Logit Averaging: Capturing Global Relation for Session-Based Recommendation
Abstract
:1. Introduction
- By interpolating logits of the sessions with the same target value, we propose a simple yet effective method to incorporate global contexts for session-based recommendation and achieve high accuracy and diversity;
- We conduct extensive experiments on four real-world datasets in six different deep-learning-based session recommendation models and successfully demonstrate the effectiveness of our method;
- We can easily “plug and play” Logit Averaging (LA) in various neural network-based session recommendation models.
2. Proposed Method
2.1. Problem Definition and Notation
2.2. Logit Averaging
| Algorithm 1 Logit Averaging. |
Input: sessions S, Short-head Items , Item Encoder , Session Encoder Initialize IE and SE for each iteration do for all do if in target items of sessions then end if end for L is calculated by using Equation (3) end for |
3. Results
3.1. Setup
3.1.1. Datasets
3.1.2. Baseline Methods
3.1.3. Evaluation Metrics
- Recall is the metric to measure recommendation accuracy. It is the proportion of correct prediction amongst top-k recommendation lists.where is the number of hits that the generated the top-K recommend list containing the ground truth and is the number of test sessions.
- Mean Reciprocal Rank (MRR) also measures recommendation accuracy taking ranks into consideration. MRR is the mean of ground truths’ reciprocal rank in the lists.where is the reciprocal position of the ground truth in the top-K recommendation list.
- Coverage is the ratio of the unique items that appears in recommendation lists.where is the number of unique items included in the top-k recommendation list, and is the total number of unique items in the test dataset.
3.2. Experiment Result
3.3. Ablation Study
3.3.1. Effectiveness of Augmentation
3.3.2. Comparison on GCE-GNN
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1
| Dataset | Model | Aug | LA | HR@10 | MRR@10 | Coverage@10 | HR@20 | MRR@20 | Coverage@20 |
|---|---|---|---|---|---|---|---|---|---|
| RetailRocket | NARM | X | X | 39.24 | 20.76 | 95.52 | 45.92 | 21.24 | 97.63 |
| X | O | 39.02 | 21.07 | 95.86 | 45.64 | 21.53 | 97.80 | ||
| GraphMix | O | 37.89 | 19.46 | 95.99 | 44.76 | 19.94 | 98.14 | ||
| FLAG | O | 39.94 | 21.16 | 95.54 | 46.21 | 21.64 | 97.75 | ||
| Random deletion | O | 39.83 | 19.48 | 95.18 | 46.68 | 19.95 | 97.50 | ||
| Random Insertion | O | 38.97 | 19.42 | 94.88 | 46.41 | 19.94 | 97.17 | ||
| NISER | X | X | 33.24 | 22.24 | 88.66 | 37.54 | 22.53 | 93.42 | |
| X | O | 33.33 | 22.09 | 88.59 | 37.66 | 22.39 | 93.39 | ||
| GraphMix | O | 33.19 | 22.37 | 85.65 | 37.49 | 22.66 | 90.79 | ||
| FLAG | O | 33.40 | 22.45 | 89.56 | 37.76 | 22.75 | 94.40 | ||
| Random deletion | O | 34.71 | 17.51 | 96.44 | 39.45 | 17.83 | 98.57 | ||
| Random Insertion | O | 32.27 | 16.35 | 96.80 | 36.40 | 16.64 | 98.83 | ||
| SR-SAN | X | X | 37.96 | 17.25 | 93.97 | 44.91 | 17.74 | 96.53 | |
| X | O | 37.50 | 17.26 | 92.44 | 44.33 | 17.75 | 95.45 | ||
