An Investigation into the Influence of a New Building on the Response of a Sheet Pile Wall Adjacent to an Existing Buried Pipe
Abstract
:1. Introduction
2. Numerical Simulation and Parameter Selection
2.1. Testing Procedure and Setup for the Model
2.2. The Soil Material Model
2.3. Pile
2.4. Strip Footing
2.5. Material Model of Steel Buried Pipe
2.6. Analytical Methodology
3. Results
3.1. Bending Moment Experienced by Buried Pipe
3.2. Pipe Shearing Forces under Burial
3.3. Horizontal Displacements of Clay
3.4. An Analysis of the Normal Force, Shear Force, and Bending Moment Experienced by the Pile under Loading
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kozhaeva, K.V.; Azmetov, K.A.; Pavlova, Z.K. Analysis of the General Stability of Buried Pipelines in the Longitudinal Direction Taking into Account the Peculiarities of Their Construction and Operation. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2022; Volume 988, p. 052001. [Google Scholar]
- Meidani, M.; Meguid, M.A.; Chouinard, L.E. Estimating earth loads on buried pipes under axial loading condition: Insights from 3D discrete element analysis. Int. J. Geo-Eng. 2018, 9, 5. [Google Scholar] [CrossRef]
- Zhang, W.; Askarinejad, A. Behaviour of buried pipes in unstable sandy slopes. Landslides 2019, 16, 283–293. [Google Scholar] [CrossRef]
- Luo, J.; Sun, C.T. Global-local methods for thermoelastic stress analysis of thick fiber-wound cylinders. J. Compos. Mater. 1991, 25, 453–468.a. [Google Scholar] [CrossRef]
- Ng, P.C.F. Behaviour of Buried Pipelines Subjected to External Loading. Ph.D. Dissertation, University of Sheffield, Sheffield, UK, 1994. [Google Scholar]
- Mazek, S.A.; Law, K.T.; Lau, D.T. Use of grouting to reduce deformations of an existing tunnel underpass by another tunnel. In Grouting and Ground Treatment; American Society of Civil Engineers: Reston, VA, USA, 2003; pp. 1570–1581. [Google Scholar]
- Pagano, N.J. Pure Bending of Helical Wound Composite Cylinders; ASTM International: West Conshohocken, PA, USA, 1973. [Google Scholar]
- Orynyak, I.V.; Radchenko, S.A. Analytical and numerical solution for an elastic pipe bend at in-plane bending with consideration for the end effect. Int. J. Solids Struct. 2007, 44, 1488–1510. [Google Scholar] [CrossRef]
- El-Naiem, A.; Abdou, M.; Abo El-Wafa Mohamed, W. Behavior of existing tunnel due to the construction of a new tunnel passed parallel under it. J. Eng. Sci. 2007, 35, 1381–1400. [Google Scholar] [CrossRef]
- Liu, X.; Fang, Q.; Zhang, D.; Wang, Z. Behaviour of existing tunnel due to new tunnel construction below. Comput. Geotech. 2019, 110, 71–81. [Google Scholar] [CrossRef]
- Georgiadis, M.; Anagnostopoulos, C. Displacement of structures adjacent to cantilever sheet pile walls. Soils Found. 1999, 39, 99–104. [Google Scholar] [CrossRef]
- Balakumar, V.; Huang, M.; Oh, E.; Balasubramaniam, A.S. A critical and comparative study on 2D and 3D analyses of Raft and Piled Raft Foundations. Geotech. Eng. 2018, 49, 150–164. [Google Scholar]
- Madhumathi, R.K.; Ilamparuthi, K. Laboratory study on response of single pile adjacent to supported cut. Geotech. Geol. Eng. 2018, 36, 3111–3133. [Google Scholar] [CrossRef]
- Poulos, H.G.; Chen, L.T. Pile response due to unsupported excavation-induced lateral soil movement. Can. Geotech. J. 1996, 33, 670–677. [Google Scholar] [CrossRef]
- Hu, B.; Li, X.; Huang, D. Safety risk analysis and protective control of existing pipelines affected by deep pit excavation in metro construction. Model. Simul. Eng. 2019, 2019, 3643808. [Google Scholar] [CrossRef]
- Hazzar, L.; Hussien, M.N.; Karray, M. Influence of vertical loads on lateral response of pile foundations in sands and clays. J. Rock Mech. Geotech. Eng. 2017, 9, 291–304. [Google Scholar] [CrossRef]
- Li, S.; Ma, L.; Ho, I.; Wang, Q.; Yu, B.; Zhou, P. Modification of vertical earth pressure formulas for high fill cut-and-cover tunnels using experimental and numerical methods. Math. Probl. Eng. 2019, 2019, 8257157. [Google Scholar] [CrossRef]
- Brachman, R.W.I.; LeBlanc, J.M. Short-term lateral response of a buried modular polymer stormwater collection structure to compaction and overburden pressure. J. Geotech. Geoenviron. Eng. 2017, 143, 04017070. [Google Scholar] [CrossRef]
- Qi, Y.; Wei, G.; Xie, Y.; Wang, Q. Effect of Grouting Reinforcement on Settlement of Existing Tunnels: Case Study of a New Crossing Underpass. Symmetry 2021, 13, 482. [Google Scholar] [CrossRef]
- Ezzeldin, I.; El Naggar, H. Three-dimensional finite element modeling of corrugated metal pipes. Transp. Geotech. 2021, 27, 100467. [Google Scholar] [CrossRef]
