The Impact of Technical Error of Measurement on Somatotype Categorization
Abstract
Featured Application
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Somatotype Distribution
3.2. Somatotype Categorization
4. Discussion
Author, Year | Participants | Population Somatotype | Somatotype Grouping | TEMs Reported? | Potential for Mis-Classification |
---|---|---|---|---|---|
Busko et al., 2017 [14] | 15 male Judoists (training experience 10.0 ± 2.8 years); 154 untrained students. | Judoists: 3.21 [±0.78], 5.87 [±1.16], 1.83 [±0.96]. Untrained: 3.90 [±1.56], 4.60 [±1.14], 2.88 [±1.27] | Simple | No | Up to 6 judoists and 59 untrained students. |
Roklicer et al., 2020 [15] | 61 male judokas, 37 female judokas separated into 7 weight categories | Males range: 1.69–2.92, 3.65–6.35, 0.91–3.99 Females range: 2.17–4.44, 2.71–5.68, 0.22–3.48. | In descriptive text—detailed. | No | Up to 44 male and 27 female judokas. |
Guereno et al., 2018 [16] | 20 elite male rowers | 3.5 [±0.4], 4.7 [±0.6], 2.4 [±3.5] | In descriptive text—detailed | No | Up to 15 participants |
Gryko et al., 2018 [17] | 70 male basketball players (young [n = 35] and adult [n = 35]) | Young: 2.12 [±0.81], 3.75 [±1.01], 4.17 [±1.08]. Adult: 2.26 [±0.59], 4.57 [±1.07], 3.04 [±0.89]. | In descriptive text—detailed. | No | Up to 50 participants |
Giannopoulos et al., 2017 [18] | 144 Greek male volleyball players grouped by Division and position | 3.05 [±0.74], 2.32 [±1.09], 2.93 [±1.01] | Detailed | Test-retest reliability but no TEM provided. | Up to 104 participants |
Cardenas-Fernandez et al., 2019 [20] | 174 youth soccer players (U14 n = 34; U16 n = 40; U19 n = 100) | Range: 2.8–4.5, 3.2–5.2, 2.2–3.9 | Detailed | Yes—<3% for skinfolds, <1% all other measures. | Up to 69 players (U14 = 13; U16 = 16; U19 = 40). |
Cinarli and Kafkas, 2019 [22] | 150 untrained males | Median: 2.8, 4.3, 2.6. | Detailed | No | Up to 108 participants |
Chatterjee et al., 2019 [23] | 148 trained athletes (aged 10–20 years) | Not given | Simple | No | Up to 57 participants |
Sunitha and Joseph, 2018 [30] | 60 male PE students (15–17 years) | Not given | Simple | No | Up to 23 participants |
Bolunchuk et al., 2000 [35] | 63 male participants | 3.1 [±0.2], 3.7 [±0.2], 2.4 [±0.2] | Simple | Yes, <0.2 somatotype units. | 19 participants |
Chaouachi et al., 2005 [36] | 41 fit PE students | Range: 1.7–4.1, 2.0–4.8, 2.1–5.0. | Detailed | No | 30 participants |
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Atkinson, G.; Nevill, A.M. Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med. 1998, 26, 217–238. [Google Scholar] [CrossRef]
- Hopkins, W.G. Measures of reliability in sports medicine and science. Sports Med. 2000, 30, 1–15. [Google Scholar] [CrossRef]
- Harris, E.F.; Smith, R.N. Accounting for measurement error: A critical but often overlooked process. Arch. Oral Biol. 2009, 54, S107–S117. [Google Scholar] [CrossRef]
- Stewart, A.; Marfell-Jones, M.; Olds, T.; de Ridder, H. International Standards for Anthropometric Assessment; International Society for the Advancement of Kinanthropometry: Wellington, New Zealand, 2011. [Google Scholar]
- Ulijaszek, S.J.; Kerr, D.A. Anthropometric measurement error and the assessment of nutritional status. Br. J. Nutr. 1999, 82, 165–177. [Google Scholar] [CrossRef]
- Hume, P.; Marfell-Jones, M. The importance of accurate site location for skinfold measurement. J. Sports Sci. 2008, 26, 1333–1340. [Google Scholar] [CrossRef]
