Effects of the Sn4+ Substitution and the Sintering Additives on the Sintering Behavior and Electrical Properties of PLZT
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yu, H.; Zhang, J.; Wei, M.; Huang, J.; Chen, H.; Yang, C. Enhanced energy storage density performance in (Pb0.97La0.03)(Zr0.5Sn0.44Ti0.0.6)-BiYO3 anti-ferroelectric composite ceramics. J. Mater. Sci. 2017, 28, 832–838. [Google Scholar]
- Mishra, A.; Majumdar, B.; Ranjan, R. A complex lead-free (Na, Bi, Ba)(Ti, Fe)O3 single phase perovskite ceramic with a high energy density and high discharge-efficiency for solid state capacitor applications. J. Eur. Ceram. Soc. 2017, 37, 2379–2384. [Google Scholar] [CrossRef]
- Wang, G.; Lu, Z.; Li, Y.; Li, L.; Ji, H.; Feterira, A.; Zhou, D.; Wang, D.; Zhang, S.; Reaney, I.M. Electroceramics for high energy density capacitors: Current status and future perspectives. Chem. Rev. 2021, 121, 6124–6172. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Gurpinar, E.; Ozpineci, B. High-Energy Density Capacitors for Electric Vehicle Traction Inverters. In Proceedings of the 2020 IEEE Transportation Electrification Conference & Expo (ITEC), Chicago, IL, USA, 23–26 June 2020. [Google Scholar]
- Zhao, Y.; Hao, X.; Zhang, Q. Energy-Storage Properties and Electrocaloric Effect of Pb(1-3x/2)Lax(Zr0.85Ti0.15O3 Antiferroelectric Thick Films. ACS Appl. Mater. Interfaces 2014, 14, 11633–11639. [Google Scholar] [CrossRef] [PubMed]
- Ciuchi, I.V.; Mitoseriu, L.; Galassi, C. Antiferroelectric to Ferroelectric Crossover and Energy Storage Properties of (Pb1-XLaX)(Zr0.90Ti0.10)1-x/4O3 (0.02≤x≤0.04) Ceramics. J. Am. Ceram. Soc. 2016, 99, 2382–2387. [Google Scholar] [CrossRef]
- Zhao, Y.; Hao, X.; Zhang, Q. Enhanced energy-storage performance and electrocaloric effect in compositionally graded Pb(1-3x/2)LaxZr0.85Ti0.15O3 antiferroelectric thick films. Ceram. Int. 2016, 42, 1679–1687. [Google Scholar] [CrossRef][Green Version]
- Liu, X.; Li, Y.; Sun, N.; Hao, X. High energy-storage performance of PLZS antiferroelectric multilayer ceramic capacitor. Inorg. Chem. Front. 2020, 6, 756–764. [Google Scholar] [CrossRef]
- Xie, J.; Yao, M.; Gao, W.; Su, Z.; Yio, X. Ultrahigh breakdown strength and energy density in PLZST@PBSAZM antiferroelectric ceramics based on core-shell structure. J. Eur. Ceram. Soc. 2019, 39, 1050–1056. [Google Scholar] [CrossRef]
- Li, C.; Yao, M.; Gao, W.; Yao, X. High breakdown strength and energy density in antiferroelectric PLZST ceramics with Al2O3 buffer. Ceram. Int. 2020, 46, 722–730. [Google Scholar] [CrossRef]
- Xu, R.; Zhu, Q.; Tian, J.; Feng, Y.; Xu, Z. Effect of Ba-dopant on dielectric and energy storage properties of PLZST antiferroelectric ceramics. Ceram. Int. 2017, 43, 2481–2485. [Google Scholar] [CrossRef]
- Somwan, S.; Ngamjarurojana, A.; Limpichaipanit, A. Dielectric, ferroelectric and induced strain behavior of PLZT 9/65/35 ceramics modified by Bi2O3 and CuO co-doping. Ceram. Int. 2016, 42, 10690–10696. [Google Scholar] [CrossRef]
- Roca, R.A.; Botero, E.R.; Guerrero, F.; Guerra, J.D.S.; Garcia, D.; Eiras, J.A. Effect of the sintering conditions on the electrical properties of Nd3+ modified PLZT ceramics. J. Phys. D Appl. Phys. 2008, 41, 045410. [Google Scholar] [CrossRef]
- Limpichaipanit, A.; Ngamjarurojana, A. Effecot of PbO/CuO addition to Microstructure and Electrical Properties of PLZT 9/65/35. Ferroelectrics 2015, 486, 57–65. [Google Scholar] [CrossRef]