| GraphMix | O | 33.89 | 20.13 | 80.22 | 39.14 | 20.49 | 84.66 | ||
| FLAG | O | 37.76 | 17.17 | 93.32 | 44.56 | 17.65 | 96.26 | ||
| Random deletion | O | 37.42 | 17.01 | 91.90 | 45.57 | 17.58 | 94.86 | ||
| Random Insertion | O | 35.06 | 15.97 | 90.53 | 42.61 | 16.48 | 94.10 | ||
| TAGNN++ | X | X | 34.30 | 21.54 | 81.59 | 39.83 | 21.92 | 85.47 | |
| X | O | 34.10 | 21.71 | 82.23 | 39.61 | 22.09 | 86.21 | ||
| GraphMix | O | 38.00 | 23.36 | 90.96 | 43.58 | 23.75 | 93.47 | ||
| FLAG | O | 38.35 | 23.18 | 89.47 | 44.47 | 23.61 | 92.62 | ||
| Random deletion | O | 36.07 | 19.51 | 82.40 | 42.93 | 19.98 | 86.46 | ||
| Random Insertion | O | 31.59 | 16.80 | 77.42 | 38.29 | 17.27 | 82.76 | ||
| Tmall | NARM | X | X | 17.14 | 12.52 | 17.68 | 19.18 | 12.71 | 28.68 |
| X | O | 16.46 | 12.21 | 17.28 | 18.50 | 12.35 | 28.17 | ||
| GraphMix | O | 19.18 | 13.74 | 18.56 | 21.62 | 13.88 | 30.85 | ||
| FLAG | O | 16.65 | 12.41 | 17.81 | 18.70 | 12.51 | 28.84 | ||
| Random deletion | O | 18.31 | 13.25 | 18.23 | 19.86 | 13.38 | 29.60 | ||
| Random Insertion | O | 18.70 | 12.91 | 18.50 | 20.74 | 13.05 | 30.28 | ||
| NISER | X | X | 18.89 | 14.04 | 18.93 | 21.03 | 14.18 | 31.83 | |
| X | O | 18.11 | 13.52 | 19.21 | 20.35 | 13.60 | 32.43 | ||
| GraphMix | O | 19.08 | 13.76 | 18.65 | 20.45 | 13.85 | 31.08 | ||
| FLAG | O | 19.18 | 13.80 | 19.03 | 21.13 | 13.93 | 32.01 | ||
| Random deletion | O | 18.31 | 13.58 | 18.82 | 19.77 | 13.68 | 31.97 | ||
| Random Insertion | O | 16.46 | 12.66 | 18.86 | 18.21 | 12.78 | 31.83 | ||
| SR-SAN | X | X | 18.99 | 12.74 | 12.67 | 21.62 | 12.92 | 19.65 | |
| X | O | 20.55 | 14.25 | 12.63 | 23.17 | 14.43 | 19.54 | ||
| GraphMix | O | 22.40 | 14.65 | 16.27 | 24.83 | 14.83 | 26.07 | ||
| FLAG | O | 19.28 | 12.62 | 12.49 | 22.01 | 12.81 | 19.30 | ||
| Random deletion | O | 19.28 | 11.84 | 13.12 | 22.59 | 12.03 | 20.45 | ||
| Random Insertion | O | 17.92 | 10.55 | 13.00 | 20.84 | 10.76 | 20.12 | ||
| TAGNN++ | X | X | 33.11 | 16.17 | 15.88 | 39.82 | 16.64 | 25.01 | |
| X | O | 30.77 | 14.55 | 16.36 | 36.42 | 14.96 | 25.42 | ||
| GraphMix | O | 34.27 | 17.11 | 17.50 | 43.33 | 17.76 | 28.06 | ||
| FLAG | O | 34.86 | 15.38 | 16.56 | 45.47 | 16.14 | 26.01 | ||
| Random deletion | O | 30.48 | 14.17 | 16.75 | 36.51 | 14.60 | 26.20 | ||
| Random Insertion | O | 21.81 | 10.59 | 15.44 | 26.58 | 10.94 | 23.52 | ||
| Yoochoose | NARM | X | X | 59.95 | 29.46 | 29.24 | 70.67 | 30.20 | 35.73 |
| X | O | 59.96 | 29.65 | 28.88 | 70.61 | 30.40 | 35.37 | ||
| GraphMix | O | 55.69 | 28.08 | 36.91 | 66.66 | 28.85 | 45.52 | ||
| FLAG | O | 60.50 | 29.57 | 29.83 | 71.07 | 30.33 | 35.89 | ||
| Random deletion | O | 59.99 | 29.38 | 29.17 | 70.54 | 30.13 | 35.75 | ||
| Random Insertion | O | 60.49 | 29.68 | 30.50 | 71.00 | 30.42 | 37.09 | ||
| NISER | X | X | 60.25 | 30.91 | 29.46 | 70.55 | 31.64 | 34.61 | |
| X | O | 60.23 | 30.88 | 29.40 | 70.48 | 31.60 | 34.73 | ||
| GraphMix | O | 60.58 | 31.08 | 28.65 | 70.54 | 31.78 | 33.29 | ||
