Assessing the Homogeneity of Forage Mixtures Using an RGB Camera as Exemplified by Cattle Rations
Abstract
:1. Introduction
- -
- geometric characteristics of mixed particles;
- -
- color intensity for each pixel in the image;
- -
- uniformity of color intensity distribution over each image channel.
2. Materials and Methods
2.1. Study of Spectral Characteristics of Feed Mix Components
- -
- The WR panel is included and defined from the recorded data;
- -
- WR panel is recorded before the actual data recording;
- -
- Preset WR settings to match the most common recording environment’s illuminations.
2.2. Use of Fluorescence and RGB Camera to Detect Mixing Quality of Feed Mix Components
- -
- Sensor IMX183;
- -
- Shutter Rolling Shutter;
- -
- Sensor Size 13.1 mm × 8.8 mm;
- -
- Resolution (H × V) 5472 px × 3648 px;
- -
- Resolution 20 MP;
- -
- Pixel Size (H × V) 2.4 µm × 2.4 µm.
3. Results
3.1. Laboratory Experiment and Field Trials
3.2. Use of RGB Camera to Detect Mixing Quality of a Feed Mix
3.3. Processing of the Results Obtained
4. Discussion
- -
- speed of information processing;
- -
- simplicity of constructive implementation;
- -
- the possibility of monitoring the homogeneity of mixtures with similar characteristics in another industry.
5. Conclusions
- -
- speed of information processing;
- -
- simplicity of constructive implementation;
- -
- the possibility of monitoring the homogeneity of mixtures with similar characteristics in another industry.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fountas, S.; Carli, G.; Sørensen, C.; Tsiropoulos, Z.; Cavalaris, C.; Vatsanidou, A.; Liakos, B.; Canavari, M.; Wiebensohn, J.; Tisserye, B. Farm management information systems: Current situation and future perspectives. Comput. Electron. Agric. 2015, 115, 40–50. [Google Scholar] [CrossRef] [Green Version]
- Zi, L.; Cong, X.; Peng, Y.; Chen, X. RGB-D Saliency Object Detection Based on Adaptive Manifolds Filtering. In Chinese Intelligent Automation Conference; Springer: Singapore, 2019; Volume 586, pp. 174–181. [Google Scholar] [CrossRef]
- Bezen, R.; Edan, Y.; Halachmi, I. Computer vision system for measuring individual cow feed intake using RGB-D camera and deep learning algorithms. Comput. Electron. Agric. 2020, 172, 105345. [Google Scholar] [CrossRef]
- Müller, A.; Rukin, I.; Falldorf, C.; Bergmann, R. Multicolor Holographic Display of 3D Scenes Using Referenceless Phase Holography (RELPH). Photonics 2021, 8, 247. [Google Scholar] [CrossRef]
- Zhou, W.; Yuan, C. Model of Image Color Difference and Partial Based On RGB Color Distribution Measuring. Int. J. Grid Distrib. Comput. 2016, 9, 231–240. [Google Scholar] [CrossRef]
- Rego, G.; Ferrero, F.; Valledor, M.; Campo, J.C.; Forcada, S.; Royo, L.J.; Soldado, A. A portable IoT NIR spectroscopic system to analyze the quality of dairy farm forage. Comput. Electron. Agric. 2020, 175, 105578. [Google Scholar] [CrossRef]
- Buza, M.; Holden, L.; White, R.; Ishler, V. Evaluating the effect of ration composition on income over feed cost and milk yield. J. Dairy Sci. 2014, 97, 3073–3080. [Google Scholar] [CrossRef] [Green Version]
- Bargo, F.; Muller, L.; Delahoy, J.; Cassidy, T. Milk Response to Concentrate Supplementation of High Producing Dairy Cows Grazing at Two Pasture Allowances. J. Dairy Sci. 2002, 85, 1777–1792. [Google Scholar] [CrossRef] [Green Version]
- Bloch, V.; Levit, H.; Halachmi, I. Assessing the potential of photogrammetry to monitor feed intake of dairy cows. J. Dairy Research. 2019, 1, 34–39. [Google Scholar] [CrossRef]
- Krawczel, P.; Klaiber, L.; Thibeau, S.; Dann, H. Technical note: Data loggers are a valid method for assessing the feeding behavior of dairy cows using the Calan Broadbent Feeding System. J. Dairy Sci. 2012, 95, 4452–4456. [Google Scholar] [CrossRef] [Green Version]
