Effects of Velocity Loss Threshold during Resistance Training on Strength and Athletic Adaptations: A Systematic Review with Meta-Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Registration of Systematic Review Protocol
2.2. Eligibility Criteria
2.3. Search Strategy and Study Selection
2.4. Study Coding and Data Extraction
2.5. Methodological Quality Assessment
2.6. Statistical Analysis
2.6.1. Structure of the Comparisons
2.6.2. Main Procedures and Statistics
3. Results
3.1. Search Results
3.2. Characteristics of Included Studies
3.3. Muscular Strength
3.4. Athletic Performance
4. Discussion
4.1. Muscle Strength
4.2. Athletic Performance
4.3. Physiological Mechanisms behind These Results
4.4. Efficiency
4.5. Strengths and Limitations of This Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Suchomel, T.J.; Nimphius, S.; Stone, M.H. The importance of muscular strength in athletic performance. Sports Med. 2016, 46, 1419–1449. [Google Scholar] [CrossRef] [PubMed]
- Seitz, L.B.; Reyes, A.; Tran, T.T.; de Villarreal, E.S.; Haff, G.G. Increases in lower-body strength transfer positively to sprint performance: A systematic review with meta-analysis. Sports Med. 2014, 44, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Westcott, W.L. Resistance training is medicine: Effects of strength training on health. Curr. Sports Med. Rep. 2012, 11, 209–216. [Google Scholar] [CrossRef] [PubMed]
- El-Kotob, R.; Ponzano, M.; Chaput, J.P.; Janssen, I.; Kho, M.E.; Poitras, V.J.; Ross, R.; Ross-White, A.; Saunders, T.J.; Giangregorio, L.M. Resistance training and health in adults: An overview of systematic reviews. Appl. Physiol. Nutr. Metab. 2020, 45, S165–S179. [Google Scholar] [CrossRef]
- Csapo, R.; Alegre, L.M. Effects of resistance training with moderate vs. heavy loads on muscle mass and strength in the elderly: A meta-analysis. Scand. J. Med. Sci. Sports 2016, 26, 995–1006. [Google Scholar] [CrossRef]
- Lopez, P.; Radaelli, R.; Taaffe, D.R.; Newton, R.U.; Galvão, D.A.; Trajano, G.S.; Teodoro, J.L.; Kraemer, W.J.; Häkkinen, K.; Pinto, R.S. Resistance training load effects on muscle hypertrophy and strength gain: Systematic review and network meta-analysis. Med. Sci. Sport Exerc. 2020, 53, 1206–1216. [Google Scholar] [CrossRef]
- Gentil, P.; Fisher, J.; Steele, J. A review of the acute effects and long-term adaptations of single- and multi-joint exercises during resistance training. Sports Med. 2017, 47, 843–855. [Google Scholar] [CrossRef]
- Ralston, G.W.; Kilgore, L.; Wyatt, F.B.; Buchan, D.; Baker, J.S. Weekly training frequency effects on strength gain: A meta-analysis. Sports Med. Open 2018, 4, 1–24. [Google Scholar] [CrossRef]
- Grgic, J.; Schoenfeld, B.J.; Davies, T.B.; Lazinica, B.; Krieger, J.W.; Pedisic, Z. Effect of resistance training frequency on gains in muscular strength: A systematic review and meta-analysis. Sports Med. 2018, 48, 1207–1220. [Google Scholar] [CrossRef]
- Schoenfeld, B.J.; Ogborn, D.; Krieger, J.W. Dose-response relationship between weekly resistance training volume and increases in muscle mass: A systematic review and meta-analysis. J. Sports Sci. 2017, 35, 1073–1082. [Google Scholar] [CrossRef]
