A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking
Abstract
:1. Introduction
1.1. Contribution
1.2. Organization
2. History of Bipedal Walking Exoskeleton
2.1. History of Bipedal Walking and Walking Exoskeletons
2.2. Challenges in Biped Walking Exoskeleton Robots
3. Classification of Wearable LEEs on Application Domain
3.1. Medical Application of LEE
3.2. Industrial Application of LEE
3.3. Military Application of LEE
3.4. Distinctions in the Exoskeleton Classifications
4. State of the Art of LEE
4.1. Human Lower Extremity
4.1.1. Hip
4.1.2. Knee
4.1.3. Ankle
4.1.4. Example of Exoskeleton Abstracting Human Leg
4.2. Actuator Design for Wearable Exoskeleton
4.3. Design Concept
4.4. Modeling Tools
4.5. Control Methods
4.5.1. Model-Based Control
4.5.2. Model-Free Control
5. Discussion and Future Research Directions
5.1. Discussion
5.2. Future Research Directions
5.2.1. Human-Robot Interaction
5.2.2. Control and Safety
5.2.3. Cost
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sarcos Robotics: Guardian XO Alpha Prototype Powered Exoskeleton. 2019. Available online: https://www.bing.com/videos/search?q=Guardian+XO+Alpha-+&&view=detail&mid=A93D9225F2B5FE64660AA93D9225F2B5FE64660A&&FORM=VDRVSR (accessed on 10 December 2020).
- Ekso Bionics: The Leader in Exoskeleton Technology. 2020. Available online: https://eksobionics.com/ (accessed on 11 July 2021).
- Phoenix SuitX: Robotic Exoskeleton Help a Paralyzed Man Walk. 2020. Available online: https://www.youtube.com/watch?v=AYVZped_Qh4 (accessed on 30 June 2020).
- Berkeley Bionics Unveiled eLEGS (2010). 2010. Available online: https://bleex.me.berkeley.edu/research/exoskeleton/elegs/ (accessed on 17 October 2020).
- Zoss, A.; Kazerooni, H. Design of an electrically actuated lower extremity exoskeleton. Adv. Robot. 2006, 20, 967–988. [Google Scholar] [CrossRef] [Green Version]
- Raytheon XOS Exoskeleton: Second-Generation Robotics Suit. 2020. Available online: https://www.army-technology.com/projects/raytheon-xos-2-exoskeleton-us/ (accessed on 30 June 2020).
- Vukobratovic, M.; Hristic, D.; Stojiljkovic, Z. Development of active anthropomorphic exoskeletons. Med. Biol. Eng. 1974, 12, 66–80. [Google Scholar] [CrossRef] [PubMed]
- Playter, R.R.; Raibert, M.H. Control Of A Biped Somersault In 3D. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Raleigh, NC, USA, 7–10 July 1992; Volume 1, pp. 582–589. [Google Scholar] [CrossRef]
- Kajita, S.; Matsumoto, O.; Saigo, M. Real-time 3D walking pattern generation for a biped robot with telescopic legs. In Proceedings of the 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164), Seoul, Korea, 21–26 May 2001; Volume 3, pp. 2299–2306. [Google Scholar] [CrossRef]
- Pratt, J.; Krupp, B. Design of a bipedal walking robot. In Unmanned Systems Technology X; Gerhart, G.R., Gage, D.W., Shoemaker, C.M., Eds.; International Society for Optics and Photonics, SPIE Defense and Security Symposium: Orlando, FL, USA, 2008; Volume 6962, pp. 480–492. [Google Scholar] [CrossRef]
- Siekmann, J.; Green, K.; Warila, J.; Fern, A.; Hurst, J. Blind Bipedal Stair Traversal via Sim-to-Real Reinforcement Learning. arXiv 2021, arXiv:2105.08328. [Google Scholar]
- Hirose, M.; Ogawa, K. Honda humanoid robots development. Philos. Transact. Ser. A Math. Phys. Eng. Sci. 2007, 365, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Lohmeier, S.; Buschmann, T.; Ulbrich, H.; Pfeiffer, F. Modular Joint Design for Performance Enhanced Humanoid Robot LOLA. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; Volume 2006, pp. 88–93. [Google Scholar] [CrossRef]
- Lemburg, J.; de Gea Fernández, J.; Eich, M.; Mronga, D.; Kampmann, P.; Vogt, A.; Aggarwal, A.; Shi, Y.; Kirchner, F. AILA—Design of an autonomous mobile dual-arm robot. In Proceedings of the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011; pp. 5147–5153. [Google Scholar] [CrossRef]
- Englsberger, J.; Werner, A.; Ott, C.; Henze, B.; Roa, M.A.; Garofalo, G.; Burger, R.; Beyer, A.; Eiberger, O.; Schmid, K.; et al. Overview of the torque-controlled humanoid robot TORO. In Proceedings of the 2014 IEEE-RAS International Conference on Humanoid Robots, Madrid, Spain, 18–20 November 2014; pp. 916–923. [Google Scholar] [CrossRef] [Green Version]
- Stasse, O.; Flayols, T.; Budhiraja, R.; Giraud-Esclasse, K.; Carpentier, J.; Mirabel, J.; Del Prete, A.; Souéres, P.; Mansard, N.; Lamiraux, F.; et al. Talos: A New Humanoid Research Platform Targeted for Industrial Applications; IEEE Xplore: Birmingham, UK, 2017; pp. 689–695. [Google Scholar] [CrossRef] [Green Version]
- Peters, H.; Kampmann, P.; Simnofske, M. Konstruktion Eines Zweibeinigen Humanoiden Roboters. In Proceedings of the 2. VDI Fachkonferenz Humanoide Roboter, München, Germany, 5–6 December 2017. [Google Scholar]
- Mosher, R.S. Handyman to Hardiman; SAE Technical Paper 670088; SAE International in United States: Warrendale, PA, USA, 1967. [Google Scholar] [CrossRef]
- Miomir, V.; Branislav, B.; Dusan, S.; Dragan, S. Biped Locomotion. In Dynamics, Stability, Control and Application; Springer: Berlin/Heidelberg, Germany, 1990; Volume 7. [Google Scholar] [CrossRef]
- Seireg, A.; Grundmann, J. Design of a Multitask Exoskeletal Walking Device for Paraplegics; Semantic Scholar: Seattle, WA, USA, 1981. [Google Scholar]
- UC Berkeley: BLEEX. 2005. Available online: https://www.wevolver.com/wevolver.staff/bleex (accessed on 11 July 2021).