| FLAG | O | 60.45 | 30.77 | 29.91 | 70.71 | 31.49 | 35.34 | ||
| Random deletion | O | 60.36 | 29.04 | 31.82 | 70.41 | 29.74 | 38.69 | ||
| Random Insertion | O | 59.88 | 29.18 | 34.17 | 69.88 | 29.88 | 42.22 | ||
| Yoochoose | SR-SAN | X | X | 53.90 | 25.96 | 28.28 | 64.89 | 26.73 | 32.62 |
| X | O | 53.75 | 26.00 | 28.31 | 64.91 | 26.77 | 32.63 | ||
| GraphMix | O | 54.87 | 26.48 | 30.19 | 66.14 | 27.27 | 34.88 | ||
| FLAG | O | 54.31 | 26.10 | 28.40 | 65.24 | 26.86 | 32.86 | ||
| Random deletion | O | 55.54 | 25.85 | 28.53 | 67.21 | 26.65 | 32.61 | ||
| Random Insertion | O | 52.28 | 23.36 | 28.99 | 65.54 | 24.27 | 33.08 | ||
| TAGNN++ | X | X | 60.70 | 30.63 | 26.48 | 70.93 | 31.35 | 30.72 | |
| X | O | 60.84 | 31.11 | 28.79 | 71.16 | 31.83 | 33.46 | ||
| GraphMix | O | 60.75 | 30.86 | 27.64 | 71.15 | 31.59 | 32.27 | ||
| FLAG | O | 60.67 | 30.95 | 27.82 | 71.08 | 31.68 | 31.72 | ||
| Random deletion | O | 58.32 | 29.43 | 16.79 | 68.79 | 29.17 | 18.96 | ||
| Random Insertion | O | 57.32 | 27.88 | 17.03 | 68.44 | 28.65 | 19.12 | ||
| Diginetica | NARM | X | X | 35.86 | 18.60 | 68.78 | 44.83 | 19.22 | 82.60 |
| X | O | 35.76 | 18.51 | 69.05 | 44.49 | 19.12 | 83.07 | ||
| GraphMix | O | 34.76 | 18.38 | 69.02 | 43.39 | 18.97 | 83.16 | ||
| FLAG | O | 36.30 | 18.49 | 69.06 | 45.40 | 19.12 | 82.91 | ||
| Random deletion | O | 35.96 | 18.61 | 68.95 | 45.32 | 19.25 | 82.66 | ||
| Random Insertion | O | 36.59 | 18.71 | 68.31 | 45.59 | 19.36 | 82.13 | ||
| NISER | X | X | 34.12 | 17.98 | 65.02 | 41.89 | 18.52 | 77.34 | |
| X | O | 33.79 | 18.02 | 65.28 | 41.68 | 18.57 | 78.25 | ||
| GraphMix | O | 34.27 | 18.06 | 59.23 | 42.04 | 18.59 | 70.59 | ||
| FLAG | O | 34.04 | 18.10 | 65.41 | 41.69 | 18.63 | 78.41 | ||
| Random deletion | O | 33.55 | 18.37 | 64.18 | 39.95 | 18.81 | 77.65 | ||
| Random Insertion | O | 33.11 | 18.28 | 64.04 | 39.68 | 18.74 | 77.69 | ||
| SR-SAN | X | X | 32.54 | 16.61 | 67.60 | 41.50 | 17.22 | 78.56 | |
| X | O | 32.93 | 16.93 | 66.68 | 42.02 | 17.56 | 77.34 | ||
| GraphMix | O | 32.94 | 16.95 | 70.66 | 41.72 | 17.56 | 81.55 | ||
| FLAG | O | 32.62 | 16.62 | 67.57 | 41.28 | 17.22 | 78.39 | ||
| Random deletion | O | 32.07 | 14.85 | 67.21 | 42.44 | 15.58 | 79.28 | ||
| Random Insertion | O | 31.50 | 14.04 | 66.78 | 41.87 | 14.76 | 79.36 | ||
| TAGNN++ | X | X | 33.90 | 17.34 | 62.81 | 42.64 | 17.95 | 74.00 | |
| X | O | 36.42 | 18.31 | 68.85 | 45.41 | 18.93 | 79.83 | ||
| GraphMix | O | 36.36 | 18.43 | 70.89 | 45.02 | 19.03 | 80.91 | ||
| FLAG | O | 33.77 | 17.36 | 62.54 | 42.29 | 17.96 | 73.66 | ||
| Random deletion | O | 34.17 | 15.37 | 66.93 | 43.61 | 16.03 | 78.87 | ||
| Random Insertion | O | 34.20 | 18.02 | 63.99 | 41.97 | 18.56 | 76.07 |
Appendix A.2
| Hyperparameter | Model | |||||
|---|---|---|---|---|---|---|
| NARM | EOPA | NISER | SRGNN | SRSAN | TAGNN++ | |
| Batch Size | 128 | 128 | 128 | 128 | 128 | 64 |
| Hidden Size | 100 | - | 100 | 100 | 96 | 100 |
| Epoch | 100 | 30 | 30 | 30 | 30 | 30 |
| L2 Penalty | - | 0.0001 | 0.00001 | 0.00001 | 0.00001 | 0.00001 |