- Pallarés, J.G.; Martínez-Cava, A.; Courel-Ibáñez, J.; González-Badillo, J.J.; Morán-Navarro, R. Full squat produces greater neuromuscular and functional adaptations and lower pain than partial squats after prolonged resistance training. Eur. J. Sport. Sci. 2020, 20, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Cava, A.; Hernández-Belmonte, A.; Courel-Ibáñez, J.; Morán-Navarro, R.; González-Badillo, J.J.; Pallarés, J.G. Bench press at full range of motion produces greater neuromuscular adaptations than partial executions after prolonged resistance training. J. Strength Cond. Res. 2022, 36, 10–15. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Yañez-García, J.M.; Mora-Custodio, R.; Rodríguez-Rosell, D. Velocity loss as a variable for monitoring resistance exercise. Int. J. Sports Med. 2017, 38, 217–225. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Belmonte, A.; Courel-Ibáñez, J.; Conesa-Ros, E.; Martínez-Cava, A.; Pallarés, J.G. Level of effort: A reliable and practical alternative to the velocity-based approach for monitoring resistance training. J. Strength Cond. Res. 2021. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Medina, L.; González-Badillo, J.J. Velocity loss as an indicator of neuromuscular fatigue during resistance training. Med. Sci. Sports Exerc. 2011, 43, 1725–1734. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Ribas-Serna, J.; López-López, C.; Mora-Custodio, R.; Yáñez-García, J.M.; González-Badillo, J.J. Acute and delayed response to resistance exercise leading or not leading to muscle failure. Clin. Physiol. Funct. Imaging 2017, 37, 630–639. [Google Scholar] [CrossRef]
- Morán-Navarro, R.; Pérez, C.E.; Mora-Rodríguez, R.; de la Cruz-Sánchez, E.; González-Badillo, J.J.; Sánchez-Medina, L.; Pallarés, J.G. Time course of recovery following resistance training leading or not to failure. Eur. J. Appl. Physiol. 2017, 117, 2387–2399. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Ribas, J.; López-López, C.; Mora-Custodio, R.; Yañez-García, J.M.; Pareja-Blanco, F. Short-term recovery following resistance exercise leading or not to failure. Int. J. Sports Med. 2016, 37, 295–304. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Canton, M.; Gallego-Selles, A.; Gelabert-Rebato, M.; Martin-Rincon, M.; Pareja-Blanco, F.; Rodriguez-Rosell, D.; Morales-Alamo, D.; Sanchis-Moysi, J.; Dorado, C.; Jose Gonzalez-Badillo, J.; et al. Role of CaMKII and sarcolipin in muscle adaptations to strength training with different levels of fatigue in the set. Scand. J. Med. Sci. Sport 2020, 31, 91–103. [Google Scholar] [CrossRef]
- Vieira, A.F.; Umpierre, D.; Teodoro, J.L.; Lisboa, S.C.; Baroni, B.M.; Izquierdo, M.; Cadore, E.L. Effects of resistance training performed to failure or not to failure on muscle strength, hypertrophy, and power output: A systematic review with meta-analysis. J. Strength Cond. Res. 2021, 35, 1165–1175. [Google Scholar] [CrossRef]
- Allen, D.G.; Lamb, G.D.; Westerblad, H. Skeletal muscle fatigue: Cellular mechanisms. Physiol. Rev. 2008, 88, 287–332. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerblad, H.; Dahlstedt, A.J.; Lännergren, J. Mechanisms underlying reduced maximum shortening velocity during fatigue of intact, single fibres of mouse muscle. J. Physiol. 1998, 510, 269–277. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions Version 5.1.0 [Updated March 2011]. The Cochrane Collaboration. 2015. Available online: www.cochrane-handbook.org (accessed on 27 March 2011).
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. Int. J. Surg. 2021, 88, 105906. [Google Scholar] [CrossRef] [PubMed]