- Colombo, G.; Jörg, M.; Schreier, R.; Dietz, V. Treadmill training of paraplegic patients using a robotic orthosis. J. Rehabil. Res. Dev. 2000, 37, 693–700. [Google Scholar]
- Sankai, Y. Leading Edge of Cybernics: Robot Suit HAL. In Proceedings of the 2006 SICE-ICASE International Joint Conference, Busan, Korea, 18–21 October 2006; IEEE Xplore: Busan, Korea, 2006; pp. 1–2. [Google Scholar] [CrossRef]
- Zeilig, G.; Weingarden, H.; Zwecker, M.; Dudkiewicz, I.; Bloch, A.; Esquenazi, A. Safety and tolerance of the ReWalk™ exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. J. Spinal Cord Med. 2012, 35, 96–101. [Google Scholar] [CrossRef] [Green Version]
- Walk Again: Paraplegic in Robotic suit kicks Off World Cup. 2014. Available online: https://www.walkagainproject.organdhttps//www.google.com/search?q=WM+2014+by+a+patient+with+paraplegia (accessed on 15 May 2021).
- Meijneke, C.; van Oort, G.; Sluiter, V.; van Asseldonk, E.; Tagliamonte, N.L.; Tamburella, F.; Pisotta, I.; Masciullo, M.; Arquilla, M.; Molinari, M.; et al. Symbitron Exoskeleton: Design, Control, and Evaluation of a Modular Exoskeleton for Incomplete and Complete Spinal Cord Injured Individuals. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 330–339. [Google Scholar] [CrossRef]
- Birch, N.; Graham, J.; Priestley, T.; Heywood, C.; Sakel, M.; Gall, A.; Nunn, A.; Signal, N. Results of the first interim analysis of the RAPPER II trial in patients with spinal cord injury: Ambulation and functional exercise programs in the REX powered walking aid. J. NeuroEng. Rehabil. 2017, 14, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.; Wöhrle, H.; Trampler, M.; Simnofske, M.; Peters, H.; Mallwitz, M.; Kirchner, E.A.; Kirchner, F. Modular Design and Decentralized Control of the Recupera Exoskeleton for Stroke Rehabilitation. Appl. Sci. 2019, 9, 626. [Google Scholar] [CrossRef] [Green Version]
- Harib, O.; Hereid, A.; Agrawal, A.; Gurriet, T.; Finet, S.; Boéris, G.; Duburcq, A.; Mungai, M.E.; Masselin, M.; Ames, A.; et al. Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable, Hands-Free Dynamic Walking. IEEE Control Syst. 2018, 38, 61–87. [Google Scholar] [CrossRef] [Green Version]
- Lam, J. Hyundai ChairlessExoskeleton (H-CEX). 2018. Available online: https:/www.trendhunter.com/trends/hcex (accessed on 10 May 2021).
- Yang, X.; She, H.; Lu, H.; Fukuda, T.; Shen, Y. State of the Art: Bipedal Robots for Lower Limb Rehabilitation. Appl. Sci. 2017, 7, 1182. [Google Scholar] [CrossRef] [Green Version]
- Raibert, M.H.; Benjamin Brown, J.H.; Chepponis, M. Experiments in Balance with a 3D One-Legged Hopping Machine. Int. J. Robot. Res. 1984, 3, 75–92. [Google Scholar] [CrossRef]
- Kim, J.H.; Choi, J.H.; Cho, B.K. Walking Pattern Generation for a Biped Walking Robot Using Convolution Sum. Adv. Robot. 2011, 25, 1115–1137. [Google Scholar] [CrossRef]
- Kuo, A.D.; Donelan, J.M. Dynamic Principles of Gait and Their Clinical Implications. Phys. Ther. 2010, 90, 157–174. [Google Scholar] [CrossRef] [Green Version]
- Miao, Q.; Zhang, M.; Wang, C.; Li, H. Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects. J. Healthc. Eng. 2018, 2018, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Zhou, Y.; Li, J.; Rong, X.; Fan, W.; Zhou, X.; Kong, Y. State of the art in parallel ankle rehabilitation robot: A systematic review. J. NeuroEng. Rehabil. 2021, 18. [Google Scholar] [CrossRef]
- Séguin, É.; Doumit, M. Review and Assessment of Walking Assist Exoskeleton Knee Joints. In Proceedings of the 2020 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Toronto, ON, Canada, 11–14 October 2020; pp. 1230–1235. [Google Scholar] [CrossRef]
- Khalid, Y.M.; Gouwanda, D.; Parasuraman, S. A review on the mechanical design elements of ankle rehabilitation robot. Proc. Inst. Mech. Eng. Part H J. Eng. Med. 2015, 229, 452–463. [Google Scholar] [CrossRef]
- Shi, D.; Zhang, W.; Zhang, W.; Ding, X. A Review on Lower Limb Rehabilitation Exoskeleton Robots. Chin. J. Mech. Eng. 2019, 32, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Rupala, B.S.; Singla, A.; Virk, G.S. Lower Limb Exoskeletons: A Brief Review. In Proceedings of the Conference on mechanical engineering and technology (COMET-2016), IIT (BHU), Varanasi, India, 15–17 January 2016; pp. 130–140. [Google Scholar]
- Tabti, N.; Kardofaki, M.; Alfayad, S.; Chitour, Y.; Ben Ouezdou, F.; Dychus, E. A Brief Review of the Electronics, Control System Architecture, and Human Interface for Commercial Lower Limb Medical Exoskeletons Stabilized by Aid of Crutches. In Proceedings of the 2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), New Delhi, India, 14–18 October 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Chen, B.; Ma, H.; Qin, L.Y.; Gao, F.; Chan, K.M.; Law, S.W.; Qin, L.; Liao, W.H. Recent developments and challenges of lower extremity exoskeletons. J. Orthop. Transl. 2016, 5, 26–37. [Google Scholar] [CrossRef] [Green Version]
- Baud, R.; Manzoori, A.; Ijspeert, A.; Bouri, M. Review of control strategies for lower-limb exoskeletons to assist gait. J. NeuroEng. Rehabil. 2021, 18, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Yang, S.; Xue, Q. Lower limb rehabilitation exoskeleton robot: A review. Adv. Mech. Eng. 2021, 13, 16878140211011862. [Google Scholar] [CrossRef]
- Global Status Report on Road Safety. 2018. Available online: https://www.who.int/violence_injury_prevention/road_safety_status/2018/en/ (accessed on 17 June 2020).