- Zheng, M.P.; Hou, Y.D.; Ge, H.Y.; Zhu, M.K.; Yan, H. Effect of NiO additive on microstructure, mechanical behavior and electrical properties of 0.2PZN-0.8PZT ceramics. J. Eur. Ceram. Soc. 2013, 33, 1447–1456. [Google Scholar] [CrossRef]
- Wang, D.W.; Cao, M.S.; Yuan, J.; Lu, R.; Li, H.B.; Lin, H.B.; Zhao, Q.L.; Zhang, D.Q. Effect of sintering temperature and time on densification, microstructure and properties of the PZT/ZnO nanowhisker piezoelectric composite. J. Alloys Compd. 2011, 509, 6980–6986. [Google Scholar] [CrossRef]
- Li, H.; Yang, Z.; Wei, L.; Chang, Y. Effect of ZnO addition on the sintering and electrical properties of (Mn, W)-doped PZT-PMS-PZN ceramics. Mater. Res. Bull. 2009, 44, 638–643. [Google Scholar] [CrossRef]
- Corker, D.L.; Whatmore, R.W.; Ringgaard, E.; Wolny, W.W. Liquid-phase sintering of PZT ceramics. J. Eur. Ceram. Soc. 2000, 20, 2039–2045. [Google Scholar] [CrossRef]
- Wang, L.; Li, Q.; Xue, L.; Zhang, Y. Effect of Zr: Sn ratio in the lead lanthanum zirconate stannate titanate ceramics on microstructure and electric properties. J. Phys. Chem. Solids 2007, 68, 2008–2013. [Google Scholar] [CrossRef]
- Dan, Y.; Xu, H.; Zhang, Y.; Zou, K.; Zhang, Q.; Lu, Y.; Chang, G.; Zhang, Q.; He, Y. High-energy density of Pb0.97La0.02(Zr0.5Sn0.45Ti0.05)O3 antiferroelectric ceramics prepared by sol-gel method with low-cost dibutyltin oxide. J. Am. Ceram. Soc. 2019, 102, 1776–17983. [Google Scholar] [CrossRef]
- Chen, S.; Wang, X.; Yang, T.; Wang, J. Composition-dependent dielectric properties and energy storage performance of (Pb, La)(Zr, Sn, Ti)O3 antiferroelectric ceramics. J. Electroceramics 2014, 32, 307–310. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, X.; Zhang, Y.; Song, X.; Zhu, J.; Baturin, I.; Chen, J. Effect of barium content on dielectric and energy storage properties of (Pb,La,Ba)(Zr,Sn,Ti)O3 ceramics. Ceram. Int. 2015, 41, 3030–3035. [Google Scholar] [CrossRef]
- Cai, Z.; Wang, X.; Hong, W.; Luo, B.; Zhao, Q.; Li, L. Grain-size-dependent dielectric properties in nanograin ferroelectrics. J. Am. Ceram. Soc. 2018, 101, 5487–5496. [Google Scholar] [CrossRef]
- Yang, Z.; Li, Q.; Wang, L.; Zhang, Y. The characteristics of (Pb, La)(Zr, Sn, Ti)O3 ceramics synthesized by coprecipitation method compared to conventional mixed oxide method. J. Mater. Sci. 2011, 22, 162–166. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, Y.; Hao, X.; Xu, J. Preparation and energy-storage performance of PLZT antiferroelectric thick films via sol-gel method. Ceram. Int. 2013, 39, 513–516. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Choi, J.-S.; Kim, D.-C.; Shin, H.-S.; Yeo, D.-H.; Lee, J.-H. Effects of the Sn4+ Substitution and the Sintering Additives on the Sintering Behavior and Electrical Properties of PLZT. Appl. Sci. 2022, 12, 2591. https://doi.org/10.3390/app12052591
Choi J-S, Kim D-C, Shin H-S, Yeo D-H, Lee J-H. Effects of the Sn4+ Substitution and the Sintering Additives on the Sintering Behavior and Electrical Properties of PLZT. Applied Sciences. 2022; 12(5):2591. https://doi.org/10.3390/app12052591
Chicago/Turabian StyleChoi, Jeoung-Sik, Dong-Chul Kim, Hyo-Soon Shin, Dong-Hun Yeo, and Joon-Hyung Lee. 2022. "Effects of the Sn4+ Substitution and the Sintering Additives on the Sintering Behavior and Electrical Properties of PLZT" Applied Sciences 12, no. 5: 2591. https://doi.org/10.3390/app12052591
APA StyleChoi, J.-S., Kim, D.-C., Shin, H.-S., Yeo, D.-H., & Lee, J.-H. (2022). Effects of the Sn4+ Substitution and the Sintering Additives on the Sintering Behavior and Electrical Properties of PLZT. Applied Sciences, 12(5), 2591. https://doi.org/10.3390/app12052591