- Jackson, D.; Turner, R. Power analysis for random-effects meta-analysis. Res. Synth. Methods 2017, 8, 290–302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Sánchez-Medina, L.; Mora-Custodio, R.; González-Badillo, J.J. Relationship between velocity loss and repetitions in reserve in the bench press and back squat exercises. J. Strength Cond. Res. 2020, 34, 2537–2547. [Google Scholar] [CrossRef]
- Maher, C.G.; Sherrington, C.; Herbert, R.D.; Moseley, A.M.; Elkins, M. Reliability of the PEDro scale for rating quality of randomized controlled trials. Phys. Ther. 2003, 83, 713–721. [Google Scholar] [CrossRef] [Green Version]
- Cashin, A.G.; McAuley, J.H. Clinimetrics: Physiotherapy Evidence Database (PEDro) scale. J. Physiother. 2020, 66, 59. [Google Scholar] [CrossRef]
- Hedges, L.V. Distribution theory for Glass’s estimator of effect size and related estimators. J. Educ. Stat. 1981, 6, 107–128. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences; Lawrence Erlbaum Associates Inc.: Mahwah, NJ, USA, 1988. [Google Scholar]
- Sánchez-Moreno, M.; Rodríguez-Rosell, D.; Díaz-Cueli, D.; Pareja-Blanco, F.; González-Badillo, J.J. Effects of velocity loss threshold within resistance training during concurrent training on endurance and strength performance. Int. J. Sports Physiol. Perform. 2021, 16, 849–857. [Google Scholar] [CrossRef]
- Galiano, C.; Pareja-Blanco, F.; Hidalgo de Mora, J.; Sáez de Villarreal, E. Low-velocity loss induces similar strength gains to moderate-velocity loss during resistance training. J. Strength Cond. Res. 2020, 36, 340–345. [Google Scholar] [CrossRef]
- Sánchez-Moreno, M.; Cornejo-Daza, P.J.; González-Badillo, J.J.; Pareja-Blanco, F. Effects of velocity loss during body mass prone-grip pull-up training on strength and endurance performance. J. Strength Cond. Res. 2020, 34, 911–917. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Mora-Custodio, R.; Pareja-Blanco, F.; Ravelo-García, A.G.; Ribas-Serna, J.; González-Badillo, J.J. Velocity-based resistance training: Impact of velocity loss in the set on neuromuscular performance and hormonal response. Appl. Physiol. Nutr. Metab. 2020, 45, 817–828. [Google Scholar] [CrossRef] [PubMed]
- Pareja Blanco, F.; Alcazar, J.; Sánchez-Valdepeñas, J.; Cornejo Daza, P.J.; Piqueras Sanchiz, F.; Mora-Vela, R.; Sánchez-Moreno, M.; Bachero-Mena, B.; Ortega-Becerra, M.; Alegre, L.M. Velocity loss as a critical variable determining the adaptations to strength training. Med. Sci. Sports Exerc. 2020, 52, 1752–1762. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Alcazar, J.; Cornejo-Daza, P.J.; Sánchez-Valdepeñas, J.; Rodriguez-Lopez, C.; Hidalgo-de Mora, J.; Sánchez-Moreno, M.; Bachero-Mena, B.; Alegre, L.M.; Ortega-Becerra, M. Effects of velocity loss in the bench press exercise on strength gains, neuromuscular adaptations, and muscle hypertrophy. Scand. J. Med. Sci. Sport 2020, 30, 2154–2166. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Sánchez-Medina, L.; Suárez-Arrones, L.; González-Badillo, J.J. Effects of velocity loss during resistance training on performance in professional soccer players. Int. J. Sports Physiol. Perform. 2017, 12, 512–519. [Google Scholar] [CrossRef] [PubMed]
- Pareja-Blanco, F.; Rodríguez-Rosell, D.; Sánchez-Medina, L.; Sanchis-Moysi, J.; Dorado, C.; Mora-Custodio, R.; Yáñez-García, J.M.; Morales-Alamo, D.; Pérez-Suárez, I.; Calbet, J.A.; et al. Effects of velocity loss during resistance training on athletic performance, strength gains and muscle adaptations. Scand. J. Med. Sci. Sport 2017, 27, 724–735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodiles-Guerrero, L.; Pareja-Blanco, F.; León-Prados, J.A. Effect of velocity loss on strength performance in bench press using a weight stack machine. Int. J. Sports Med. 2020, 41, 921–928. [Google Scholar] [CrossRef]