- Amoako, A.O.; Pujalte, G.G.A. Osteoarthritis in Young, Active, and Athletic Individuals. Clin. Med. Insights Arthritis Musculoskelet. Disord. 2014, 7, CMAMD.S14386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sczesny-Kaiser, M.; Kowalewski, R.; Schildhauer, T.; Aach, M.; Jansen, O.; Grasmücke, D.; Güttsches, A.K.; Vorgerd, M.; Tegenthoff, M. Treadmill Training with HAL Exoskeleton—A Novel Approach for Symptomatic Therapy in Patients with Limb-Girdle Muscular Dystrophy—Preliminary Study. Front. Neurosci. 2017, 11, 449. [Google Scholar] [CrossRef] [PubMed]
- Federici, S.; Meloni, F.; Bracalenti, M.; De Filippis, M.L. The effectiveness of powered, active lower limb exoskeletons in neurorehabilitation: A systematic review. NeuroRehabilitation 2015, 37, 151265. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.S.; Kobetic, R.; Audu, M.L.; Quinn, R.D.; Triolo, R.J. Powered Lower-Limb Exoskeletons to Restore Gait for Individuals with Paraplegia-a Review. Case Orthop. J. 2015, 12, 75. [Google Scholar] [PubMed]
- Onose, G.; Cárdei, V.; Cráciunoiu, S.T.; Avramescu, V.; Opris, I.; Lebedev, M.A.; Constantinescu, M.V. Mechatronic Wearable Exoskeletons for Bionic Bipedal Standing and Walking: A New Synthetic Approach. Front. Neurosci. 2016, 10, 343. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eksobionics: EksoNR EXoskeleton. Available online: https://eksobionics.com/eksonr-2/ (accessed on 30 November 2021).
- Kirchner, E.A.; Will, N.; Simnofske, M.; Benitez, L.M.V.; Bongardt, B.; Krell, M.M.; Kumar, S.; Mallwitz, M.; Seeland, A.; Tabie, M.; et al. Recupera-Reha: Exoskeleton Technology with Integrated Biosignal Analysis for Sensorimotor Rehabilitation. In 2. Transdisziplinäre Konferenz “Technische Unterstützungssysteme, die die Menschen Wirklich Wollen”. Transdisziplinäre Konferenz “Technische Unterstützungssysteme, die die Menschen Wirklich Wollen”; VDE: Hamburg, Germany, 2016; pp. 504–517. [Google Scholar]
- Kumar, S.; Simnofske, M.; Bongardt, B.; Müller, A.; Kirchner, F. Integrating Mimic Joints into Dynamics Algorithms: Exemplified by the Hybrid Recupera Exoskeleton; Association for Computing Machinery: New York, NY, USA, 2017. [Google Scholar] [CrossRef]
- Kirchner, E.A.; Tabie, M.; Seeland, A. Multimodal Movement Prediction—Towards an Individual Assistance of Patients. PLoS ONE 2014, 9, 85060. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, E.A.; Albiez, J.C.; Seeland, A.; Jordan, M.; Kirchner, F. Towards Assistive Robotics for Home Rehabilitation; BIODEVICES: Barcelona, Spain, 2013. [Google Scholar]
- Will, N.; Kirchner, E.A.; Kirchner, F. Künstliche Intelligenz und robotergestützte Rehabilitation. In Künstliche Intelligenz, Robotik und autonome Systeme in der Gesundheitsversorgung; Hanika, H., Ed.; Schriften zu Gesundheitsökonomie/Gesundheitsmanagement. Hrsg. Manfred Erbsland und Evelin Häusler; Wissenschaft & Praxis: Bremen, Germany, 2019; pp. 101–128. [Google Scholar]
- Elsa, A.K.; Will, N.; Simnofske, M.; Benitez, L.M.V.; Fernández, J.D.G.; Kampmann, P.; Kirchner, F. Exoskelette und Künstliche Intelligenz in der klinischen Rehabilitation, Digitale Transformation von Dienstleistungen im Gesundheitswesen V: Impulse für die Rehabilitation; Springer: Wiesbaden, Germany, 2019; pp. 413–435. [Google Scholar] [CrossRef]
- Kirchner, E.A.; Fairclough, S.; Kirchner, F. Embedded Multimodal Interfaces in Robotics: Applications, Future Trends, and Societal Implications. In The Handbook of Multimodal-Multisensor Interfaces; Oviatt, S., Schuller, B., Cohen, P., Sonntag, D., Potamianos, G., Krueger, A., Eds.; Morgan & Claypool Publishers: San Rafael, CA, USA, 2019; Chapter 13; Volume 3, pp. 523–576. [Google Scholar]
- Christensen, S.; Bai, S.; Rafique, S.; Isaksson, M.; O’Sullivan, L.; Power, V.; Virk, G. AXO-SUIT-A Modular Full-Body Exoskeleton for Physical Assistance: Proceedings of the 4th IFToMM Symposium on Mechanism Design for Robotics; Springer Nature: Cham, Switzerland, 2019; pp. 443–450. [Google Scholar] [CrossRef]
- The ReWalk Personal 6.0 System. 2015. Available online: https://youtu.be/gGTYXxc7aVA (accessed on 9 July 2021).
- Koceska, N.; Koceski, S.; Durante, F.; Zobel, P.B.; Raparelli, T. Control Architecture of a 10 DOF Lower Limbs Exoskeleton for Gait Rehabilitation. Int. J. Adv. Robot. Syst. 2013, 10, 68. [Google Scholar] [CrossRef] [Green Version]
- Beil, J.; Perner, G.; Asfour, T. Design and control of the lower limb exoskeleton KIT-EXO-1. In Proceedings of the 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, 11–14 August 2015; pp. 119–124. [Google Scholar]
- EXoskeleton, H.M. Hyundai Medical EXoskeleton: H-MEX. 2017. Available online: https://exoskeletonreport.com/product/h-mex/ (accessed on 12 January 2021).
- Robot Assisted Gait Training System: WalkBot. Available online: http://walkbot.co.kr/ (accessed on 15 September 2021).
