Electric Field Distribution Induced by TMS: Differences Due to Anatomical Variation
Abstract
:1. Introduction
1.1. TMS Principles, Parameters and Applications
1.2. EF Modeling
1.3. Study Background and Objective
2. Materials and Methods
2.1. Head Models
2.2. Coil Model and Positioning
2.3. Simulation Specifics
2.4. Post Processing
3. Results
3.1. Stimulation Metrics
3.2. Visualization
3.3. Numeric Values of Metrics
3.4. Correlation Tests
4. Discussion
4.1. Summary and Objective
4.2. Method Description
4.3. Results Synopsis and Interpretation
4.4. Possible Clinical Applications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Model | Emax (V/m) | Emedian (V/m) | Vst (cm3) | Vfrontal (cm3) | Age (years) | Mass (kg) |
---|---|---|---|---|---|---|
Vol01 | 191.5 | 52.1 | 35.2 | 287.7 | 43 | 80 |
Vol04 | 171.1 | 44.1 | 32.2 | 345.9 | 44 | 85 |
Vol06 | 181.3 | 43.9 | 27.7 | 294.6 | 35 | 78 |
Vol08 | 187.2 | 47.3 | 47.6 | 423.1 | 20 | 88 |
Vol14 | 192.1 | 46.0 | 37.2 | 333.6 | 31 | 100 |
Vol17 | 193.2 | 47.8 | 40.4 | 293.2 | 30 | 70 |
Vol18 | 194.9 | 53.3 | 55.6 | 350.7 | 30 | 65 |
Duke | 169.3 | 52.1 | 38.3 | 319.6 | 35 | 70.2 |
Model | Emax (V/m) | Emedian (V/m) | Vst (cm3) | Vfrontal (cm3) | Age (years) | Mass (kg) |
---|---|---|---|---|---|---|
Vol02 | 200.9 | 50.3 | 46.5 | 306.4 | 29 | 53 |
Vol03 | 192.5 | 46.4 | 43.9 | 339.8 | 25 | 70 |
Vol05 | 187.0 | 56.1 | 49.8 | 339.6 | 26 | 60 |
Vol07 | 171.0 | 50.0 | 29.6 | 269.3 | 48 | 75 |
Vol09 | 168.4 | 49.9 | 31.9 | 294.0 | 35 | 90 |
Vol10 | 211.6 | 59.4 | 45.0 | 244.6 | 21 | 55 |
Vol11 | 202.0 | 56.3 | 45.9 | 270.7 | 22 | 55 |
Vol12 | 199.9 | 50.3 | 46.5 | 318.9 | 27 | 60 |
Vol13 | 189.1 | 50.4 | 40.8 | 296.7 | 26 | 50 |
Vol15 | 192.2 | 49.2 | 36.6 | 283.3 | 34 | 55 |
Vol16 | 181.4 | 46.6 | 32.7 | 335.1 | 32 | 65 |
Vol19 | 212.0 | 58.6 | 48.6 | 239.5 | 33 | 50 |
Ella | 175.4 | 46.9 | 23.7 | 330.9 | 26 | 57.3 |
Model | Emax (V/m) | Emedian (V/m) | Vst (cm3) | Vfrontal (cm3) | Age (years) | Mass (kg) |
---|---|---|---|---|---|---|
Vol01 | 132.5 | 46.3 | 21.1 | 287.7 | 43 | 80 |
Vol04 | 125.6 | 41.9 | 16.2 | 345.9 | 44 | 85 |
Vol06 | 126.0 | 42.9 | 15.1 | 294.6 | 35 | 78 |
Vol08 | 143.6 | 46.0 | 33.4 | 423.1 | 20 | 88 |
Vol14 | 128.7 | 42.9 | 20.4 | 333.6 | 31 | 100 |
Vol17 | 134.9 | 45.7 | 22.7 | 293.2 | 30 | 70 |
Vol18 | 140.8 | 50.8 | 40.7 | 350.7 | 30 | 65 |
Duke | 122.6 | 49.8 | 22.5 | 319.6 | 35 | 70.2 |
Model | Emax (V/m) | Emedian (V/m) | Vst (cm3) | Vfrontal (cm3) | Age (years) | Mass (kg) |
---|---|---|---|---|---|---|
Vol02 | 150.6 | 47.0 | 29.7 | 306.4 | 29 | 53 |
Vol03 | 138.0 | 45.3 | 22.0 | 339.8 | 25 | 70 |
Vol05 | 134.8 | 55.3 | 32.3 | 339.6 | 26 | 60 |
Vol07 | 118.6 | 46.9 | 13.8 | 269.3 | 48 | 75 |
Vol09 | 130.0 | 43.8 | 16.7 | 294.0 | 35 | 90 |
Vol10 | 140.5 | 52.8 | 28.0 | 244.6 | 21 | 55 |
Vol11 | 152.6 | 55.5 | 37.4 | 270.7 | 22 | 55 |
Vol12 | 136.8 | 47.6 | 29.2 | 318.9 | 27 | 60 |
Vol13 | 133.3 | 48.9 | 24.7 | 296.7 | 26 | 50 |
Vol15 | 120.8 | 48.1 | 16.7 | 283.3 | 34 | 55 |
Vol16 | 135.7 | 45.6 | 20.0 | 335.1 | 32 | 65 |
Vol19 | 139.1 | 57.5 | 28.0 | 239.5 | 33 | 50 |