- Rodríguez-Rosell, D.; Yáñez-García, J.M.; Mora-Custodio, R.; Sánchez-Medina, L.; Ribas-Serna, J.; González-Badillo, J.J. Effect of velocity loss during squat training on neuromuscular performance. Scand. J. Med. Sci. Sports 2021, 31, 1621–1635. [Google Scholar] [CrossRef]
- Grgic, J.; Lazinica, B.; Schoenfeld, B.J.; Pedisic, Z. Test–retest reliability of the one-repetition maximum (1RM) strength assessment: A systematic review. Sports Med. Open 2020, 6, 31. [Google Scholar] [CrossRef]
- Weakley, J.; Mann, B.; Banyard, H.; McLaren, S.; Scott, T.; García-Ramos, A. Velocity-based training: From theory to application. Strength Cond. J. 2020, 43, 31–49. [Google Scholar] [CrossRef]
- González-Badillo, J.J.; Sánchez-Medina, L.; Pareja-Blanco, F.; Rodríguez-Rosell, D. Fundamentals of Velocity-Based Resistance Training; Ergottech: Murcia, Spain, 2014. [Google Scholar]
- Bird, S.P.; Tarpenning, K.M.; Marino, F.E. Designing resistance training programmes to enhance muscular fitness: A review of the acute programme variables. Sports Med. 2005, 35, 841–851. [Google Scholar] [CrossRef] [PubMed]
- Issurin, V.B. Training transfer: Scientific background and insights for practical application. Sports Med. 2013, 43, 675–694. [Google Scholar] [CrossRef] [PubMed]
- Young, W.B. Transfer of strength and power training to sports performance. Int. J. Sports Physiol. Perform. 2006, 1, 74–83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buller, A.J.; Eccles, J.C.; Eccles, R.M. Interactions between motoneurones and muscles in respect of the characteristic speeds of their responses. J. Physiol. 1960, 150, 417–439. [Google Scholar] [CrossRef]
- Fry, A.C. The role of resistance exercise intensity on muscle fibre adaptations. Sports Med. 2004, 34, 663–679. [Google Scholar] [CrossRef]
- Andersen, L.L.; Andersen, J.L.; Zebis, M.K.; Aagaard, P. Early and late rate of force development: Differential adaptive responses to resistance training? Scand. J. Med. Sci. Sport 2010, 20, 162–169. [Google Scholar] [CrossRef]
- Andersen, J.L.; Aagaard, P. Myosin heavy chain IIX overshoot in human skeletal muscle. Muscle Nerve 2000, 23, 1095–1104. [Google Scholar] [CrossRef]
- Campos, G.E.; Luecke, T.J.; Wendeln, H.K.; Toma, K.; Hagerman, F.C.; Murray, T.F.; Ragg, K.E.; Ratamess, N.A.; Kraemer, W.J.; Staron, R.S. Muscular adaptations in response to three different resistance-training regimens: Specificity of repetition maximum training zones. Eur. J. Appl. Physiol. 2002, 88, 50–60. [Google Scholar] [CrossRef]
- Staron, R.S.; Karapondo, D.L.; Kraemer, W.J.; Fry, A.C.; Gordon, S.E.; Falkel, J.E.; Hagerman, F.C.; Hikida, R.S. Skeletal muscle adaptations during early phase of heavy-resistance training in men and women. J. Appl. Physiol. 1994, 76, 1247–1255. [Google Scholar] [CrossRef]
- Harridge, S.D.; Bottinelli, R.; Canepari, M.; Pellegrino, M.A.; Reggiani, C.; Esbjörnsson, M.; Saltin, B. Whole-muscle and single-fibre contractile properties and myosin heavy chain isoforms in humans. Pflügers Archiv 1996, 432, 913–920. [Google Scholar] [CrossRef]
- Hellsten-Westing, Y.; Norman, B.; Balsom, P.D.; Sjodin, B. Decreased resting levels of adenine nucleotides in human skeletal muscle after high-intensity training. J. Appl. Physiol. 1993, 74, 2523–2528. [Google Scholar] [CrossRef] [PubMed]