- B-Temia Inc.: The New and Improved Version of Keeogo Dermoskeleton. Available online: https://b-temia.com/keeogo/ (accessed on 15 September 2021).
- Jansen, O.; Grasmuecke, D.; Meindl, R.C.; Tegenthoff, M.; Schwenkreis, P.; Sczesny-Kaiser, M.; Wessling, M.; Schildhauer, T.A.; Fisahn, C.; Aach, M. Hybrid Assistive Limb Exoskeleton HAL in the Rehabilitation of Chronic Spinal Cord Injury: Proof of Concept; the Results in 21 Patients. World Neurosurg. 2018, 110, e73–e78. [Google Scholar] [CrossRef]
- Guo, Q.; Songjing, L.; Jiang, D. A Lower Extremity Exoskeleton: Human-Machine Coupled Modeling, Robust Control Design, Simulation, and Overload-Carrying Experiment. Math. Probl. Eng. 2015, 2015, 1–15. [Google Scholar] [CrossRef]
- Woo, H.; Kong, K.; Rha, D.W. Lower-Limb-Assisting Robotic Exoskeleton Reduces Energy Consumption in Healthy Young Persons during Stair Climbing. Appl. Bionics Biomech. 2021, 2021, 8833461. [Google Scholar] [CrossRef] [PubMed]
- Di Natali, C.; Sadeghi, A.; Mondini, A.; Bottenberg, E.; Hartigan, B.; De Eyto, A.; O’Sullivan, L.; Rocon, E.; Stadler, K.; Mazzolai, B.; et al. Pneumatic Quasi-Passive Actuation for Soft Assistive Lower Limbs Exoskeleton. Front. Neurorobot. 2020, 14, 31. [Google Scholar] [CrossRef] [PubMed]
- Wehner, M.F.; Quinlivan, B.T.; Aubin, P.M.; Martinez-Villalpando, E.C.; Baumann, M.; Stirling, L.A.; Holt, K.G.; Wood, R.J.; Walsh, C.J. A lightweight soft exosuit for gait assistance. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 3362–3369. [Google Scholar]
- AXO-SUIT: Full-Body Exoskeleton. 2020. Available online: https://www.axo-suit.eu/ (accessed on 3 July 2021).
- Kim, J.H.; Han, J.W.; Kim, D.Y.; Baek, Y.S. Design of a Walking Assistance Lower Limb Exoskeleton for Paraplegic Patients and Hardware Validation Using CoP. Int. J. Adv. Robot. Syst. 2013, 10, 113. [Google Scholar] [CrossRef] [Green Version]
- Gurriet, T.; Finet, S.; Boeris, G.; Duburcq, A.; Hereid, A.; Harib, O.; Masselin, M.; Grizzle, J.; Ames, A.D. Towards restoring locomotion for paraplegics: Realizing dynamically stable walking on exoskeletons. In Proceedings of the 2018 IEEE International Conference on Robotics and Automation (ICRA), Brisbane, QLD, Australia, 21–25 May 2018; pp. 2804–2811. [Google Scholar]
- Wang, S.; Wang, L.; Meijneke, C.; van Asseldonk, E.; Hoellinger, T.; Cheron, G.; Ivanenko, Y.; La Scaleia, V.; Sylos-Labini, F.; Molinari, M.; et al. Design and Control of the MINDWALKER Exoskeleton. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 277–286. [Google Scholar] [CrossRef]
- SuitX: LegX Exoskeleton. Available online: https://www.suitx.com/legx (accessed on 15 September 2021).
- Pillai, M.V.; Engelhoven, L.V.; Kazerooni, H. Evaluation of a Lower Leg Support Exoskeleton on Floor and Below Hip Height Panel Work. Hum. Factors 2020, 62, 489–500. [Google Scholar] [CrossRef] [PubMed]
- Bionic, G. CrayX Exoskeleton. 2018. Available online: https://www.germanbionic.com/en/cray-x-solution/ (accessed on 4 June 2021).
- Ottobock Industrials: Passive Exoskeleton (PAEXO). Available online: https://paexo.com/?lang=en (accessed on 15 May 2021).
- Maurice, P.; Čamernik, J.; Gorjan, D.; Schirrmeister, B.; Bornmann, J.; Tagliapietra, L.; Latella, C.; Pucci, D.; Fritzsche, L.; Ivaldi, S.; et al. Evaluation of PAEXO, a novel passive exoskeleton for overhead work. Comput. Methods Biomech. Biomed. Eng. 2019, 22, S448–S450. [Google Scholar] [CrossRef]
- Mitsubishi Heavy Industries: Power Assist Suit (PAS). 2018. Available online: https://www.mhi.com/news/1512011943.html (accessed on 29 February 2021).
- Martin, L. FORTIS® Industrial Exoskeleton. 2018. Available online: https://www.lockheedmartin.com/en-us/products/exoskeleton-technologies/industrial.html (accessed on 15 September 2021).
- noonee germany GmbH. German Noonee (Chairless Chair). 2017. Available online: http://www.sechang-kr.com/download/5_noonee_en.pdf (accessed on 30 December 2021).
- SuitX: BoostX. Available online: https://www.suitx.com/boostknee. (accessed on 15 September 2021).
- Lockheed Martin Industrial: ONYX exoskeleton. Available online: https://www.lockheedmartin.com/en-us/products/exoskeleton-technologies/first-responder.html. (accessed on 15 September 2021).
- Zoss, A.; Kazerooni, H.; Chu, A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans. Mechatron. 2006, 11, 128–138. [Google Scholar] [CrossRef]
- HULC: Human Universal Load Carrier. Available online: https://www.army-technology.com/projects/human-universal-load-carrier-hulc/ (accessed on 23 December 2021).