Ella | 142.5 | 50.9 | 31.0 | 330.9 | 26 | 57.3 |
References
- Miniussi, C.; Ruzzoli, M. Chapter 56—Transcranial stimulation and cognition. In Handbook of Clinical Neurology; Lozano, A.M., Hallett, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 116, pp. 739–750. [Google Scholar] [CrossRef]
- Barker, A.T.; Jalinous, R.; Freeston, I.L. Non-Invasive Magnetic Stimulation of Human Motor Cortex. Lancet 1985, 325, 1106–1107. [Google Scholar] [CrossRef]
- Jalinous, R. Technical and practical aspects of magnetic nerve stimulation. J. Clin. Neurophysiol. Publ. Am. Electroencephalogr. Soc. 1991, 8, 10–25. [Google Scholar] [CrossRef]
- Hallett, M. Transcranial Magnetic Stimulation: A Primer. Neuron 2007, 55, 187–199. [Google Scholar] [CrossRef] [Green Version]
- Sollmann, N.; Krieg, S.; Säisänen, L.; Julkunen, P. Mapping of Motor Function with Neuronavigated Transcranial Magnetic Stimulation: A Review on Clinical Application in Brain Tumors and Methods for Ensuring Feasible Accuracy. Brain Sci. 2021, 11, 897. [Google Scholar] [CrossRef]
- Lefaucheur, J.-P.; Aleman, A.; Baeken, C.; Benninger, D.H.; Brunelin, J.; Di Lazzaro, V.; Filipović, S.R.; Grefkes, C.; Hasan, A.; Hummel, F.C.; et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): An update (2014–2018). Clin. Neurophysiol. 2020, 131, 474–528. [Google Scholar] [CrossRef]
- Chen, R.; Classen, J.; Gerloff, C.; Celnik, P.; Wassermann, E.M.; Hallett, M.; Cohen, L.G. Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 1997, 48, 1398. [Google Scholar] [CrossRef]
- Carmi, L.; Tendler, A.; Bystritsky, A.; Hollander, E.; Blumberger, D.M.; Daskalakis, J.; Ward, H.; Lapidus, K.; Goodman, W.; Casuto, L.; et al. Efficacy and Safety of Deep Transcranial Magnetic Stimulation for Obsessive-Compulsive Disorder: A Prospective Multicenter Randomized Double-Blind Placebo-Controlled Trial. Am. J. Psychiatry 2019, 176, 931–938. [Google Scholar] [CrossRef]
- Fiocchi, S.; Chiaramello, E.; Luzi, L.; Ferrulli, A.; Bonato, M.; Roth, Y.; Zangen, A.; Ravazzani, P.; Parazzini, M. Deep Transcranial Magnetic Stimulation for the Addiction Treatment: Electric Field Distribution Modeling. IEEE J. Electromagn. RF Microw. Med. Biol. 2018, 2, 242–248. [Google Scholar] [CrossRef]
- Ahmed, M.A.; Darwish, E.S.; Khedr, E.M.; Elserogy, Y.M.; Ali, A.M. Effects of low versus high frequencies of repetitive transcranial magnetic stimulation on cognitive function and cortical excitability in Alzheimer’s dementia. J. Neurol. 2012, 259, 83–92. [Google Scholar] [CrossRef]
- Kimiskidis, V.K.; Valentin, A.; Kälviäinen, R. Transcranial Magnetic Stimulation for the Diagnosis and Treatment of Epilepsy. Curr. Opin. Neurol. 2014, 27, 236–241. Available online: https://journals.lww.com/co-neurology/Fulltext/2014/04000/Transcranial_magnetic_stimulation_for_the.15.aspx (accessed on 1 February 2022). [CrossRef]
- Rossi, S.; Hallett, M.; Rossini, P.M.; Pascual-Leone, A. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin. Neurophysiol. 2009, 120, 2008–2039. [Google Scholar] [CrossRef] [Green Version]