- Manual, T. PLAXIS 2D; Deft University of Technology & PLAXIS: Delft, The Netherlands, 2016. [Google Scholar]
- Bentley, K.J.; El Naggar, M.H. Numerical analysis of kinematic response of single piles. Can. Geotech. J. 2000, 37, 1368–1382. [Google Scholar] [CrossRef]
- McHale, C.; Weaver, P.M. Morphing composite cylindrical lattices with enhanced bending stiffness. Mater. Des. 2022, 222, 111056. [Google Scholar] [CrossRef]
- Yan, J.B.; Guan, H.N.; Wang, T. Finite element analysis for flexural behaviours of SCS sandwich beams with novel enhanced C-channel connectors. J. Build. Eng. 2020, 31, 101439. [Google Scholar] [CrossRef]
- Magade, S.B.; Ingle, R.K. Numerical method for analysis and design of isolated square footing under concentric loading. Int. J. Adv. Struct. Eng. 2019, 11, 9–20. [Google Scholar] [CrossRef]
- Randeniya, C.; Robert, D.J.; Li, C.Q.; Kodikara, J. Large-scale experimental evaluation of soil saturation effect on behaviour of buried pipes under operational loads. Can. Geotech. J. 2020, 57, 205–220. [Google Scholar] [CrossRef]
- Huang, L.; Sheng, Y.; Chen, L.; Peng, E.; Huang, X.; Zhang, X. Sensitivity Analysis of Pipe–Soil Interaction Influencing Factors under Frost Heaving. Atmosphere 2023, 14, 469. [Google Scholar] [CrossRef]
- Gan, X.; Yu, J.; Gong, X.; Hou, Y.; Liu, N.; Zhu, M. Response of operating metro tunnels to compensation grouting of an underlying large-diameter shield tunnel: A case study in Hangzhou. Undergr. Space 2022, 7, 219–232. [Google Scholar] [CrossRef]
- Yin, Q.; Fu, H.-L. Analysis of Foundation Pit Excavation Deformation and Parameter Influence of Pile-Anchor-Ribbed-Beam Support System. Appl. Sci. 2023, 13, 2379. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, X.; Yu, F.; Wang, Z. Experimental Investigation of h-Type Supporting System for Excavation beneath Existing Underground Space. Buildings 2022, 12, 635. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, B.; Gao, X.; Yan, H. Response of Bridge Foundation with Drainage Structure in the Liquefied Inclined Site under Sinusoidal Waves. Appl. Sci. 2023, 13, 1009. [Google Scholar] [CrossRef]
- Li, F.; Guo, P.; Geng, N.; Mao, L.; Lin, F.; Zhao, Y.; Lin, H.; Wang, Y. Stability of Braced Excavation Underneath Crossing Underground Large Pressurized Pipelines. Water 2022, 14, 3867. [Google Scholar] [CrossRef]
Parameter | Name | Value | Unit |
---|---|---|---|
Soil dry unit weight | γd | 18 | kN/m3 |
Young’s modulus | E | 30,000 | kN/m2 |
Poisson’s ratio | υ | 0.33 | --- |
Cohesion | c | 36 | kN/m2 |
Friction angle | φ | 0 | degree |
Dilatancy angle | ψ | 0 | degree |
Interface reduction factor | R | 1 | -- |
Parameter | Name | Value | Unit |
---|---|---|---|
Normal stiffness | EA | 5 × 106 | kN/m |
Flexural rigidity | EI | 2 × 104 | kN/m2/m |
Equivalent thickness | d | 0.208 | m |
Weight | w | 1.2 | kN/m2 |
Poisson’s ratio | υ | 0.3 | -- |
Parameter | Name | Value | Unit |
---|---|---|---|
Axial stiffness | EA | 3 × 107 | kN/m |
Flexural rigidity | EI | 3.175 × 106 | kN/m2/m |
Equivalent thickness | d | 1.00 | m |
Weight | w | 25.00 | kN/m2 |
Poisson’s ratio | υ | 0.2 | -- |
Parameter | Name | Value | Unit |
---|---|---|---|
Soil dry unit weight | γd | 25 | kN/m3 |
Young’s modulus | E | 3 × 109 | kN/m2 |
Poisson’s ratio | υ | 0.18 | -- |
Case No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
0.00 | 0.25 | 0.50 | 0.75 |
Rx | 0.25 | 0.5 | 0.75 |
---|---|---|---|
Normal force, kN | 2.16 | 3.02 | 3.61 |
Shear force, kN | 234.89 × 10–3 | 253.26 × 10–3 | 268.39 × 10–3 |
Bending moment, kN·m | 70.60 × 10–3 | 112.65 × 10–3 | 120.84 × 10–3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Towfeek, A.R.; Ali, M.A.M.; Kim, J.-G.; Abdellah, W.R. An Investigation into the Influence of a New Building on the Response of a Sheet Pile Wall Adjacent to an Existing Buried Pipe. Appl. Sci. 2023, 13, 6260. https://doi.org/10.3390/app13106260
Towfeek AR, Ali MAM, Kim J-G, Abdellah WR. An Investigation into the Influence of a New Building on the Response of a Sheet Pile Wall Adjacent to an Existing Buried Pipe. Applied Sciences. 2023; 13(10):6260. https://doi.org/10.3390/app13106260
Chicago/Turabian StyleTowfeek, Ahmed Rushdy, Mahrous A. M. Ali, Jong-Gwan Kim, and Wael R. Abdellah. 2023. "An Investigation into the Influence of a New Building on the Response of a Sheet Pile Wall Adjacent to an Existing Buried Pipe" Applied Sciences 13, no. 10: 6260. https://doi.org/10.3390/app13106260
APA StyleTowfeek, A. R., Ali, M. A. M., Kim, J.-G., & Abdellah, W. R. (2023). An Investigation into the Influence of a New Building on the Response of a Sheet Pile Wall Adjacent to an Existing Buried Pipe. Applied Sciences, 13(10), 6260. https://doi.org/10.3390/app13106260