Real-Time Face Mask Detection to Ensure COVID-19 Precautionary Measures in the Developing Countries
Abstract
:1. Introduction
- A new face dataset is developed containing images of different people generated by a generative adversarial network, and then different face masks are designed that are applied on these face images to create a custom dataset consisting of two classes (mask and non-mask).
- A lightweight DL-based method consisting of four convolutional, one fully connected, and one output layer has been developed to accurately detect face masks.
- To validate the performance of the proposed lightweight DL model over the custom dataset, we trained different pre-trained DL models such as AlexNet, VGG16, VGG19, ResNet101, NesNetMobile, and MobileNet. The proposed model outperforms the existing DL-based models in terms of a better balance among time complexity, model size, and accuracy.
2. Literature Review
3. Methodology
3.1. Face Cropping Using Face-Detection Algorithms
3.2. Lightweight CNN Model for Face Mask Detection
4. Results and Discussions
4.1. Dataset
4.2. Evaluation Metrics
4.3. Results of the Proposed Model
4.4. Performance of the Proposed Model
4.5. Comparisons
4.6. Visualized Results
5. Conclusions and Future Work
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Walker, A.; Adam, F.; Walker, B. World pandemic of obesity: The situation in Southern African populations. Public Health 2001, 115, 368–372. [Google Scholar] [CrossRef]
- Cohen, D.; Carter, P. WHO and the pandemic flu “conspiracies”. BMJ 2010, 340, c2912. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. The current global situation of the HIV/AIDS pandemic. Wkly. Epidemiol. Rec. 1995, 70, 195–196. [Google Scholar]
- Latif, S.; Usman, M.; Manzoor, S.; Iqbal, W.; Qadir, J.; Tyson, G.; Castro, I.; Razi, A.; Boulos, M.N.K.; Weller, A. Leveraging data science to combat covid-19: A comprehensive review. IEEE Trans. Artif. Intell. 2020, 1, 85–103. [Google Scholar] [CrossRef]
- Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 2020, 382, 727–733. [Google Scholar] [CrossRef]
- Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A simple framework for contrastive learning of visual representations. In Proceedings of the 37th International Conference on Machine Learning, Vieena, Austria, 12–18 July 2020; pp. 1597–1607. [Google Scholar]
- Coronavirus (COVID-19) Google News. 2021. Available online: https://news.google.com/covid19/map?hl=en-PK&gl=PK&ceid=PK%3Aen&mid=%2Fm%2F06bnz (accessed on 2 September 2021).
- Worldometer. COVID-19 Coronavirus Pandemic. Available online: https://www.worldometers.info/coronavirus/?utm_campaign=homeAdUOA?Si (accessed on 19 September 2021).
- Bussan, D.D.; Snaychuk, L.; Bartzas, G.; Douvris, C. Quantification of trace elements in surgical and KN95 face masks widely used during the SARS-COVID-19 pandemic. Sci. Total Environ. 2021, 814, 151924. [Google Scholar] [CrossRef]
- De Sio, L.; Ding, B.; Focsan, M.; Kogermann, K.; Pascoal-Faria, P.; Petronella, F.; Mitchell, G.; Zussman, E.; Pierini, F. Personalized Reusable Face Masks with Smart Nano-Assisted Destruction of Pathogens for COVID-19: A Visionary Road. Chem. A Eur. J. 2020, 27, 6112–6130. [Google Scholar] [CrossRef]
- Sachs, J.D.; Horton, R.; Bagenal, J.; Ben Amor, Y.; Caman, O.K.; Lafortune, G. The lancet COVID-19 commission. Lancet 2020, 396, 454–455. [Google Scholar] [CrossRef]
- Feng, S.; Shen, C.; Xia, N.; Song, W.; Fan, M.; Cowling, B.J. Rational use of face masks in the COVID-19 pandemic. Lancet Respir. Med. 2020, 8, 434–436. [Google Scholar] [CrossRef]
- Agarwal, S.; Punn, N.S.; Sonbhadra, S.K.; Tanveer, M.; Nagabhushan, P.; Pandian, K.; Saxena, P. Unleashing the power of disruptive and emerging technologies amid COVID-19: A detailed review. arXiv 2020, arXiv:2005.11507. [Google Scholar]
- Nagrath, P.; Jain, R.; Madan, A.; Arora, R.; Kataria, P.; Hemanth, J. SSDMNV2: A real time DNN-based face mask detection system using single shot multibox detector and MobileNetV2. Sustain. Cities Soc. 2021, 66, 102692. [Google Scholar] [CrossRef] [PubMed]
- Yar, H.; Hussain, T.; Khan, Z.A.; Koundal, D.; Lee, M.Y.; Baik, S.W. Vision Sensor-Based Real-Time Fire Detection in Resource-Constrained IoT Environments. Comput. Intell. Neurosci. 2021, 2021, 5195508. [Google Scholar] [CrossRef] [PubMed]
- Yar, H.; Hussain, T.; Ahmad Khan, Z.; Lee, M.; Baik, S. Fire detection with effective vision transformers. J. Korean Soc. Next-Gener. Comput. 2021, 17, 21–30. [Google Scholar]
- Yar, H.; Jan, T.; Hussain, A.; Din, S. Real-Time Facial Emotion Recognition and Gender Classification for Human Robot Interaction Using CNN. In Proceedings of the 5th International Conference on Next Generation Computing, Uttarakhand, Dehradun, 20–21 December 2019. [Google Scholar]