- Bach, A.; Iglesias, C.; Busto, I. Technical Note: A Computerized System for Monitoring Feeding Behavior and Individual Feed Intake of Dairy Cattle. J. Dairy Sci. 2004, 87, 4207–4209. [Google Scholar] [CrossRef]
- Schneider, L.; Volkmann, N.; Kemper, N.; Spindler, B. Feeding Behavior of Fattening Bulls Fed Six Times per Day Using an Automatic Feeding System. Front. Veter- Sci. 2020, 7, 43. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martin, N.; Russelle, M.; Powell, J.; Sniffen, C.; Smith, S.; Tricarico, J.; Grant, R. Invited review: Sustainable forage and grain crop production for the US dairy industry. J. Dairy Sci. 2017, 100, 9479–9494. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bach, A.; Valls, N.; Solans, A.; Torrent, T. Associations Between Nondietary Factors and Dairy Herd Performance. J. Dairy Sci. 2008, 91, 3259–3267. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pavkin, D.Y.; Nikitin, E.A.; Zobov, V.A. Robotic System for Maintenance of Feed Table for Livestock Complexes. Agric. Mach. Technol. 2020, 14, 33–38. [Google Scholar] [CrossRef]
- Nikitin, E.; Vim, F.S.A.C. Food table robotic maintenance system at animal production units. Mach. Equip. Rural Area 2020. [Google Scholar] [CrossRef]
- Sirovatka, V.; Dorokhov, A.; Kirsanov, V.; Pavkin, D.; Nikitin, E. Study results of the on-board weight control system as exem-plified by feed mixture preparation using a trailed feed mixer-and-distributor. E3S Web of Conferences. In Proceedings of the XIII International Scientific and Practical Conference “State and Prospects for the Development of Agribusiness—INTERAGROMASH, Rostovon-Don, Russia, 26–28 February 2020. Don State Technical University. [Google Scholar] [CrossRef]
- Mithun, B.S.; Shinde, S.; Bhavsar, K.; Chowdhury, A.; Mukhopadhyay, S.; Gupta, K.; Bhowmick, B.; Kimbahune, S. Non-destructive method to detect artificially ripened banana using hyperspectral sensing and RGB imaging. Sens. Agric. Food Qual. Saf. X. 2018, 10665, 106650. [Google Scholar] [CrossRef]
- Reger, M.; Bernhardt, H.; Stumpenhausen, J. Navigation and personal protection in automatic feeding systems. Actual Tasks Agric. Eng. 2017, 45, 523–530. [Google Scholar]
- Moallem, U.; Lifshitz, L. Accuracy and homogeneity of total mixed rations processed through trailer mixer or self-propelled mixer, and effects on the yields of high-yielding dairy cows. Anim. Feed Sci. Technol. 2020, 270, 114708. [Google Scholar] [CrossRef]
- Li, Y.; Anderson, C.A.; Drennen, J.K.; Airiau, C.; Igne, B. Development of an In-Line Near-Infrared Method for Blend Content Uniformity Assessment in a Tablet Feed Frame. Appl. Spectrosc. 2019, 73, 1028–1040. [Google Scholar] [CrossRef]
- Alam, A.; Shi, Z.; Drennen, J.K.; Anderson, C.A. In-line monitoring and optimization of powder flow in a simulated continuous process using transmission near infrared spectroscopy. Int. J. Pharm. 2017, 526, 199–208. [Google Scholar] [CrossRef]
- Keim, J.; Charles, H.; AlOmar, D. Prediction of crude protein and neutral detergent fibre concentration in residues of in situ ruminal degradation of pasture samples by near-infrared spectroscopy (NIRS). Anim. Prod. Sci. 2016, 56, 1504–1511. [Google Scholar] [CrossRef]
- Matuszek, D. Fluorescence method for the assessment of homogeneity of granular mixtures. J. Central Eur. Agric. 2017, 18, 851–863. [Google Scholar] [CrossRef] [Green Version]
- Matuszek, D.; Biłos, Ł. Use of fluorescent tracers for the assessment of the homogeneity of multicomponent granular feed mixtures. Przem. Chem. 2017, 96, 2356–2359. [Google Scholar] [CrossRef]
- Matuszek, D.; Wojtkiewicz, K. Application of fluorescent markers for homogeneity assessment of grain mixtures based on maize content. Chem. Process Eng. 2017, 38, 505–512. [Google Scholar] [CrossRef]