- Mueller, W.H.; Martorell, R. Reliability and accuracy of measurement. In Anthropometric Standardisation Reference Manual; Lohman, T.G., Roche, A.F., Martorell, R., Eds.; Human Kinetics Books: Champaign, IL, USA, 1988; pp. 83–86. [Google Scholar]
- Perini, T.A.; de Oliveira, G.L.; Ornellas, J.d.S.; de Oliveira, F.P. Technical error of measurement in anthropometry. Rev. Bras. Med. Esporte 2005, 11, 86–90. [Google Scholar]
- Field, A. Discovering Statistics Using SPSS, 3rd ed.; SAGE: London, UK, 2009. [Google Scholar]
- Eliasziw, M.; Young, S.L.; Woodbury, M.G.; Fryday-Field, K. Statistical Methodology for the Concurrent Assessment of Interrater and Intrarater Reliability: Using Goniometric Measurements as an Example. Phys. Ther. 1994, 74, 777–788. [Google Scholar] [CrossRef]
- Willgoose, C.E.; Rogers, M.L. Relationship of Somatotype to Physical Fitness. J. Educ. Res. 1949, 42, 704–712. [Google Scholar] [CrossRef]
- Carter, J.E.; Heath, B.H. Somatotyping Development and Applications; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Carter, J.E.L. Somatotyping. In Anthropometrica; Norton, K., Olds, T., Eds.; University of New South Wales Press: Sydney, Australia, 2002; pp. 147–170. [Google Scholar]
- Buśko, K.; Pastuszak, A.; Kalka, E. Body composition and somatotype of judo athletes and untrained male students as a reference group for comparison in sport. Biomed. Hum. Kinet. 2017, 9, 7–13. [Google Scholar] [CrossRef]
- Roklicer, R.; Atanasov, D.; Sadri, F.; Jahic, D.; Bojanic, D.; Ljubojevic, M.; Trivic, T.; Drid, P. Somatotype of male and female judokas according to weight categories. Biomed. Hum. Kinet. 2020, 12, 34–40. [Google Scholar] [CrossRef]
- Guereño, P.L.; Otegui, A.U.; Zourdos, M.C.; Ayuso, J.M. Anthropometric profile, body composition and somatotype in elite traditional rowers: A cross-sectional study. Rev. Esp. Nutr. Hum. Diet. 2018, 22, 279–286. [Google Scholar] [CrossRef]
- Gryko, K.; Kopiczko, A.; Mikołajec, K.; Stasny, P.; Musálek, M. Anthropometric Variables and Somatotype of Young and Professional Male Basketball Players. Sports 2018, 6, 9. [Google Scholar] [CrossRef]
- Giannopoulos, N.; Vagenas, G.; Noutsos, K.; Barzouka, K.; Bergeles, N. Somatotype, Level of Competition, and Performance in Attack in Elite Male Volleyball. J. Hum. Kinet. 2017, 58, 131–140. [Google Scholar] [CrossRef]
- Kandel, M.; Baeyens, J.P.; Clarys, P. Somatotype, training and performance in Ironman athletes. Eur. J. Sport Sci. 2013, 14, 301–308. [Google Scholar] [CrossRef]
- Cárdenas-Fernández, V.; Chinchilla-Minguet, J.L.; Castillo-Rodríguez, A. Somatotype and Body Composition in Young Soccer Players According to the Playing Position and Sport Success. J. Strength Cond. Res. 2019, 33, 1904–1911. [Google Scholar] [CrossRef]
- Ryan-Stewart, H.; Faulkner, J.; Jobson, S. The influence of somatotype on anaerobic performance. PLoS ONE 2018, 13, e0197761. [Google Scholar] [CrossRef]
- Çinarli, F.; Kafkas, M. The effect of somatotype characters on selected physical performance parameters. Phys. Educ. Stud. 2019, 23, 279–287. [Google Scholar] [CrossRef]
- Chatterjee, P.; Bandyopadhyay, A.; Chatterjee, P.; Nandy, P. Assessment and Comparative Analysis of Different Lung Capacities in Trained Athletes According to Somatotype. Am. J. Sports Sci. 2019, 7, 72–77. [Google Scholar] [CrossRef]
- Arroyo, M.; Freire, M.; Ansotegui, L.; Rocandio, A.M. Intraobserver error associated with anthropometric measurements made by dietitians. Nutr. Hosp. 2010, 25, 1053–1056. [Google Scholar] [PubMed]
- Buśko, K.; Lewandowska, J.; Lipińska, M.; Michalski, R.; Pastuszak, A. Somatotype-variables related to muscle torque and power output in female volleyball players. Acta Bioeng. Biomech. 2013, 15, 119–126. [Google Scholar]