- Ruohonen, J.; Karhu, J. Navigated transcranial magnetic stimulation. Neurophysiol. Clin./Clin. Neurophysiol. 2010, 40, 7–17. [Google Scholar] [CrossRef]
- Deng, Z.-D.; Lisanby, S.H.; Peterchev, A.V. Coil design considerations for deep transcranial magnetic stimulation. Clin. Neurophysiol. 2014, 125, 1202–1212. [Google Scholar] [CrossRef] [Green Version]
- Tendler, A.; Ygael, N.B.; Roth, Y.; Zangen, A. Deep transcranial magnetic stimulation (dTMS)—Beyond depression. Expert Rev. Med. Devices 2016, 13, 987–1000. [Google Scholar] [CrossRef]
- Guadagnin, V.; Parazzini, M.; Fiocchi, S.; Liorni, I.; Ravazzani, P. Deep Transcranial Magnetic Stimulation: Modeling of Different Coil Configurations. IEEE Trans. Biomed. Eng. 2016, 63, 1543–1550. [Google Scholar] [CrossRef]
- Thielscher, A.; Opitz, A.; Windhoff, M. Impact of the gyral geometry on the electric field induced by transcranial magnetic stimulation. NeuroImage 2011, 54, 234–243. [Google Scholar] [CrossRef]
- Laakso, I.; Hirata, A.; Ugawa, Y. Effects of coil orientation on the electric field induced by TMS over the hand motor area. Phys. Med. Biol. 2013, 59, 203–218. [Google Scholar] [CrossRef]
- Wagner, T.A.; Zahn, M.; Grodzinsky, A.J.; Pascual-Leone, A. Three-dimensional head model Simulation of transcranial magnetic stimulation. IEEE Trans. Biomed. Eng. 2004, 51, 1586–1598. [Google Scholar] [CrossRef]
- Laakso, I.; Murakami, T.; Hirata, A.; Ugawa, Y. Where and what TMS activates: Experiments and modeling. Brain Stimul. 2018, 11, 166–174. [Google Scholar] [CrossRef]
- Thielscher, A.; Antunes, A.; Saturnino, G.B. Field modeling for transcranial magnetic stimulation: A useful tool to understand the physiological effects of TMS? In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 222–225. [Google Scholar] [CrossRef]
- Soldati, M.; Mikkonen, M.; Laakso, I.; Murakami, T.; Ugawa, Y.; Hirata, A. A multi-scale computational approach based on TMS experiments for the assessment of electro-stimulation thresholds of the brain at intermediate frequencies. Phys. Med. Biol. 2018, 63, 225006. [Google Scholar] [CrossRef]
- Bungert, A.; Antunes, A.; Espenhahn, S.; Thielscher, A. Where does TMS Stimulate the Motor Cortex? Combining Electrophysiological Measurements and Realistic Field Estimates to Reveal the Affected Cortex Position. Cereb. Cortex 2017, 27, 5083–5094. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gomez, L.J.; Dannhauer, M.; Koponen, L.M.; Peterchev, A.V. Conditions for numerically accurate TMS electric field simulation. Brain Stimul. Basic Transl. Clin. Res. Neuromodulation 2020, 13, 157–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nummenmaa, A.; Stenroos, M.; Ilmoniemi, R.J.; Okada, Y.C.; Hämäläinen, M.S.; Raij, T. Comparison of spherical and realistically shaped boundary element head models for transcranial magnetic stimulation navigation. Clin. Neurophysiol. 2013, 124, 1995–2007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soldati, M.; Laakso, I. Computational errors of the induced electric field in voxelized and tetrahedral anatomical head models exposed to spatially uniform and localized magnetic fields. Phys. Med. Biol. 2020, 65, 015001. [Google Scholar] [CrossRef] [PubMed]