- Sajjad, M.; Zahir, S.; Ullah, A.; Akhtar, Z.; Muhammad, K. Human behavior understanding in big multimedia data using CNN based facial expression recognition. Mob. Netw. Appl. 2019, 25, 1611–1621. [Google Scholar] [CrossRef]
- Shahzad, Y.; Javed, H.; Farman, H.; Ahmad, J.; Jan, B.; Nassani, A.A. Optimized Predictive Framework for Healthcare Through Deep Learning. Comput. Mater. Contin. 2021, 67, 2463–2480. [Google Scholar] [CrossRef]
- Yar, H.; Abbas, N.; Sadad, T.; Iqbal, S. Lung Nodule Detection and Classification using 2D and 3D Convolution Neural Networks (CNNs). Artif. Intell. Internet Things 2021, 365–386. [Google Scholar] [CrossRef]
- Hussain, A.; Khan, A.; Yar, H. Efficient Deep Learning Approach for Classification of Pneumonia using Resources Constraint Devices in Healthcare. In Proceedings of the 5th International Conference on Next Generation Computing, Uttarakhand, Dehradun, 20–21 December 2019. [Google Scholar]
- Khan, M.; Jan, B.; Farman, H. Deep Learning: Convergence to Big Data Analytics; Springer: Singapore, 2019. [Google Scholar]
- Jan, B.; Farman, H.; Khan, M.; Imran, M.; Islam, I.U.; Ahmad, A.; Ali, S.; Jeon, G. Deep learning in big data analytics: A comparative study. Comput. Electr. Eng. 2019, 75, 275–287. [Google Scholar] [CrossRef]
- Ali, H.; Farman, H.; Yar, H.; Khan, Z.; Habib, S.; Ammar, A.J.S.C. Deep Learning-Based Election Results Prediction Using Twitter Activity. Soft Comput. 2021, 1–9. [Google Scholar] [CrossRef]
- Yar, H.; Imran, A.S.; Khan, Z.A.; Sajjad, M.; Kastrati, Z.J.S. Towards smart home automation using IoT-enabled edge-computing paradigm. Sensors 2021, 21, 4932. [Google Scholar] [CrossRef]
- Jan, H.; Yar, H.; Iqbal, J.; Farman, H.; Khan, Z.; Koubaa, A. Raspberry Pi Assisted Safety System for Elderly People: An Application of Smart Home. In Proceedings of the 2020 First International Conference of Smart Systems and Emerging Technologies (SMARTTECH), Riyadh, Saudi Arabia, 3–5 November 2020; pp. 155–160. [Google Scholar]
- Qin, B.; Li, D. Identifying facemask-wearing condition using image super-resolution with classification network to prevent COVID-19. Sensors 2020, 20, 5236. [Google Scholar] [CrossRef]
- Ejaz, M.S.; Islam, M.R.; Sifatullah, M.; Sarker, A. Implementation of Principal Component Analysis on Masked and Non-Masked Face Recognition. In Proceedings of the 2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT), Dhaka, Bangladesh, 3–5 May 2019; pp. 1–5. [Google Scholar]
- Yang, S.; Luo, P.; Loy, C.-C.; Tang, X. Wider Face: A Face Detection Benchmark. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 5525–5533. [Google Scholar]
- Liu, Z.; Luo, P.; Wang, X.; Tang, X. Large-scale celebfaces attributes (celeba) dataset. Retrieved August 2018, 15, 11. [Google Scholar]
- Jain, V.; Learned-Miller, E. Fddb: A Benchmark for Face Detection in Unconstrained Settings; UMass Amherst Technical Report; University of Massachusetts Amherst: Amherst, MA, USA, 2010. [Google Scholar]
- Din, N.U.; Javed, K.; Bae, S.; Yi, J. A novel GAN-based network for unmasking of masked face. IEEE Access 2020, 8, 44276–44287. [Google Scholar] [CrossRef]
- Nieto-Rodríguez, A.; Mucientes, M.; Brea, V.M. System for Medical Mask Detection in the Operating Room through Facial Attributes. In Proceedings of the Iberian Conference on Pattern Recognition and Image Analysis, Santiago de Compostela, Spain, 17–19 June 2015; pp. 138–145. [Google Scholar]
- Khan, M.K.J.; Din, N.U.; Bae, S.; Yi, J. Interactive removal of microphone object in facial images. Electronics 2019, 8, 1115. [Google Scholar] [CrossRef] [Green Version]
- Jiang, M.; Fan, X.; Yan, H. Retinamask: A face mask detector. arXiv 2020, arXiv:2005.03950. [Google Scholar]
- Yadav, S. Deep learning based safe social distancing and face mask detection in public areas for COVID-19 safety guidelines adherence. Int. J. Res. Appl. Sci. Eng. Technol. 2020, 8, 1368–1375. [Google Scholar] [CrossRef]
- Chowdary, G.J.; Punn, N.S.; Sonbhadra, S.K.; Agarwal, S. Face Mask Detection Using Transfer Learning of Inceptionv3. In Proceedings of the International Conference on Big Data Analytics, Sonipat, India, 15–18 December 2020; pp. 81–90. [Google Scholar]
- Loey, M.; Manogaran, G.; Taha, M.H.N.; Khalifa, N.E.M. A hybrid deep transfer learning model with machine learning methods for face mask detection in the era of the COVID-19 pandemic. Measurement 2021, 167, 108288. [Google Scholar] [CrossRef]
- Huang, G.B.; Learned-Miller, E. Labeled Faces in the Wild: Updates and New Reporting Procedures; UMass Amherst Technical Report; University of Massachusetts Amherst: Amherst, MA, USA, 2014; Volume 14, pp. 1–5. [Google Scholar]
- Corona Awareness. Available online: https://sharechat.com/tag/OawRrB (accessed on 18 September 2021).
