Changes in Selected Properties of Cold-Pressed Oils Induced by Natural Plant Additives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Determination of Seed Moisture
2.2. Determination of Fat Content
2.3. Determination of Protein Content
2.4. Oil Extraction Process
2.5. Oil Extraction Yield
2.6. Preparation of Samples
2.7. Determination of Fatty Acid Composition
2.8. Determination of Acid Value
2.9. Determination of PV
2.10. Determination of Oxidative Stability
2.11. Statistical Analysis
3. Results and Discussion
3.1. Chemical Determinations of Seeds
3.2. Chemical Determination of Oils
3.3. Chemical Determinations of Supplemented Oils
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Obiedzińska, A.; Waszkiewicz-Robak, B. Cold pressed oils as functional food. Żywność Nauka Technol. Jakość 2012, 1, 27–44. [Google Scholar] [CrossRef]
- Codex Alimentarius Commission. Fats, Oils & Related Products by Codex Alimentarius Commission—Codex Standard for Edible Fats and Oils Not Covered by Individual Standards; FAO: Rome, Italy, 1999. [Google Scholar]
- Wei, F.; Yang, M.; Zhou, Q.; Zheng, C.; Peng, J.H.; Liu, C.S.; Huang, F.H. Varietal and processing effects on the volatile profile of rapeseed oils. LWT Food Sci. Technol. 2012, 48, 323–329. [Google Scholar] [CrossRef]
- Parry, J.W.; Cheng, Z.; Moore, J.; Yu, L.L. Fatty acid composition, antioxidant properties, and antiproliferative capacity of selected cold-pressed seed flours. JAOCS 2008, 85, 457–464. [Google Scholar] [CrossRef]
- Newerli-Guz, J. Evaluation of selected sensory quality features of flavored olive oil and oils. Roczniki 2015, 17, 185–190. [Google Scholar]
- Yanishlieva, N.V.; Marinova, E.M. Stabilisation of edible oils with natural antioxidants. Eur. Lipid Sci. Technol. 2001, 103, 752–767. [Google Scholar] [CrossRef]
- Sim, K.H.; Sil, H.Y. Antioxidant activities of red pepper (Capsicum annuum L.) pericarp and seed extracts. Int. J. Food Sci. Technol. 2008, 43, 1813–1823. [Google Scholar] [CrossRef]
- Alama, M.A.; Syazwaniea, N.F.; Mahmoda, N.H.; Badaluddina, N.A.; Mustafab, K.A.; Aliasa, N.; Aslanic, F.M.; Prodhand, A. Evaluation of Antioxidant Compounds, Antioxidant Activities and Capsaicinoid Compounds of Chili (Capsicum sp.) Germplasms Available in Malaysia. J. Appl. Res. Med. Aromat. Plants 2018, 9, 46–54. [Google Scholar] [CrossRef]
- Materska, M.; Perucka, I. Antioxidant activity of the main phenolic compounds isolated from hot pepper fruit (Capsicum annuum L.). J. Agric. Food Chem. 2005, 9, 1750–1756. [Google Scholar] [CrossRef]
- Sun, T.; Xu, Z.; Wu, C.T.; Janes, M.; Prinyawiwatkul, W.; No, H.K. Antioxidant activities of different colored sweet bell peppers (Capsicum annuum L.). J. Food Sci. 2007, 72, 98–102. [Google Scholar] [CrossRef]
- EN ISO 665:2020; Oilseeds. Determination of Moisture Content and Volatile Content. ISO: Geneva, Switzerland, 2020.
- ISO. Oilseeds—Determination of Oil Content; International Organization for Standardization: Geneva, Switzerland, 1988. [Google Scholar]
- EN ISO 1871:1975; Agricultural food products. Determination of Nitrogen by the Kjeldahl Method and Expressing as Protein. ISO: Geneva, Switzerland, 1975.
- Rotkiewicz, D.; Tańska, M.; Konopka, I. Seed size of rapeseed as a factor determining their technological value and quality of oil. Oilseed Crops 2002, 23, 103–112. [Google Scholar]
- EN ISO 12966-1:2014; Animal and Vegetable Fats and Oils—Analysis by Gas Chromatography of Methyl Esters of Fatty Acids. Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. ISO: Geneva, Switzerland, 2014.
- EN ISO 12966-2:2017; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO: Geneva, Switzerland, 2017.
- EN ISO 12966-4:2015; Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl esters—Part 3: Determination by Capillary Gas Chromatography. ISO: Geneva, Switzerland, 2015.
- Official Method Cd 3d-63; Acid Value; AOCS: Champaign, IL, USA, 2000.
- Official Method 965.33; Peroxide Value of Oils and Fats; AOAC: Champaign, IL, USA, 1999.
- AOCS Official and Tentative Methods of Analysis. Fat Stability. Active Oxygen Method. Method 1989, pp. 12–57. Available online: https://www.aocs.org/attain-lab-services/methods/methods/search-results?method=111524 (accessed on 26 February 2022).