- Modroño, S.; Soldado, A.; Fernandez, A.M.; de la Roza-Delgado, B. Handheld NIRS sensors for routine compound feed quality control: Real time analysis and field monitoring. Talanta 2017, 162, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Foca, G.; Masino, F.; Antonelli, A.; Ulrici, A. Prediction of compositional and sensory characteristics using RGB digital images and multivariate calibration techniques. Anal. Chim. Acta 2011, 706, 238–245. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wang, F.; Zhang, P.; Ke, C.; Zhu, Y.; Cao, W.; Jiang, H. Skewed distribution of leaf color RGB model and application of skewed parameters in leaf color description model. Plant Methods 2020, 16, 23–28. [Google Scholar] [CrossRef]
- Xu, H.; Ying, Y. Citrus fruit recognition using color image analysis. Proc. SPIE 5608, Intelligent Robots and Computer Vision XXII: Algorithms, Techniques, and Active Vision, Philadelphia, PA, USA, 25 October 2004; pp. 321–328. [Google Scholar] [CrossRef]
- Xu, H.; Jiang, G.; Yu, M.; Luo, T. A Color Image Watermarking Based on Tensor Analysis. IEEE Access 2018, 6, 51500–51514. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, L. RGB Pixel Brightness Characteristics of Linked Color Imaging in Early Gastric Cancer: A Pilot Study. Gastroenterol. Res. Pr. 2020, 2020, 2105874–7. [Google Scholar] [CrossRef]
- Lukac, R.; Plataniotis, K. Color filter arrays: Design and performance analysis. IEEE Trans. Consum. Electron. 2005, 51, 1260–1267. [Google Scholar] [CrossRef] [Green Version]
- Halachmi, I.; Ben Meir, Y.; Miron, J.; Maltz, E. Feeding behavior improves prediction of dairy cow voluntary feed intake but cannot serve as the sole indicator. Animal 2016, 10, 1501–1506. [Google Scholar] [CrossRef]
- Chapinal, N.; Veira, D.; Weary, D.; Von Keyserlingk, M. Technical Note: Validation of a System for Monitoring Individual Feeding and Drinking Behavior and Intake in Group-Housed Cattle. J. Dairy Sci. 2007, 90, 5732–5736. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Ahumada, E.; Garrido-Varo, A.; Guerrero-Ginel, J.E. Feasibility of Diode-Array Instruments To Carry Near-Infrared Spectroscopy from Laboratory to Feed Process Control. J. Agric. Food Chem. 2008, 56, 3185–3192. [Google Scholar] [CrossRef] [PubMed]
- Ding, K.; Xiao, L.; Weng, G. Active contours driven by region-scalable fitting and optimized Laplacian of Gaussian energy for image segmentation. Signal Process. 2017, 134, 224–233. [Google Scholar] [CrossRef]
- Jin, R.; Weng, G. Active contours driven by adaptive functions and fuzzy c-means energy for fast image segmentation. Signal Process. 2019, 163, 1–10. [Google Scholar] [CrossRef]
- Sun, H.; Xing, Z.Z.; Zhang, Z.Y.; Ma, X.Y.; Long, Y.W.; Liu, N.; Li, M.Z. Visualization Analysis of Crop Spectral Index Based on RGB-NIR Image Matching. Spectrosc. Spectr. Anal. 2019, 11, 3493–3500. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikitin, E.A.; Pavkin, D.Y.; Izmailov, A.Y.; Aksenov, A.G. Assessing the Homogeneity of Forage Mixtures Using an RGB Camera as Exemplified by Cattle Rations. Appl. Sci. 2022, 12, 3230. https://doi.org/10.3390/app12073230
Nikitin EA, Pavkin DY, Izmailov AY, Aksenov AG. Assessing the Homogeneity of Forage Mixtures Using an RGB Camera as Exemplified by Cattle Rations. Applied Sciences. 2022; 12(7):3230. https://doi.org/10.3390/app12073230
Chicago/Turabian StyleNikitin, Evgeniy A., Dmitriy Y. Pavkin, Andrey Yu. Izmailov, and Alexander G. Aksenov. 2022. "Assessing the Homogeneity of Forage Mixtures Using an RGB Camera as Exemplified by Cattle Rations" Applied Sciences 12, no. 7: 3230. https://doi.org/10.3390/app12073230
APA StyleNikitin, E. A., Pavkin, D. Y., Izmailov, A. Y., & Aksenov, A. G. (2022). Assessing the Homogeneity of Forage Mixtures Using an RGB Camera as Exemplified by Cattle Rations. Applied Sciences, 12(7), 3230. https://doi.org/10.3390/app12073230