| Learning rate | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 |
| Learning rate decay rate | 0.1 | - | 0.1 | 0.1 | 0.1 | 0.1 |
| Number of steps after which the learning rate decay | 80 | - | 3 | 3 | 3 | 3 |
| The dropout ratio for features | - | 0.2 | - | - | - | - |
| GNN Propagation | - | - | 1 | 1 | 1 | 1 |
| Number of SAN layer | - | - | - | - | 1 | - |
| Number of heads of multi-head attention | - | - | - | - | 2 | - |
| Multipler of hidden size | - | - | - | - | 1 | - |
| Embedding Dimension | 50 | 32 | - | - | - | |
| Number of layers | 1 | 3 | - | - | - | - |
Appendix A.3

References
- Zhang, S.; Yao, L.; Sun, A.; Tay, Y. Deep learning based recommender system: A survey and new perspectives. arXiv 2019, arXiv:1707.07435. [Google Scholar] [CrossRef] [Green Version]
- Covington, P.; Adams, J.; Sargin, E. Deep neural networks for youtube recommendations. In Proceedings of the 10th ACM Conference on Recommender Systems, Boston, MA, USA, 15–19 September 2016; pp. 191–198. [Google Scholar]
- Sarwar, B.; Karypis, G.; Konstan, J.; Riedl, J. Item-Based Collaborative Filtering Recommendation Algorithms. In Proceedings of the 10th International Conference on World Wide Web, Hong Kong, China, 1–5 May 2001; pp. 285–295. [Google Scholar]
- Rendle, S.; Freudenthaler, C.; Schmidt-Thieme, L. Factorizing Personalized Markov Chains for Next-Basket Recommendation. In Proceedings of the 19th International Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 811–820. [Google Scholar]
- He, X.; Liao, L.; Zhang, H.; Nie, L.; Hu, X.; Chua, T. Neural Collaborative Filtering. In Proceedings of the 26th International Conference on World Wide Web, Perth, Australia, 3–7 April 2017; pp. 173–182. [Google Scholar]
- Chen, Y.; de Rijke, M. A collective variational autoencoder for top-n recommendation with side information. In Proceedings of the 3rd Workshop on Deep Learning for Recommender Systems, Vancouver, BC, Canada, 6 October 2018; pp. 3–9. [Google Scholar]
- Dong, X.; Yu, L.; Wu, Z.; Sun, Y.; Yuan, L.; Zhang, F. A hybrid collaborative filtering model with deep structure for recommender systems. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February 2017. [Google Scholar]
- Liu, F.; Cheng, Z.; Zhu, L.; Gao, Z.; Nie, L. Interest-aware message-passing gcn for recommendation. In Proceedings of the Web Conference 2021, Ljubljana, Solvenia, 19–23 April 2021; pp. 1296–1305. [Google Scholar]
- Choi, M.; Kim, J.; Lee, J.; Shim, H.; Lee, J. Session-Aware Linear Item-Item Models for Session-Based Recommendation. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 19–23 April 2021; pp. 2186–2197. [Google Scholar]
- Wang, S.; Cao, L.; Wang, Y.; Sheng, Q.Z.; Orgun, M.A.; Lian, D. A Survey on Session-Based Recommender Systems. arXiv 2021, arXiv:1902.04864. [Google Scholar] [CrossRef]
- Li, J.; Ren, P.; Chen, Z.; Ren, Z.; Lian, T.; Ma, J. Neural attentive session-based recommendation. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management, Singapore, 6–10 November 2017; pp. 1419–1428. [Google Scholar]