- Ferrari, E.P.; Silva, D.A.S.; Martins, C.R.; Fidelix, Y.L.; Petroski, E.L. Morphological characteristics of professional ballet dancers of the Bolshoi theater company. Coll. Antropol. 2013, 37, 37–43. [Google Scholar] [PubMed]
- Marta, C.C.; Marinho, D.A.; Barbosa, T.M.; Carneiro, A.L.; Izquierdo, M.; Marques, M.C. Effects of Body Fat and Dominant Somatotype on Explosive Strength and Aerobic Capacity Trainability in Prepubescent Children. J. Strength Cond. Res. 2013, 27, 3233–3244. [Google Scholar] [CrossRef] [PubMed]
- Grgantov, Z.; Padulo, J.; Milić, M.; Ardigò, L.P.; Erceg, M.; Cular, D. Intra-Positional and Inter-Positional Differences in Somatotype Components and Proportions of Particular Somatotype Categories in Youth Volleyball Players. Ann. Appl. Sport Sci. 2017, 5, 37–49. [Google Scholar] [CrossRef]
- Gjonbalaj, M.; Georgiev, G.; Bjelica, D. Differences in Anthropometric Characteristics, Somatotype Components, and Functional Abilities among Young Elite Kosovo Soccer Players Based on Team Position. Int. J. Morphol. 2018, 36, 41–47. [Google Scholar] [CrossRef]
- Sunitha, K.B.; Joseph, M.M. Effect of dominant somatotype on motor quality trainability. Yoga 2018, 3, 880–883. [Google Scholar]
- Goto, R.; Mascie-Taylor, C.N. Precision of Measurement as a Component of Human Variation. J. Physiol. Anthr. 2007, 26, 253–256. [Google Scholar] [CrossRef] [PubMed]
- Alvero-Cruz, J.R.; Mathias, V.P.; García-Romero, J.C. Somatotype Components as Useful Predictors of Disordered Eating Attitudes in Young Female Ballet Dance Students. J. Clin. Med. 2020, 9, 2024. [Google Scholar] [CrossRef] [PubMed]
- Sanchez Munoz, C.; Muros, J.J.; Lopez Belmonte, O.; Zabala, M. Anthropometric characteristics, body composition and somatotype of elite male young runners. Int. J. Environ. Res. Public Health 2020, 17, 674. [Google Scholar] [CrossRef]
- Bolonchuk, W.W.; Siders, W.A.; Lykken, G.I.; Lukaski, H.C. Association of dominant somatotype of men with body structure, function during exercise, and nutritional assessment. Am. J. Hum. Biol. 2000, 12, 167–180. [Google Scholar] [CrossRef]
- Chaouachi, M.; Chaouachi, A.; Chamari, K.; Chtara, M.; Feki, Y.; Amri, M.; Trudeau, F. Effects of dominant somatotype on aerobic capacity trainability. Br. J. Sports Med. 2005, 39, 954–959. [Google Scholar] [CrossRef][Green Version]
- Carter, J.E.L.; Mirwald, R.L.; Heath-Roll, B.H.; Bailey, D.A. Somatotypes of 7- to 16-year-old boys in Saskatchewan, Canada. Am. J. Hum. Biol. 1997, 9, 257–272. [Google Scholar] [CrossRef]
Somatotype Category | RTEM | L23TEM | L1TEM |
---|---|---|---|
Detailed | 39.7% | 61.8% | 72.1% |
Simplified | 29.4% | 35.3% | 38.2% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryan-Stewart, H.; Faulkner, J.; Jobson, S. The Impact of Technical Error of Measurement on Somatotype Categorization. Appl. Sci. 2022, 12, 3056. https://doi.org/10.3390/app12063056
Ryan-Stewart H, Faulkner J, Jobson S. The Impact of Technical Error of Measurement on Somatotype Categorization. Applied Sciences. 2022; 12(6):3056. https://doi.org/10.3390/app12063056
Chicago/Turabian StyleRyan-Stewart, Helen, James Faulkner, and Simon Jobson. 2022. "The Impact of Technical Error of Measurement on Somatotype Categorization" Applied Sciences 12, no. 6: 3056. https://doi.org/10.3390/app12063056
APA StyleRyan-Stewart, H., Faulkner, J., & Jobson, S. (2022). The Impact of Technical Error of Measurement on Somatotype Categorization. Applied Sciences, 12(6), 3056. https://doi.org/10.3390/app12063056