- Kuindersma, S.; Deits, R.; Fallon, M.; Valenzuela, A.; Dai, H.; Permenter, F.; Koolen, T.; Marion, P.; Tedrake, R. Optimization-based locomotion planning, estimation, and control design for the atlas humanoid robot. Auton. Robot. 2016, 40, 429–455. [Google Scholar] [CrossRef]
- Kirchner, E.A.; Kim, S.K.; Straube, S.; Seeland, A.; Wöhrle, H.; Krell, M.M.; Tabie, M.; Fahle, M. On the Applicability of Brain Reading for Predictive Human-Machine Interfaces in Robotics. PLoS ONE 2013, 8, e81732. [Google Scholar] [CrossRef]
- Yavuz, E.; Senol, Y.; Ozcelik, M.; Aydin, H. Design of a String-Encoder and IMU Based 6D Pose Measurement System; IEEE Xplore: Pitesti, Romania, 2019; pp. 1–6. [Google Scholar] [CrossRef]
- Kreil, M.; Ogris, G.; Lukowicz, P. Muscle activity evaluation using force sensitive resistors. In Proceedings of the 2008 5th International Summer School and Symposium on Medical Devices and Biosensors, Hong Kong, China, 1–3 June 2008; pp. 107–110. [Google Scholar] [CrossRef]
- Legal Requirements for Medical Devices in Europe: The New Medical Device Regulation (MDR). Available online: https://senetics.de/veranstaltungen/gesetzliche-vorgaben-fuer-medizinprodukte-in-der (accessed on 15 September 2020).
- Veneman, J.F.; Kruidhof, R.; Hekman, E.E.G.; Ekkelenkamp, R.; Van Asseldonk, E.H.F.; van der Kooij, H. Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007, 15, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Vanderbilt exoskeleton (Indego). Available online: https://news.vanderbilt.edu/2012/10/30/exoskeleton/ (accessed on 9 May 2021).
- GOGOA: Belk System Exoskeleton. Available online: https://www.belkproject.eu/product (accessed on 21 October 2021).
- Technaid: Exo-H3. Available online: https://www.technaid.com/products/robotic-exoskeleton-exo-exoesqueleto-h3/ (accessed on 15 September 2021).
- Lumen Learning. The Appendicular Skeleton; Human Anatomy and Physiology Lab (BSB 141). Available online: https://courses.lumenlearning.com/ap1x94x1/chapter/the-lower-limbs/ (accessed on 21 February 2022).
- Kumar, S.; Woehrle, H.; Fernández, J.; Mueller, A.; Kirchner, F. A Survey on Modularity and Distributivity in Series-Parallel Hybrid Robots. Mechatronics 2020, 68, 102367. [Google Scholar] [CrossRef]
- Kumar, S. Modular and Analytical Methods for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots. Ph.D. Thesis, University of Bremen, Bremen, Germany, 2019. [Google Scholar]
- Simnofske, M.; Kumar, S.; Bongardt, B.; Kirchner, F. Active Ankle-an Almost-Spherical Parallel Mechanism. In Proceedings of the 47th International Symposium on Robotics (ISR), Munich, Germany, 21–22 June 2016. [Google Scholar]
- Kumar, S.; Nayak, A.; Bongardt, B.; Mueller, A.; Kirchner, F. Kinematic Analysis of Active Ankle Using Computational Algebraic Geometry; Computational Kinematics; Springer: Berlin/Heidelberg, Germany, 2018. [Google Scholar]
- Kumar, S.; Bongardt, B.; Simnofske, M.; Kirchner, F. Design and Kinematic Analysis of the Novel Almost Spherical Parallel Mechanism Active Ankle. J. Intell. Robot. Syst. 2018, 94, 303–325. [Google Scholar] [CrossRef]
- Onen, U.; Botsal, F.M.; Kalyoncu, M.; Sahin, Y.; Tinkir, M. Design and Motion Control of a Lower Limb Robotic Exoskeleton. Design, Control and Applications of Mechatronic Systems in Engineering; Intech Open Book Series; Erciyes University: Talas, Turkey, 2017; pp. 135–152. [Google Scholar]
- Barjuei, E.S.; Ardakani, M.M.G.; Caldwell, D.G.; Sanguineti, M.; Ortiz, J. Optimal Selection of Motors and Transmissions in Back-Support Exoskeleton Applications. IEEE Trans. Med Robot. Bionics 2020, 2, 320–330. [Google Scholar] [CrossRef]
- Beyl, P.; Damme, M.; Van Ham, R.; Vanderborght, B.; Lefeber, D. Design and Control of a Lower Limb Exoskeleton for Robot-Assisted Gait Training. Appl. Bionics Biomech. 2009, 6, 229–243. [Google Scholar] [CrossRef] [Green Version]
- Al-Shuka, H.; Rahman, M.; Leonhardt, S.; Ciobanu, I.; Berteanu, M. Biomechanics, actuation, and multi-level control strategies of power-augmentation lower extremity exoskeletons: An overview. Int. J. Dyn. Control 2019, 7, 1462–1488. [Google Scholar] [CrossRef]
- Goo, A.; Laubscher, C.A.; Farris, R.J.; Sawicki, J.T. Design and Evaluation of a Pediatric Lower-Limb Exoskeleton Joint Actuator. Actuators 2020, 9, 138. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, H. Design and Control of a Series Elastic Actuator With Clutch for Hip Exoskeleton for Precise Assistive Magnitude and Timing Control and Improved Mechanical Safety. IEEE/ASME Trans. Mechatron. 2019, 24, 2215–2226. [Google Scholar] [CrossRef]
- Pratt, G.; Williamson, M. Series elastic actuators. In Proceedings of the 1995 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, Pittsburgh, PA, USA, 5–9 August 1995; Volume 1, pp. 399–406. [Google Scholar] [CrossRef] [Green Version]
- Gealy, D.; McKinley, S.; Yi, B.; Wu, P.; Downey, P.; Balke, G.; Zhao, A.; Guo, M.; Thomasson, R.; Sinclair, A.; et al. Quasi-Direct Drive for Low-Cost Compliant Robotic Manipulation. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 437–443. [Google Scholar] [CrossRef] [Green Version]
- Yu, S.; Huang, T.H.; Yang, X.; Jiao, C.; Yang, J.; Chen, Y.; Yi, J.; Su, H. Quasi-Direct Drive Actuation for a Lightweight Hip Exoskeleton With High Backdrivability and High Bandwidth. IEEE/ASME Trans. Mechatron. 2020, 25, 1794–1802. [Google Scholar] [CrossRef]
- Bellmunt, O.; Campanile, L.F. Design Rules for Actuators in Active Mechanical Systems; Springer: London, UK; New York, NY, USA, 2010. [Google Scholar] [CrossRef]
- Bishop, R.H. The Mechatronics Handbook-2 Volume Set, 2nd ed.; CRC Press: Boca Raton, FL, USA, 2008; Available online: https://www.perlego.com/book/1575680/the-mechatronics-handbook-2-volume-set-pdf (accessed on 3 February 2022).