- Worobiej, E.; Mądrzak, J.; Piecyk, M. The content of selected nutrients and bioactive compounds in hemp (Cannabis sativa L.) and chestnuts (Castanea sativa Mill.) products. Bromat. Chem. Toksykol. 2015, 48, 573–577. [Google Scholar]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the quality of protein from hemp seed (Cannabis sativa L.) products through the use of the protein digestibility corrected amino acid score. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef] [PubMed]
- Rosik-Dulewska, C.; Dulewski, J. The chemical composition and the content of selected radionuclides in plants cultivated on an ash dump of the Halemba power plant. Roczn. Glebozn. 1989, 40, 151–169. [Google Scholar]
- Krajewska, M.; Andrejko, D.; Ślaska-Grzywna, B. Chemical properties of cold-pressed organic oils. Przemysł Chem. 2015, 94, 1714–1716. [Google Scholar] [CrossRef]
- Rashed, A.A.; Zadernowski, R.; Nowak-Polakowska, H. Lipids in black cumin (Nigella sativa L.) seeds. Zesz. Probl. Postępów Nauk. Rol. 1999, 468, 415–422. [Google Scholar]
- Wolski, T.; Najda, A.; Wolska-Gawron, K. Nigella damascena L.—Composition of lipids and essential oil found in seeds. Post. Fitoter. 2017, 18, 259–266. [Google Scholar] [CrossRef]
- Ziemlański, Ś. Fats in human nutrition. Hum. Nutr. Metab. 1997, 24, 35–48. [Google Scholar]
- Białek, M.; Rutkowska, J. The importance of γ-linolenic acid in the prevention and treatment. Adv. Hyg. Exp. Med. 2015, 69, 892–904. [Google Scholar] [CrossRef]
- Caputa, J.; Nikiel-Loranc, A. The use of hemp seed oil in cosmetology. Kosmetol. Estet. 2019, 4, 461–463. [Google Scholar]
- Poiană, M.A. Enhancing Oxidative Stability of Sunflower Oil during Convective and Microwave Heating Using Grape Seed Extract. Int. J. Mol. Sci. 2012, 13, 9240–9925. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, H.-M.; Qin, G.-Y. Structure Characterization and Antioxidant Activity of Polysaccharides from Chinese Quince Seed Meal. Food Chem. 2017, 234, 314–322. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.L.; Wiesenborn, D.P.; Tostenson, K.; Kangas, N. Screw pressing of whole and dehulled flaxseed for organic oil. J. Am. Oil Chem. Soc. 2003, 80, 1039–1045. [Google Scholar] [CrossRef]
- Minkowski, K.; Zawada, K.; Ptasznik, S.; Kalinowski, A. Effect of phenolic compounds in seeds on oxidative stability and antiradical activity of n-3-PUFA-rich oils pressed from them. Żywność Nauka Technol. Jakość 2013, 20, 118–132. [Google Scholar] [CrossRef]
- Codex—ALINORM 09/32/17; Codex Alimentarius. Codex Standard for Named Vegetable Oils. FAO: Rome, Italy; WHO: Geneva, Switzerland, 2009.
- Pawłowska, A.; Kocur, A.; Siudem, P.; Paradowska, K. Examination of stability of linseed oil and Nigella sativa oil. Post. Fitoter. 2018, 19, 157–163. [Google Scholar] [CrossRef]
- Kogure, K.; Goto, S.; Nishimura, M.; Yasumoto, M.; Abe, K.; Ohiwa, C.; Sassa, H.; Kusumi, T.; Terrada, H. Mechanism of Potent Antiperoxidative Effect of Capsaicin. Biochim. Biophys. Acta 2002, 1573, 84–92. [Google Scholar] [CrossRef]
- Yang, C.Y.; Mandal, P.K.; Han, K.H.; Fukushima, M.; Choi, K.; Kim, C.J.; Lee, C.H. Capsaicin and Tocopherol in Red Pepper Seed Oil Enhances the Thermal Oxidative Stability during Frying. J. Food Sci. Technol. 2010, 47, 162–165. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.H.; Han, K.H.; Kim, A.Y.; Lee, S.K.; Hong, G.E.; Pyun, C.W.; Choi, K.D.; Yang, C.Y. Effect of Hot Pepper Seed Oil, Capsaicin and Alpha-Tocopherol on Thermal Oxidative Stability in Lard and Soy Bean Oil. Korean J. Food Sci. Anim. Res. 2008, 28, 660–666. [Google Scholar] [CrossRef] [Green Version]