- Zhang, K.; Zhang, Z.; Li, Z.; Qiao, Y. Joint face detection and alignment using multitask cascaded convolutional networks. IEEE Signal Process. Lett. 2016, 23, 1499–1503. [Google Scholar] [CrossRef] [Green Version]
- Agarap, A.F. Deep learning using rectified linear units (relu). arXiv 2018, arXiv:1803.08375. [Google Scholar]
- Powers, D.M. Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation. arXiv 2020, arXiv:2010.16061. [Google Scholar]
Worldometer [8] | Google News COVID-19 [7] | ||||
---|---|---|---|---|---|
Countries | Confirmed | Recovered | Deaths | Confirmed | Deaths |
Worldwide | 216,918,733 | 193,849,589 | 4,511,302 | 216,026,420 | 4,495,014 |
United States | 39,617,417 | 30,812,242 | 654,381 | 38,830,051 | 637,066 |
Italy | 4,524,292 | 4,255,808 | 129,056 | 4,524,292 | 129,056 |
Germany | 3,933,569 | 3,726,700 | 92,631 | 3,933,585 | 92,136 |
India | 32,695,030 | 31,888,642 | 437,860 | 32,695,030 | 437,830 |
Saudi Arabia | 543,796 | 531,733 | 8526 | 543,318 | 8512 |
UAE | 716,381 | 702,102 | 2038 | 715,394 | 2036 |
China | 94,819 | 88,924 | 4636 | 94,765 | 4636 |
Pakistan | 1,152,481 | 1,033,373 | 25,604 | 1,152,481 | 25,604 |
Confusion Matrix of Test Set | ||
---|---|---|
Mask | No mask | Per class accuracy |
251 | 5 | 98.04% |
2 | 181 | 98.90% |
Precision | Recall | F1-Measure | |
---|---|---|---|
Mask Detected | 0.99 | 0.98 | 0.99 |
Mask Not Detected | 0.97 | 0.99 | 0.98 |
Accuracy | 98.47 | ||
Macro Avg | 0.98 | 0.98 | 0.98 |
Weighted Avg | 0.98 | 0.98 | 0.98 |
Technique | Dataset | Model Size | Parameters (Million) | Accuracy (%) | Training Time (M:S) | FPS (CPU) |
---|---|---|---|---|---|---|
Proposed | Custom dataset | 16 MB | 2.2 | 98.47 | 30:38 | 28.07 |
AlexNet | - | 233 MB | 60 | 98.07 | 34:04 | 5.33 |
VGG16 | - | 528 MB | 138 | 98.75 | 35:77 | 2.98 |
VGG19 | - | 574 MB | 143 | 99.22 | 37:35 | 1.83 |
ResNet101 | - | 98 MB | 20 | 99.00 | 55:13 | 7.43 |
MobileNet | - | 13 MB | 4.2 | 95.13 | 34:27 | 20.23 |
NesNetMobile | 23 MB | 5.3 | 97.05 | 44:13 | 14.22 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farman, H.; Khan, T.; Khan, Z.; Habib, S.; Islam, M.; Ammar, A. Real-Time Face Mask Detection to Ensure COVID-19 Precautionary Measures in the Developing Countries. Appl. Sci. 2022, 12, 3879. https://doi.org/10.3390/app12083879
Farman H, Khan T, Khan Z, Habib S, Islam M, Ammar A. Real-Time Face Mask Detection to Ensure COVID-19 Precautionary Measures in the Developing Countries. Applied Sciences. 2022; 12(8):3879. https://doi.org/10.3390/app12083879
Chicago/Turabian StyleFarman, Haleem, Taimoor Khan, Zahid Khan, Shabana Habib, Muhammad Islam, and Adel Ammar. 2022. "Real-Time Face Mask Detection to Ensure COVID-19 Precautionary Measures in the Developing Countries" Applied Sciences 12, no. 8: 3879. https://doi.org/10.3390/app12083879