- Stathis, C.G.; Febbraio, M.A.; Carey, M.F.; Snow, R.J. Influence of sprint training on human skeletal muscle purine nucleotide metabolism. J. Appl. Physiol. 1994, 76, 1802–1809. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, J.E.; Forte, P.; Ferraz, R.; Leal, M.; Ribeiro, J.; Silva, A.J.; Barbosa, T.M.; Monteiro, A.M. Monitoring accumulated training and match load in football: A systematic review. Int. J. Environ. Res. Public Health 2021, 18, 3906. [Google Scholar] [CrossRef] [PubMed]
Study | Item | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 * | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | Total | |
Galiano et al. [32] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Pareja-Blanco et al. [35] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Pareja-Blanco et al. [36] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Pareja-Blanco et al. [37] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Pareja-Blanco et al. [38] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Rodiles-Guerrero et al. [39] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Rodríguez-Rosell et al. [34] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Rodríguez-Rosell et al. [40] | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Sánchez-Moreno et al. [31] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Sánchez-Moreno et al. [33] | 0 | 1 | 0 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | 1 | 6 |
Study | Sample | Resistance Training Program | Outcomes | ||||||
---|---|---|---|---|---|---|---|---|---|
Size (Initial RSR) | VL Actually Incurred (%) | Total Volume (reps) | Training Velocity (m·s−1) | Load (%1RM) | Exercise | Duration/ Frequency | Strength | Athletic | |
Galiano et al. [32] | 5%: 15 (1.4) 20%: 13 (1.3) | 5%: 5.6 ± 0.6 20%: 20.1 ± 0.4 | 5%: 156.9 ± 25.0 20%: 480.5 ± 162.0 | 5%: 1.08 ± 0.03 20%: 0.92 ± 0.02 | 50 | Squat | 7 wk 2 sess/wk | 1RM Low loads Mod/high loads | Sprint (20 m) Jump (CMJ) |
Pareja-Blanco et al. [37] | 15%: 8 (1.3) 30%: 8 (1.3) | 15%: 16.3 ± 1.3 30%: 28.6 ± 1.8 | 15%: 251.2 ± 55.4 30%: 414.6 ± 124.9 | 15%: 0.91 ± 0.01 30%: 0.84 ± 0.02 | 50–70 | Squat | 6 wk 3 sess/wk | 1RM | Sprint (30 m) Jump (CMJ) |
Pareja-Blanco et al. [38] | 20%: 12 (1.4) 40%: 10 (1.4) | 20%: 20.4 ± 1.5 40%: 41.9 ± 1.9 | 20%: 185.9 ± 22.2 40%: 310.5 ± 42.0 | 20%: 0.69 ± 0.02 40%: 0.58 ± 0.03 | 70–85 | Squat | 8 wk 2 sess/wk | 1RM Low loads Mod/high loads | Sprint (20 m) Jump (CMJ) |
Pareja-Blanco et al. [35] | 10%: 14 (1.3) 20%: 13 (1.3) 40%: 14 (1.3) | 10%: 10.6 ± 0.9 20%: 20.3 ± 1.5 40%: 41.9 ± 1.4 | 10%: 143.6 ± 40.2 20%: 168.5 ± 47.4 40%: 305.6 ± 81.7 | 10%: 0.71 ± 0.07 20%: 0.64 ± 0.06 40%: 0.58 ± 0.06 | 70–85 | Squat | 8 wk 2 sess/wk | 1RM Low loads Mod/high loads Local endurance | Sprint (20 m) Jump (CMJ) |
Pareja-Blanco et al. [36] | 15%: 16 (0.9) 25%: 15 (0.9) 50%: 16 (0.9) | 15%: 16.3 ± 0.8 25%: 25.0 ± 0.7 50%: 51.9 ± 1.6 | 15%: 136.6 ± 17.8 25%: 191.1 ± 34.1 50%: 316.4 ± 65.1 | 15%: 0.52 ± 0.05 25%: 0.50 ± 0.07 50%: 0.40 ± 0.05 | 70–85 | Bench press | 8 wk 2 sess/wk | 1RM Low loads Mod/high loads Local endurance | - |
Rodiles-Guerrero et al. [39] | 10%: 15 (1.0) 30%: 15 (1.1) 50%: 15 (1.0) | 10%: 10.0 30%: 29.6 50%: 49.3 | 10%: 211.1 ± 17.3 30%: 398.1 ± 61.4 50%: 444.4 ± 51.9 | 10%: 0.50 ± 0.01 30%: 0.45 ± 0.01 50%: 0.37 ± 0.01 | 65–85 | Bench press | 5 wk 3 sess/wk | 1RM Low loads Mod/high loads | - |