- Krygier, K.; Wroniak, M.; Dobczyński, K.; Kiełt, I.; Grześkiewicz, S.; Obiedzińsk, M. Characteristic of commercial cold pressed vegetable oils. Oilseed Crops 1998, 19, 573–582. [Google Scholar]
- Nogala-Kałucka, M.; Siger, A.; Dwiecki, K. Oxidative stability of flavored extra virgin olive oils. Probl. Hig. Epidemiol. 2011, 92, 852–854. [Google Scholar]
- Baiano, A.; Gomes, T.; Severini, C. Effects of herbs on hydrolytic and oxidative degradation of olive oil in canned tomatoes. JAOCS 2005, 82, 759–765. [Google Scholar] [CrossRef]
- Blicharz-Kania, A.; Pecyna, A.; Andrejko, D.; Sagan, A.; Zdybel, B.; Kobus, Z. The effect of antioxidant additives on selected chemical properties of cold pressed poppy seed oil. Przemysł Chem. 2020, 99, 109–112. [Google Scholar] [CrossRef]
- Krajewska, M.; Ślaska-Grzywna, B.; Szmigielski, M. The effect of the oregano addition on the chemical properties of cold-pressed rapeseed oil. Przemysł Chem. 2018, 97, 1953–1956. [Google Scholar] [CrossRef]
- Zunin, P.; Leardi, R.; Bisio, A.; Boggia, R.; Romussi, G. Oxidative stability of virgin olive oil enriched with carnosic acid. Food Res. Int. 2010, 43, 1511–1516. [Google Scholar] [CrossRef]
- Ayadi, M.A.; Grati-Kamoun, N.; Attia, H. Physico-chemical change and heat stability of extra virgin olive oils flavoured by selected Tunisian aromatic plants. Food Chem. Toixicol. 2009, 47, 2613–2619. [Google Scholar] [CrossRef] [PubMed]
Material | Moisture (± SD) [%] | Fat Content (± SD) [%] | Protein Content (± SD) [%] |
---|---|---|---|
Flax seeds | 6.64 ± 0.07 a,* | 35.98 ± 0.05 a | 26.35 ± 0.06 a |
Hemp seeds | 5.93 ± 0.06 b | 29.98 ± 0.04 b | 31.05 ± 0.06 b |
Black cumin seeds | 6.33 ± 0.05 c | 37.93 ± 0.06 c | 20.21 ± 0.05 c |
Fatty Acid | Flax Seed Oil (± SD) [%] | Hemp Seed Oil (± SD) [%] | Black Cumin Seed Oil (± SD) [%] |
---|---|---|---|
Palmitic (16:0) | 5.99 ± 0.56 a,* | 5.02 ± 0.47 b | 12.91 ± 0.51 c |
Stearic (18:0) | 3.62 ± 0.14 a | 2.14 ± 0.11 b | 3.03 ± 0.16 c |
Arachidonic (20:0) | - | - | - |
Oleic (18:1) | 17.49 ± 0.44 a | 13,23 ± 0.39 b | 23.98 ± 0.41 c |
Linoleic (18:2) | 15.96 ± 0.83 a | 58,21 ± 0.78 b | 59.65 ± 0.81 c |
α-linolenic (α-18:3) | 56.94 ± 0.21 a | 18.74 ± 0.29 b | 0.43 ± 0.26 c |
γ-linolenic (γ-18:3) | - | 2.66 ± 0.31 | - |
ΣSFA | 9.61 | 7.16 | 15.94 |
ΣMUFA | 17.49 | 13.23 | 23.98 |
ΣPUFA | 72.90 | 79.61 | 60.08 |
n-6/n-3 | 1/3.6 | 3.2/1 | 138.7/1 |
Type of Oil | Extraction Yield [%] | AV (± SD) [mg KOH/g] | PV (± SD) [mmol O2/kg] | Induction Time (± SD) [h] |
---|---|---|---|---|
Flax seed oil | 81.43 a,* | 0.51 ± 0.08 a | 0.74 ± 0.08 a | 2.59 ± 0.09 a |
Hemp seed oil | 72.81 b | 1.69 ± 0.09 b | 1.40 ± 0.08 b | 1.75 ± 0.07 b |
Black cumin seed oil | 56.13 c | 2.36 ± 0.07 c | 3.36 ± 0.09 c | 5.80 ± 0.08 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krajewska, M.; Kachel, M. Changes in Selected Properties of Cold-Pressed Oils Induced by Natural Plant Additives. Appl. Sci. 2022, 12, 3646. https://doi.org/10.3390/app12073646
Krajewska M, Kachel M. Changes in Selected Properties of Cold-Pressed Oils Induced by Natural Plant Additives. Applied Sciences. 2022; 12(7):3646. https://doi.org/10.3390/app12073646
Chicago/Turabian StyleKrajewska, Marta, and Magdalena Kachel. 2022. "Changes in Selected Properties of Cold-Pressed Oils Induced by Natural Plant Additives" Applied Sciences 12, no. 7: 3646. https://doi.org/10.3390/app12073646
APA StyleKrajewska, M., & Kachel, M. (2022). Changes in Selected Properties of Cold-Pressed Oils Induced by Natural Plant Additives. Applied Sciences, 12(7), 3646. https://doi.org/10.3390/app12073646