- Khalil, W.; Dombre, E. Modeling, Identification and Control of Robots; Elsevier Ltd.: Nantes, France, 2004. [Google Scholar]
- Mallwitz, M.; Will, N.; Teiwes, J.; Kirchner, E.A. The Capio Active Upper Body Exoskeleton and Its Application for Teleoperation. In Proceedings of the 13th Symposium on Advanced Space Technologies in Robotics and Automation, (ASTRA-2015), Noordwijk, The Netherlands, 11–13 May 2015; Semantic Scholar: Seattle, WA, USA, 2015. [Google Scholar]
- Mu, J.; Jiang, H.; Hua, Y.; Zhao, J.; Zhu, Y. Design and Implementation of a Lightweight Lower Extremity Exoskeleton. MATEC Web Conf. 2019, 291, 2010. [Google Scholar] [CrossRef]
- Minchala, L.I.; Astudillo-Salinas, F.; Palacio-Baus, K.; Vázquez-Rodas, A. Mechatronic Design of a Lower Limb Exoskeleton; Intech Open Book Series; Erciyes University: Talas, Turkey, 2017. [Google Scholar]
- Zuo, S.; Li, J.; Dong, M.; Zhou, X.; Fan, W.; Kong, Y. Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation. Front. Neurorobot. 2020, 14, 9. [Google Scholar] [CrossRef] [Green Version]
- Leiyu, Z.; Li, J.; Dong, M.; Fang, B.; Cui, Y.; Zuo, S.; Zhang, K. Design and Workspace Analysis of a Parallel Ankle Rehabilitation Robot (PARR). J. Healthc. Eng. 2019, 2019, 1–10. [Google Scholar] [CrossRef]
- Forrester, L.; Roy, A.; Goodman, R.; Rietschel, J.; Barton, J.; Krebs, H.; Macko, R. Clinical application of a modular ankle robot for stroke rehabilitation. NeuroRehabilitation 2013, 33, 130931. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bi, Z. Design of a spherical parallel kinematic machine for ankle rehabilitation. Adv. Robot. 2013, 27, 121–132. [Google Scholar] [CrossRef]
- Wang, C.; Fang, Y.; Guo, S.; Chen, Y. Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation. J. Mech. Robot. 2013, 5, 041003. Available online: http://xxx.lanl.gov/abs/https://asmedigitalcollection.asme.org/mechanismsrobotics/article-pdf/5/4/041003/6252573/jmr_005_04_041003.pdf (accessed on 15 July 2021). [CrossRef]
- Malosio, M.; Negri, S.; Pedrocchi, N.; Vicentini, F.; Caimmi, M.; Molinari Tosatti, L. A spherical parallel three degrees-of-freedom robot for ankle-foot neuro-rehabilitation. Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Society. IEEE Eng. Med. Biol. Soc. Conf. 2012, 2012, 3356–3359. [Google Scholar] [CrossRef]
- Felis, M. RBDL: An efficient rigid-body dynamics library using recursive algorithms. Auton. Robot. 2017, 41, 495–511. [Google Scholar] [CrossRef]
- Kumar, S.; Von-Szadkowski, K.A.; Mueller, A.; Kirchner, F. An Analytical and Modular Software Workbench for Solving Kinematics and Dynamics of Series-Parallel Hybrid Robots. J. Mech. Robot. 2020, 12, 021114. [Google Scholar] [CrossRef]
- DART (Dynamic Animation and Robotics Toolkit). Available online: https://dartsim.github.io/ (accessed on 30 December 2021).
- Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [Google Scholar] [CrossRef] [Green Version]
- Tedrake, R.; The Drake Development Team. Drake: Model-Based Design and Verification for Robotics. 2019. Available online: https://drake.mit.edu (accessed on 15 August 2021).
- RBDyn: Rigid Body Dynamics. Available online: https://jrl-umi3218.github.io/RBDyn/doxygen/HEAD/index.html (accessed on 24 January 2021).
- Pinocchio: A fast and flexible implementation of Rigid Body Dynamics algorithms and their analytical derivatives. Available online: https://gepettoweb.laas.fr/doc/stack-of-tasks/pinocchio/master/doxygen-html/ (accessed on 21 December 2021).
- SDF (Simulation Description Format). Available online: http://sdformat.org/ (accessed on 15 November 2021).
- Neuman, S.M.; Koolen, T.; Drean, J.; Miller, J.E.; Devadas, S. Benchmarking and Workload Analysis of Robot Dynamics Algorithms. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 5235–5242. [Google Scholar] [CrossRef]
- Eßer, J.; Kumar, S.; Peters, H.; Bargsten, V.; Fernandez, J.d.G.; Mastalli, C.; Stasse, O.; Kirchner, F. Design, analysis and control of the series-parallel hybrid RH5 humanoid robot. In Proceedings of the 2020 IEEE-RAS 20th International Conference on Humanoid Robots (Humanoids), Munich, Germany, 19–21 July 2021; pp. 400–407. [Google Scholar] [CrossRef]
- Dutta, A.; Salunkhe, D.H.; Kumar, S.; Udai, A.D.; Shah, S.V. Sensorless full body active compliance in a 6 DOF parallel manipulator. Robot. Comput.-Integr. Manuf. 2019, 59, 278–290. [Google Scholar] [CrossRef]
- Aguirre-Ollinger, G.; Colgate, J.E.; Peshkin, M.A.; Goswami, A. Active-Impedance Control of a Lower-Limb Assistive Exoskeleton. In Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics, Noordwijk, The Netherlands, 13–15 June 2007; pp. 188–195. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, E.A.; Tabie, M. Closing the gap: Combined EEG and EMG analysis for early movement prediction in exoskeleton based rehabilitation. In Proceedings of the 4th European Conference on Technically Assisted Rehabilitation-TAR 2013, Berlin, Germany, 14–15 March 2013. [Google Scholar]
- Seeland, A.; Tabie, M.; Kim, S.K.; Kirchner, F.; Kirchner, E.A. Adaptive multimodal biosignal control for exoskeleton supported stroke rehabilitation. In Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, Canada, 5–8 October 2017; pp. 2431–2436. [Google Scholar] [CrossRef]
- Ogris, G.; Kreil, M.; Lukowicz, P. Using FSR based muscule activity monitoring to recognize manipulative arm gestures. In Proceedings of the 2007 11th IEEE International Symposium on Wearable Computers, Boston, MA, USA, 11–13 October 2007; pp. 45–48. [Google Scholar] [CrossRef]
- Broeren, J.; Dixon, M.; Sunnerhagen, K.S.; Rydmark, M. Rehabilitation after Stroke using Virtual Reality, Haptics (force feedback) and Telemedicine. Stud. Health Technol. Inform. 2006, 124, 51–56. [Google Scholar]
- Pratt, J.; Dilworth, P.; Pratt, G. Virtual model control of a bipedal walking robot. In Proceedings of the International Conference on Robotics and Automation, Albuquerque, NM, USA, 25 April 1997; Volume 1, pp. 193–198. [Google Scholar] [CrossRef]
- Tedrake, R. Underactuated Robotics: Algorithms for Walking, Running, Swimming, Flying, and Manipulation (Course Notes for MIT 6.832). 2021. Available online: http://underactuated.mit.edu/ (accessed on 12 June 2021).
