Di Martino. 2023. "Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces" Applied Sciences 13, no. 11: 6591. https://doi.org/10.3390/app13116591
APA StyleBiancolillo, A., Ferretti, R., Scappaticci, C., Foschi, M., D’Archivio, A. A., Di Santo, M., & Di Martino, L. (2023). Development of a Non-Destructive Tool Based on E-Eye and Agro-Morphological Descriptors for the Characterization and Classification of Different Brassicaceae Landraces. Applied Sciences, 13(11), 6591. https://doi.org/10.3390/app13116591