- Fang, J. Session-based Recommendation with Self-Attention Networks. arXiv 2021, arXiv:2102.01922. [Google Scholar]
- Cho, K.; Merrienboer, V.B.; Gulcehre, C.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1724–1734. [Google Scholar]
- Kipf, T.N.; Welling, M. Semi-Supervised Classification with Graph Convolutional Networks. In Proceedings of the 5th International Conference on Learning Representations, Toulon, France, 24–26 April 2017. [Google Scholar]
- Wu, S.; Tang, Y.; Zhu, Y.; Wang, L.; Xie, X.; Tan, T. Session-based recommendation with graph neural networks. In Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence, Honolulu, HI, USA, 27 January–1 February 2019. [Google Scholar]
- Gupta, P.; Garg, D.; Malhotra, P.; Vig, L.; Shroff, G. NISER: Normalized item and session representations to handle popularity bias. In Proceedings of the 1st International Workshop on Graph Representation Learning on Its Applications (CIKM ’19), Beijing, China, 3–7 November 2019. [Google Scholar]
- Chen, T.; Wong, R.C.W. Handling information loss of graph neural networks for session-based recommendation. In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Virtual Event, 23–27 August 2020; pp. 1172–1180. [Google Scholar]
- Mitheran, S.; Java, A.; Sahu, S.K.; Shaikh, A. Introducing Self-Attention to Target Attentive Graph Neural Networks. arXiv 2022, arXiv:2107.01516. [Google Scholar]
- Li, A.; Cheng, Z.; Liu, F.; Gao, Z.; Guan, W.; Peng, Y. Disentangled Graph Neural Networks for Session-based Recommendation. arXiv 2022, arXiv:2201.03482. [Google Scholar]
- Li, Y.; Tarlow, D.; Brockschmidt, M.; Zemel, R.S. Gated Graph Sequence Neural Networks. In Proceedings of the 4th International Conference on Learning Representations, San Juan, Puerto Rico, 2–4 May 2016. [Google Scholar]
- Wang, M.; Ren, P.; Mei, L.; Chen, Z.; Ma, J.; de Rijke, M. A Collaborative Session-Based Recommendation Approach with Parallel Memory Modules. In Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval, Paris, France, 21–25 July 2019; pp. 345–354.
- Wang, Z.; Wei, W.; Cong, G.; Li, X.L.; Mao, X.L.; Qiu, M. Global context enhanced graph neural networks for session-based recommendation. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 25–30 July 2020; pp. 169–178. [Google Scholar]
- Mi, F.; Faltings, B. Memory Augmented Neural Model for Incremental Session-Based Recommendation. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, Yokohama, Japan, 7–15 January 2020; pp. 2169–2176. [Google Scholar]
- Zhou, H.; Tan, Q.; Huang, X.; Zhou, K.; Wang, X. Temporal Augmented Graph Neural Networks for Session-Based Recommendations. In Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval, Virtual Event, 11–15 July 2021; pp. 1798–1802. [Google Scholar]
- Huang, C.; Xia, X.; Dai, C.; Bo, Z. Graph-Enhanced Multi-Task Learning of Multi-Level Transition Dynamics for Session-based Recommendation. In Proceedings of the 35th AAAI Conference on Artificial Intelligence, Virtual Event, 2–9 February 2021; pp. 4123–4130. [Google Scholar]