- Yan, T.; Cempini, M.; Oddo, C.M.; Vitiello, N. Review of assistive strategies in powered lower-limb orthoses and exoskeletons. Robot. Auton. Syst. 2015, 64, 120–136. [Google Scholar] [CrossRef]
- He, H.; Kiguchi, K. A Study on EMG-Based Control of Exoskeleton Robots for Human Lower-limb Motion Assist. In Proceedings of the 2007 6th International Special Topic Conference on Information Technology Applications in Biomedicine, Tokyo, Japan, 8–11 November 2007; pp. 292–295. [Google Scholar] [CrossRef]
- Pons, J.L. Wearable Robots: Biomechatronic Exoskeletons; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2008. [Google Scholar] [CrossRef]
- Righetti, L.; Ijspeert, A.J. Programmable central pattern generators: An application to biped locomotion control. In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 15–19 May 2006; pp. 1585–1590. [Google Scholar] [CrossRef] [Green Version]
- Matsubara, T.; Uchikata, A.; Morimoto, J. Full-body exoskeleton robot control for walking assistance by style-phase adaptive pattern generation. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal, 7–12 October 2012; pp. 3914–3920. [Google Scholar] [CrossRef]
- Ahn, J.; Kim, D.; Bang, S.H.; Paine, N.; Sentis, L. Control of a High Performance Bipedal Robot Using Viscoelastic Liquid Cooled Actuators. In Proceedings of the 2019 IEEE-RAS 19th International Conference on Humanoid Robots (Humanoids), Toronto, ON, Canada, 15–17 October 2019; pp. 146–153. [Google Scholar] [CrossRef] [Green Version]
- Bartlett, H.L.; King, S.T.; Goldfarb, M.; Lawson, B.E. A Semi-Powered Ankle Prosthesis and Unified Controller for Level and Sloped Walking. IEEE Trans. Neural Syst. Rehabil. Eng. 2021, 29, 320–329. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, C.; Guan, X.; Li, Z. Optimization of the control scheme for human extremity exoskeleton. J. Vibroeng. 2016, 18, 5432–5439. [Google Scholar] [CrossRef]
- SIFAC 2020 Germany: Machine Learning meets Model-Based Control. Available online: https://www.ifac2020.org/program/workshops/machine-learning-meets-model-based-control/ (accessed on 15 August 2021).
- Kleff, S.; Meduri, A.; Budhiraja, R.; Mansard, N.; Righetti, L. High-Frequency Nonlinear Model Predictive Control of a Manipulator. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 7330–7336. [Google Scholar] [CrossRef]
- Hemami, A.; Mehrabi, M.G.; Cheng, R.M.H. Synthesis of an Optimal Control Law for Path Tracking in Mobile Robots. Automatica 1992, 28, 383–387. [Google Scholar] [CrossRef]
- Meng, Y.; Wang, Y.; Gu, Q.; Bai, G. LQR-GA Path Tracking Control of Articulated Vehicle Based on Predictive Information. Nongye Jixie Xuebao/Trans. Chin. Soc. Agric. Mach. 2018, 49, 375–384. [Google Scholar] [CrossRef]
- Yakub, F.; Mori, Y. Comparative study of autonomous path-following vehicle control via model predictive control and linear quadratic control. Proc. Inst. Mech. Eng. Part D J. Automob. Eng. 2015, 229, 1695–1714. [Google Scholar] [CrossRef]
- Duy Son, T.; Bhave, A.; Vandermeulen, W.; Geluk, T.; Worm, M.; Van der Auweraer, H. Model-based and Data-driven Learning Control for Safety and Comfort Autonomous Driving; Siemens Digital Industries Software: Plano, TX, USA, 2020. [Google Scholar] [CrossRef]
- Zalapa, S.A.; Sánchez, R.T. Exoskeleton robot modeling and Fuzzy Logic Control. In Proceedings of the 2016 IEEE International Autumn Meeting on Power, Electronics and Computing (ROPEC), Ixtapa, Mexico, 9–11 November 2016; pp. 1–6. [Google Scholar] [CrossRef]
- Fang, B.; Zhou, Q.; Sun, F.; Shan, J.; Wang, M.; Xiang, C.; Zhang, Q. Gait Neural Network for Human-Exoskeleton Interaction. Front. Neurorobot. 2020, 14, 58. [Google Scholar] [CrossRef]
- Jung, J.Y.; Heo, W.; Yang, H.; Park, H. A Neural Network-Based Gait Phase Classification Method Using Sensors Equipped on Lower Limb Exoskeleton Robots. Sensors 2015, 15, 27738–27759. [Google Scholar] [CrossRef]
- Luo, S.; Androwis, G.; Adamovich, S.; Su, H.; Nunez, E.; Zhou, X. Reinforcement Learning and Control of a Lower Extremity Exoskeleton for Squat Assistance. Front. Robot. AI 2021, 8, 702845. [Google Scholar] [CrossRef]
- Liu, C.; Audu, M.L.; Triolo, R.J.; Quinn, R.D. Neural Networks Trained via Reinforcement Learning Stabilize Walking of a Three-Dimensional Biped Model With Exoskeleton Applications. Front. Robot. AI 2021, 8, 710999. [Google Scholar] [CrossRef]
- Carlo, D.; Jared, W.; Patrick, M.; Katz, B.; Bledt, G.; Kim, S. Dynamic Locomotion in the MIT Cheetah 3 Through Convex Model-Predictive Control. In Proceedings of the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, Spain, 1–5 October 2018; pp. 1–9. [Google Scholar] [CrossRef]
- Kim, S.K.; Kirchner, E.; Stefes, A.; Kirchner, F. Intrinsic interactive reinforcement learning – Using error-related potentials for real world human-robot interaction. Sci. Rep. 2017, 7, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Kirchner, E.A.; Kim, S.K. Multi-Tasking and Choice of Training Data Influencing Parietal ERP Expression and Single-Trial Detection—Relevance for Neuroscience and Clinical Applications. Front. Neurosci. 2018, 12, 188. [Google Scholar] [CrossRef] [Green Version]
- Sethuraman, A. The Next Generation of AI: Explainable AI. 2020. Available online: https://www.datanami.com/2020/01/29/the-next-generation-of-ai-explainable-ai/ (accessed on 17 December 2021).