- Deng, Z.-D.; Lisanby, S.H.; Peterchev, A.V. Electric field depth–focality tradeoff in transcranial magnetic stimulation: Simulation comparison of 50 coil designs. Brain Stimul. 2013, 6, 1–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thielscher, A.; Kammer, T. Linking Physics with Physiology in TMS: A Sphere Field Model to Determine the Cortical Stimulation Site in TMS. NeuroImage 2002, 17, 1117–1130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gosselin, M.-C.; Neufeld, E.; Moser, H.; Huber, E.; Farcito, S.; Gerber, L.; Jedensjö, M.; Hilber, I.; Di Gennaro, F.; Lloyd, B.; et al. Development of a new generation of high-resolution anatomical models for medical device evaluation: The Virtual Population 3.0. Phys. Med. Biol. 2014, 59, 5287–5303. [Google Scholar] [CrossRef]
- Windhoff, M.; Opitz, A.; Thielscher, A. Electric field calculations in brain stimulation based on finite elements: An optimized processing pipeline for the generation and usage of accurate individual head models. Hum. Brain Mapp. 2013, 34, 923–935. [Google Scholar] [CrossRef]
- Laakso, I.; Tanaka, S.; Koyama, S.; de Santis, V.; Hirata, A. Inter-subject Variability in Electric Fields of Motor Cortical tDCS. Brain Stimul. 2015, 8, 906–913. [Google Scholar] [CrossRef]
- von Conta, J.; Kasten, F.H.; Ćurčić-Blake, B.; Aleman, A.; Thielscher, A.; Herrmann, C.S. Interindividual variability of electric fields during transcranial temporal interference stimulation (tTIS). Sci. Rep. 2021, 11, 20357. [Google Scholar] [CrossRef]
- Lee, E.G.; Rastogi, P.; Hadimani, R.L.; Jiles, D.C.; Camprodon, J.A. Impact of non-brain anatomy and coil orientation on inter- and intra-subject variability in TMS at midline. Clin. Neurophysiol. 2018, 129, 1873–1883. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, J.D.; Madsen, K.H.; Puonti, O.; Siebner, H.R.; Bauer, C.; Madsen, C.G.; Saturnino, G.B.; Thielscher, A. Automatic skull segmentation from MR images for realistic volume conductor models of the head: Assessment of the state-of-the-art. NeuroImage 2018, 174, 587–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roth, Y.; Pell, G.S.; Chistyakov, A.V.; Sinai, A.; Zangen, A.; Zaaroor, M. Motor cortex activation by H-coil and figure-8 coil at different depths. Combined motor threshold and electric field distribution study. Clin. Neurophysiol. 2014, 125, 336–343. [Google Scholar] [CrossRef] [PubMed]
- Zangen, A.; Roth, Y.; Voller, B.; Hallett, M. Transcranial magnetic stimulation of deep brain regions: Evidence for efficacy of the H-Coil. Clin. Neurophysiol. 2005, 116, 775–779. [Google Scholar] [CrossRef] [PubMed]
- Saturnino, G.B.; Antunes, A.; Thielscher, A. On the importance of electrode parameters for shaping electric field patterns generated by tDCS. NeuroImage 2015, 120, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Fiocchi, S.; Longhi, M.; Ravazzani, P.; Roth, Y.; Zangen, A.; Parazzini, M. Modelling of the Electric Field Distribution in Deep Transcranial Magnetic Stimulation in the Adolescence, in the Adulthood, and in the Old Age. Comput. Math. Methods Med. 2016, 2016, 9039613. [Google Scholar] [CrossRef] [Green Version]