- Xia, X.; Yin, H.; Yu, J.; Shao, Y.; Cui, L. Self-Supervised Graph Co-Training for Session-based Recommendation. Assoc. Comput. Mach. 2021, 11, 2180–2190. [Google Scholar]
- Pang, Y.; Wu, L.; Shen, Q.; Zhang, Y.; Wei, Z.; Xu, F.; Chang, E.; Long, B.; Pei, J. Heterogeneous global graph neural networks for personalized session-based recommendation. In Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, Virtual Event, 21–25 February 2022; pp. 775–783. [Google Scholar]
- Menon, A.; Jayasumana, S.; Rawat, A.; Jain, H.; Veit, A.; Kumar, S. Long-tail learning via logit adjustment. In Proceedings of the 2021 International Conference on Learning Representation, Virtual Conference, 3–7 May 2021. [Google Scholar]
- Hurley, N.; Zhang, M. Novelty and Diversity in Top-N Recommendation—Analysis and Evaluation. ACM Trans. Internet Technol. 2011, 10, 14. [Google Scholar] [CrossRef]
- Bradley, K.; Smyth, B. Improving recommendation diversity. In Proceedings of the Twelfth Irish Conference on Artificial Intelligence and Cognitive Science, Maynooth, Ireland, 1 September 2001; pp. 141–152. [Google Scholar]
- Miyamoto, S.; Zamami, T.; Yamana, H. Appearance frequency-based ranking method for improving recommendation diversity. In Proceedings of the 2019 IEEE 4th International Conference on Big Data Analytics (ICBDA), Suzhou, China, 15–18 March 2019; pp. 420–425. [Google Scholar]
- Wang, L.; Zhang, X.; Wang, T.; Wan, S.; Srivastava, G.; Pang, S.; Qi, L. Diversified and scalable service recommendation with accuracy guarantee. IEEE Trans. Comput. Soc. Syst. 2020, 8, 1182–1193. [Google Scholar] [CrossRef]
- Anderson, C. The Long Tail: Why the Future of Business is Selling Less of More; Hachette Books: London, UK, 2006. [Google Scholar]
- Park, Y.J.; Tuzhilin, A. The long tail of recommender systems and how to leverage it. In Proceedings of the 2008 ACM Conference on Recommender Systems, Lausanne, Switzerland, 23–25 October 2008; pp. 11–18. [Google Scholar]
- Isufi, E.; Pocchiari, M.; Hanjalic, A.T. Accuracy-diversity trade-off in recommender systems via graph convolutions. Inf. Process. Manag. 2021, 58, 102459. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Liang, Y.; Cai, Y.; Hooi, B. Mixup for Node and Graph Classification. In Proceedings of the Web Conference 2021, Ljubljana, Slovenia, 12–16 April 2021; pp. 3663–3674. [Google Scholar]
- Kong, K.; Li, G.; Ding, M.; Wu, Z.; Zhu, C.; Ghanem, B.; Taylor, G.; Goldstein, T. Flag: Adversarial data augmentation for graph neural networks. arXiv 2020, arXiv:2010.09891. [Google Scholar]



| Statistics | Diginetica | Retailrocket | Yoochoose | Tmall |
|---|---|---|---|---|
| # Train Sessions | 186,670 | 113,287 | 124,472 | 65,286 |
| # Test Sessions | 15,936 | 71,235 | 15,324 | 1027 |
| # Items | 43,098 | 27,413 | 37,484 | 40,728 |
| Avg. Length | 4.85 | 3.66 | 3.97 | 6.68 |
| Dataset | Model | LA | HR@10 | MRR@10 | Coverage@10 | HR@20 | MRR@20 | Coverage@20 |
|---|---|---|---|---|---|---|---|---|