Rodríguez-Rosell et al. [34] | 10%: 12 (1.3) 30%: 13 (1.3) | 10%: 10.9 ± 0.8 30%: 29.4 ± 1.3 | 10%: 109.6 ± 12.0 30%: 228.0 ± 76.6 | 10%: 0.70 ± 0.01 30%: 0.63 ± 0.01 | 70–85 | Squat | 8 wk 2 sess/wk | 1RM Low loads Mod/high loads Local endurance | Sprint (10 m) Sprint (20 m) Jump (CMJ) |
Rodríguez-Rosell et al. [40] | 10%: 11 (1.4) 30%: 11 (1.3) 45%: 11 (1.3) | 10%: 10.9 ± 1.8 30%: 29.8 ± 3.6 45%: 42.1 ± 7.0 | 10%: 180.8 ± 29.0 30%: 347.9 ± 62.3 45%: 501 ± 106.8 | 10%: 0.91 ± 0.10 30%: 0.83 ± 0.13 45%: 0.76 ± 0.16 | 55–70 | Squat | 8 wk 2 sess/wk | 1RM Low loads Mod/high loads Local endurance | Sprint (10-m) Sprint (20-m) Jump (CMJ) |
Sánchez-Moreno et al. [33] | 25%: 15 (1.5) 50%: 14 (1.5) | 25%: 26.3 ± 4.1 50%: 50.5 ± 7.9 | 25%: 363.0 ± 84.6 50%: 556.3 ± 121.9 | 25%: 0.71 ± 0.11 50%: 0.56 ± 0.13 | Body mass | Push up | 8 wk 2 sess/wk | 1RM Local endurance | - |
Sánchez-Moreno et al. [31] | 15%: 11 (1.2) 45%: 11 (1.2) | 15%: 17.1 ± 4.9 45%: 42.3 ± 4.3 | 15%: 177.1 ± 38.5 45%: 401.6 ± 121.1 | 15%: 0.76 ± 0.03 45%: 0.67 ± 0.02 | 60–80 | Squat | 8 wk 2 sess/wk | 1RM Low loads Mod/high loads | Sprint (10-m) Sprint (20-m) Jump (CMJ) |
Threshold | Sample | Resistance Training Program | ||||
---|---|---|---|---|---|---|
k | Mean Size | Initial RSR (kg·kg−1) | VL Actually Incurred (%) | Total Volume (reps) | Training Velocity (m·s−1) | |
Low-ModVL | 13 | 13 ± 2 | 1.2 ± 0.2 | 16.1 ± 6.2 *** | 212.0 ± 102.3 *** | 0.73 ± 0.18 |
Mod-HighVL | 11 | 13 ± 2 | 1.3 ± 0.2 | 39.8 ± 9.0 | 384.0 ± 95.0 | 0.61 ± 0.16 |
Outcome or VL Threshold | k | ES | 95% CI | p-Value | I2 (%) | X2 (p-Value) |
---|---|---|---|---|---|---|
1RM | ||||||
Low-ModVL | 13 | 0.79 | [0.56 to 1.01] | <0.00001 | 0 | 0.87 |
Mod-HighVL | 11 | 0.59 | [0.35 to 0.83] | <0.00001 | 0 | 0.88 |
Mod/high loads | ||||||
Low-ModVL | 11 | 2.39 | [1.97 to 2.81] | <0.00001 | 43 | 0.06 |
Mod-HighVL | 9 | 1.91 | [1.59 to 2.23] | <0.00001 | 0 | 0.59 |
Low loads | ||||||
Low-ModVL | 11 | 1.33 | [1.07 to 1.58] | <0.00001 | 0 | 0.89 |
Mod-HighVL | 9 | 0.59 | [0.28 to 0.90] | 0.0002 | 26 | 0.22 |
Local endurance | ||||||
Low-ModVL | 7 | 1.50 | [1.08 to 1.93] | <0.00001 | 39 | 0.13 |
Mod-HighVL | 6 | 1.14 | [0.65 to 1.64] | <0.00001 | 51 | 0.07 |
Sprint | ||||||
Low-ModVL | 14 | 0.35 | [0.14 to 0.57] | 0.001 | 0 | 0.74 |
Mod-HighVL | 12 | 0.05 | [−0.18 to 0.29] | 0.67 | 0 | 1.00 |
Jump | ||||||
Low-ModVL | 9 | 0.59 | [0.31 to 0.86] | <0.0001 | 0 | 1.00 |
Mod-HighVL | 7 | 0.36 | [0.05 to 0.68] | 0.03 | 0 | 0.83 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Belmonte, A.; Pallarés, J.G. Effects of Velocity Loss Threshold during Resistance Training on Strength and Athletic Adaptations: A Systematic Review with Meta-Analysis. Appl. Sci. 2022, 12, 4425. https://doi.org/10.3390/app12094425
Hernández-Belmonte A, Pallarés JG. Effects of Velocity Loss Threshold during Resistance Training on Strength and Athletic Adaptations: A Systematic Review with Meta-Analysis. Applied Sciences. 2022; 12(9):4425. https://doi.org/10.3390/app12094425
Chicago/Turabian StyleHernández-Belmonte, Alejandro, and Jesús G. Pallarés. 2022. "Effects of Velocity Loss Threshold during Resistance Training on Strength and Athletic Adaptations: A Systematic Review with Meta-Analysis" Applied Sciences 12, no. 9: 4425. https://doi.org/10.3390/app12094425
APA StyleHernández-Belmonte, A., & Pallarés, J. G. (2022). Effects of Velocity Loss Threshold during Resistance Training on Strength and Athletic Adaptations: A Systematic Review with Meta-Analysis. Applied Sciences, 12(9), 4425. https://doi.org/10.3390/app12094425