- Lu, M.; Ueno, S. Comparison of the induced fields using different coil configurations during deep transcranial magnetic stimulation. PLoS ONE 2017, 12, 0178422. [Google Scholar] [CrossRef]
- Opitz, A.; Zafar, N.; Bockermann, V.; Rohde, V.; Paulus, W. Validating computationally predicted TMS stimulation areas using direct electrical stimulation in patients with brain tumors near precentral regions. NeuroImage Clin. 2014, 4, 500–507. [Google Scholar] [CrossRef] [Green Version]
- Colella, M.; Paffi, A.; de Santis, V.; Apollonio, F.; Liberti, M. Effect of skin conductivity on the electric field induced by transcranial stimulation techniques in different head models. Phys. Med. Biol. 2021, 66, 035010. [Google Scholar] [CrossRef]
- Mosayebi-Samani, M.; Jamil, A.; Salvador, R.; Ruffini, G.; Haueisen, J.; Nitsche, M.A. The impact of individual electrical fields and anatomical factors on the neurophysiological outcomes of tDCS: A TMS-MEP and MRI study. Brain Stimul. 2021, 14, 316–326. [Google Scholar] [CrossRef]
- Christ, A.; Kainz, W.; Hahn, E.G.; Honegger, K.; Zefferer, M.; Neufeld, E.; Rascher, W.; Janka, R.; Bautz, W.; Chen, J.; et al. The Virtual Family—Development of surface-based anatomical models of two adults and two children for dosimetric simulations. Phys. Med. Biol. 2009, 55, N23–N38. [Google Scholar] [CrossRef] [PubMed]
Metric | Mean | Std | ||||||
---|---|---|---|---|---|---|---|---|
F/A | F/H | C/A | C/H | F/A | F/H | C/A | C/H | |
Emax (V/m) | 190.5 | 134.9 | 183.9 | 130.6 | 12.3 | 8.9 | 14.3 | 5.5 |
Emedian (V/m) | 26.7 | 22.6 | 32.9 | 27.7 | 3.2 | 2.7 | 3.7 | 3.1 |
Vst (cm3) | 48.1 | 24.8 | 53.4 | 20.8 | 10.7 | 7.9 | 11.6 | 6.6 |
V1/2 in white matter (cm3) | 32.2 | 42.3 | 44.0 | 49.7 | 4.8 | 8.2 | 7.8 | 8.1 |
V1/2 in grey matter (cm3) | 24.9 | 61.6 | 28.7 | 71.3 | 4.5 | 10.1 | 5.9 | 11.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tzirini, M.; Chatzikyriakou, E.; Kouskouras, K.; Foroglou, N.; Samaras, T.; Kimiskidis, V.K. Electric Field Distribution Induced by TMS: Differences Due to Anatomical Variation. Appl. Sci. 2022, 12, 4509. https://doi.org/10.3390/app12094509
Tzirini M, Chatzikyriakou E, Kouskouras K, Foroglou N, Samaras T, Kimiskidis VK. Electric Field Distribution Induced by TMS: Differences Due to Anatomical Variation. Applied Sciences. 2022; 12(9):4509. https://doi.org/10.3390/app12094509
Chicago/Turabian StyleTzirini, Marietta, Evangelia Chatzikyriakou, Konstantinos Kouskouras, Nikolaos Foroglou, Theodoros Samaras, and Vasilios K. Kimiskidis. 2022. "Electric Field Distribution Induced by TMS: Differences Due to Anatomical Variation" Applied Sciences 12, no. 9: 4509. https://doi.org/10.3390/app12094509
APA StyleTzirini, M., Chatzikyriakou, E., Kouskouras, K., Foroglou, N., Samaras, T., & Kimiskidis, V. K. (2022). Electric Field Distribution Induced by TMS: Differences Due to Anatomical Variation. Applied Sciences, 12(9), 4509. https://doi.org/10.3390/app12094509