| RetailRocket | NARM | X | 39.24 | 20.76 | 95.52 | 45.92 | 21.24 | 97.63 |
| EOPA | 33.74 | 17.13 | 81.07 | 42.51 | 17.72 | 86.91 | ||
| NISER | 33.24 | 22.24 | 88.66 | 37.54 | 22.53 | 93.42 | ||
| SR-GNN | 31.98 | 18.81 | 76.09 | 37.24 | 19.17 | 80.40 | ||
| SR-SAN | 37.96 | 17.25 | 93.97 | 44.91 | 17.74 | 96.53 | ||
| TAGNN++ | 34.30 | 21.54 | 81.59 | 39.83 | 21.92 | 85.47 | ||
| NARM | O | 39.02 | 21.07 | 95.86 | 45.64 | 21.53 | 97.80 | |
| EOPA | 33.63 | 17.33 | 81.28 | 42.28 | 17.91 | 86.98 | ||
| NISER | 33.33 | 22.09 | 88.59 | 37.66 | 22.39 | 93.39 | ||
| SR-GNN | 34.40 | 21.92 | 85.34 | 39.45 | 22.27 | 89.29 | ||
| SR-SAN | 37.50 | 17.26 | 92.44 | 44.33 | 17.75 | 95.45 | ||
| TAGNN++ | 34.10 | 21.71 | 82.23 | 39.61 | 22.09 | 86.21 | ||
| Gain (%) | 0.86 | 3.23 | 1.97 | 0.54 | 3.14 | 1.84 | ||
| Tmall | NARM | X | 17.14 | 12.52 | 17.68 | 19.18 | 12.71 | 28.68 |
| EOPA | 19.58 | 9.70 | 32.27 | 24.64 | 10.02 | 44.43 | ||
| NISER | 18.89 | 14.04 | 18.93 | 21.03 | 14.18 | 31.83 | ||
| SR-GNN | 16.55 | 11.00 | 13.79 | 18.79 | 11.17 | 21.52 | ||
| SR-SAN | 18.99 | 12.74 | 12.67 | 21.62 | 12.92 | 19.65 | ||
| TAGNN++ | 33.11 | 16.17 | 15.88 | 39.82 | 16.64 | 25.01 | ||
| NARM | O | 16.46 | 12.21 | 17.28 | 18.5 | 12.35 | 28.17 | |
| EOPA | 19.43 | 9.81 | 31.62 | 24.14 | 10.14 | 43.66 | ||
| NISER | 18.11 | 13.52 | 19.21 | 20.35 | 13.60 | 32.43 | ||
| SR-GNN | 16.85 | 11.92 | 15.47 | 19.67 | 12.11 | 24.81 | ||
| SR-SAN | 20.55 | 14.25 | 12.63 | 23.17 | 14.43 | 19.54 | ||
| TAGNN++ | 30.77 | 14.55 | 16.36 | 36.42 | 14.96 | 25.42 | ||
| Gain (%) | −0.98 | 0.86 | 2.02 | −0.92 | 0.71 | 2.46 | ||
| Yoochoose | NARM | X | 59.95 | 29.46 | 29.24 | 70.67 | 30.20 | 35.73 |
| EOPA | 51.83 | 24.91 | 28.81 | 62.85 | 25.68 | 31.74 | ||
| NISER | 60.25 | 30.91 | 29.46 | 70.55 | 31.64 | 34.61 | ||
| SR-GNN | 59.56 | 29.47 | 23.19 | 69.87 | 30.19 | 26.54 | ||
| SR-SAN | 53.90 | 25.96 | 28.28 | 64.89 | 26.73 | 32.62 | ||
| TAGNN++ | 60.70 | 30.63 | 26.48 | 70.93 | 31.35 | 30.72 | ||
| NARM | O | 59.96 | 29.65 | 28.88 | 70.61 | 30.40 | 35.37 | |
| EOPA | 51.54 | 24.90 | 29.02 | 62.64 | 25.68 | 31.73 | ||
| NISER | 60.23 | 30.88 | 29.40 | 70.48 | 31.60 | 34.73 | ||
| SR-GNN | 60.46 | 30.90 | 27.68 | 70.55 | 31.61 | 32.06 | ||
| SR-SAN | 53.75 | 26.00 | 28.31 | 64.91 | 26.77 | 32.63 | ||
| TAGNN++ | 60.84 | 31.11 | 28.79 | 71.16 | 31.83 | 33.46 | ||
| Gain (%) | 0.15 | 1.18 | 4.58 | 0.14 | 1.15 | 4.84 | ||
| Diginetica | NARM | X | 35.86 | 18.60 | 68.78 | 44.83 | 19.22 | 82.60 |
| EOPA | 34.25 | 14.52 | 62.09 | 47.09 | 15.37 | 75.91 | ||
| NISER | 34.12 | 17.98 | 65.02 | 41.89 | 18.52 | 77.34 | ||
| SR-GNN | 32.84 | 16.83 | 60.95 | 41.46 | 17.43 | 71.44 | ||
| SR-SAN | 32.54 | 16.61 | 67.60 | 41.50 | 17.22 | 78.56 | ||
| TAGNN++ | 33.90 | 17.34 | 62.81 | 42.64 | 17.95 | 74.00 | ||
| NARM | O | 35.76 | 18.51 | 69.05 | 44.49 | 19.12 | 83.07 | |
| EOPA | 34.54 | 14.60 | 62.33 | 47.03 | 15.47 | 75.81 | ||
| NISER | 33.79 | 18.02 | 65.28 | 41.68 | 18.57 | 78.25 | ||
| SR-GNN | 33.85 | 17.72 | 64.47 | 42.03 | 18.29 | 76.34 | ||
| SR-SAN | 32.93 | 16.93 | 66.68 | 42.02 | 17.56 | 77.34 | ||
| TAGNN++ | 36.42 | 18.31 | 68.85 | 45.41 | 18.93 | 79.83 | ||
| Gain (%) | 1.88 | 2.18 | 2.53 | 1.29 | 2.13 | 2.47 | ||
| Total Gain (%) | 0.48 | 1.86 | 2.78 | 0.26 | 1.78 | 2.90 |
| Dataset | Augmentation | LA | HR@10 | MRR@10 | Coverage@10 | HR@20 | MRR@20 | Coverage@20 |
|---|---|---|---|---|---|---|---|---|
| RetailRocket | X | O | −0.20 | 0.09 | −0.15 | −0.24 | 0.08 | −0.05 |
| GraphMix | O | −0.44 | 0.88 | −1.73 | −0.81 | 0.85 | −1.50 | |
| FLAG | O | 1.18 | 0.54 | 2.04 | 1.20 | 0.56 | 2.00 | |
| Random deletion | O | 0.82 | −2.07 | 1.55 | 1.61 | −2.02 | 1.09 | |
| Random Insertion | O | −1.71 | −3.31 | −0.03 | −1.12 | −3.28 | −0.05 | |
| Tmall | X | O | −0.56 | −0.24 | 0.08 | −0.80 | −0.28 | 0.10 |
| GraphMix | O | 1.70 | 0.95 | 1.46 | 2.15 | 0.97 | 2.72 | |
| FLAG | O | 0.46 | −0.32 | 0.18 | 1.42 | −0.27 | 0.25 | |
| Random deletion | O | −0.44 | −0.66 | 0.44 | −0.73 | −0.69 | 0.76 | |
| Random Insertion | O | −3.31 | −2.19 | 0.16 | −3.82 | −2.23 | 0.15 | |
| Yoochoose | X | O | −0.01 | 0.17 | 0.48 | 0.03 | 0.17 | 0.63 |
| GraphMix | O | −0.73 | −0.12 | 2.48 | −0.64 | −0.11 | 3.07 | |
| FLAG | O | 0.28 | 0.11 | 0.62 | 0.26 | 0.11 | 0.53 | |
| Random deletion | O | −0.15 | −0.82 | −1.79 | −0.02 | −1.06 | −1.92 | |
| Random Insertion | O | −1.21 | −1.72 | −0.69 | −0.55 | −1.68 | −0.54 | |
| Diginetica | X | O | 0.62 | 0.31 | 1.41 | 0.69 | 0.32 | 1.50 |
| GraphMix | O | 0.48 | 0.32 | 1.40 | 0.33 | 0.31 | 0.93 | |
| FLAG | O | 0.08 | 0.01 | 0.09 | −0.05 | 0.01 | 0.22 | |
| Random deletion | O | −0.17 | −0.83 | 0.77 | 0.12 | −0.81 | 1.49 | |
| Random Insertion | O | −0.25 | −0.37 | −0.27 | −0.44 | −0.37 | 0.69 |
| Dataset | Model | HR@10 | MRR@10 | Coverage@10 | HR@20 | MRR@20 | Coverage@20 |
|---|---|---|---|---|---|---|---|
| Tmall | GCE-GNN | 23.76 | 15.20 | 16.18 | 26.29 | 15.35 | 25.71 |
| TAGNN++ | 30.77 | 14.55 | 16.36 | 36.42 | 14.96 | 25.42 | |
| TAGNN++ w. GraphMix | 34.27 | 17.11 | 17.50 | 43.33 | 17.76 | 28.06 | |
| Yoochoose | GCE-GNN | 60.32 | 29.66 | 29.79 | 71.02 | 30.40 | 34.98 |
| TAGNN++ | 60.84 | 31.11 | 28.79 | 71.16 | 31.83 | 33.46 | |
| TAGNN++ w. GraphMix | 60.75 | 30.86 | 27.64 | 71.15 | 31.59 | 32.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.; Kim, G.; Lee, J.-H. Logit Averaging: Capturing Global Relation for Session-Based Recommendation. Appl. Sci. 2022, 12, 4256. https://doi.org/10.3390/app12094256
Yang H, Kim G, Lee J-H. Logit Averaging: Capturing Global Relation for Session-Based Recommendation. Applied Sciences. 2022; 12(9):4256. https://doi.org/10.3390/app12094256
Chicago/Turabian StyleYang, Heeyoon, Gahyung Kim, and Jee-Hyoung Lee. 2022. "Logit Averaging: Capturing Global Relation for Session-Based Recommendation" Applied Sciences 12, no. 9: 4256. https://doi.org/10.3390/app12094256
APA StyleYang, H., Kim, G., & Lee, J.-H. (2022). Logit Averaging: Capturing Global Relation for Session-Based Recommendation. Applied Sciences, 12(9), 4256. https://doi.org/10.3390/app12094256