- Turek, M. Explainable Artificial Intelligence (XAI), The U.S. Defense Advanced Research Projects Agency (DARPA). (link resides outside IBM). Available online: https://www.darpa.mil/program/explainable-artificial-intelligence (accessed on 17 December 2021).
- Society, T.R. Explainable AI, The Royal Society, the Basics Policy Briefng Issue. 2019. Available online: https://www.royalsociety.org/ai-interpretability (accessed on 21 February 2022).
- Kampmann, P.; Kirchner, F. Towards a fine-manipulation system with tactile feedback for deep-sea environments. Robot. Auton. Syst. 2015, 67, 115–121. [Google Scholar] [CrossRef]
- Lucarotti, C.; Oddo, C.M.; Vitiello, N.; Carrozza, M.C. Synthetic and Bio-Artificial Tactile Sensing: A Review. Sensors 2013, 13, 1435–1466. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Gea Fernández, J.; Kirchner, F. Predictive compliance for interaction control of robot manipulators. In Proceedings of the 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 25–30 September 2011; pp. 4134–4140. [Google Scholar] [CrossRef]
- Kumar, S.; Renaudin, V.; Aoustin, Y.; Le-Carpentier, E.; Combettes, C. Model-based and experimental analysis of the symmetry in human walking in different device carrying modes. In Proceedings of the 2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob), Singapore, 26–29 June 2016; pp. 1172–1179. [Google Scholar] [CrossRef]
Name/Institution | Sub-Category | Exoskeleton Type | Partial/Full Support |
---|---|---|---|
ReWalk Personal 6.0, (2015) [60] | Rehabilitation | Wearable | Partial |
University of Goce Delcev, Macedonia, (2013) [61] | 〃 | Platform | 〃 |
Vrije University Brussel, (2009) [62] | 〃 | Platform | 〃 |
eLEGS, (2010) [4] | 〃 | Wearable | 〃 |
H-MEX, (2017) [63] | 〃 | Wearable | 〃 |
WalkBot, (2020) [64] | 〃 | Platform | 〃 |
LOKOMAT, (2013) [22] | 〃 | Platform | 〃 |
Recupera-Reha (2018) [28,52] | 〃 | Wearable | 〃 |
KEEOGO, (2017) [65] | Assistive | Wearable | Full |
HAL, (2017) [66] | 〃 | Platform | 〃 |
University of Elect. Sci. and Tech., China, (2015) [67] | 〃 | Wearable | 〃 |
Korea Adv. Inst. of Sci. and Tech. (KAIST),(2021) [68] | 〃 | Wearable | 〃 |
Istituto Italiano di Tecnologia, Genoa, Italy, (2020) [69] | 〃 | Wearable | 〃 |
Exosuit, (2013) [70] | 〃 | Wearable | Partial |
Axo-Suit, (2019) [71] | 〃 | Wearable | Full |
EksoGT (2015) [48] | Full power augment. | Wearable | 〃 |
Yonsei University China, (2013) [72] | 〃 | Wearable | 〃 |
Phoenix, (2018) [3] | 〃 | Wearable | 〃 |
ATALANTE, (2018) [73] | 〃 | Wearable | 〃 |
MINDWALKER, (2014) [74] | 〃 | Wearable | 〃 |
Name | Body Part | Walking Assistance | Load Handling | Pain/Fatigue Relief |
---|---|---|---|---|
Guardian Alpha XO, [1] | Full-body | ✓ | ✓ | ✓ |
Power Assist Suit (PAS), [80] | " | ✓ | ✓ | ✓ |
FORTIS, [81] | " | ✓ | ✓ | ✓ |
CrayX, [77] | – | ✗ | ✗ | ✓ |
H-CEX, [30] | Lower-body | ✗ | ✗ | ✓ |
LegX, [75] | " | ✗ | ✗ | ✓ |
Chairless chair, [82] | " | ✓ | ✗ | ✓ |
BoostX, [83] | " | ✓ | ✗ | ✗ |
ONYX, [84] | " | ✗ | ✓ | ✓ |
Exoskeleton Name (Year) | Company | Weight (kg) |
---|---|---|
Military Applications | ||
Hardiman (1965) [18] | General Electric | 680 |
BLEEX (2006) [5,85] | Berkeley Bionics | 41 |
Raytheon XOS 2 (2008) [6] | Raytheon Sarcos | 95 |
HULC (2009) [86] | Lockheed Martin | 24 |
Medical Applications | ||
HAL (2006) [47] | Cyberdyne | 10 |
LOPES (2007) [92] | TWENTE University | N/A |
Indego (2010) [93] | Parker Hannifin | 12 |
ReWalk Personal 6.0 (2015), [60] | ReWalk Robotics GmbH | 23.3 |
Walk Again (2014) [25] | Duke University | 20 |
EksoGT (2015) [2] | Ekso Bionics | 20 |
Phoenix Exo (2016) [3] | SuitX | 12.25 |
REX (2016) [27] | REX Bionics | 38 |
H-MEX (2017) [63] | Hyundai | 18 |
Recupera Wheelchair [28,52] | DFKI | 29.7 |
Symbitron Exo (2018) [26] | TU Delft | 37.2 |
BELK system (2019) [94] | Gogoa Mobility Robots | N/A |
EksoNR (2019) [51] | Ekso Bionics | 20 |
ATALANTE (2020) [29] | Wandercraft | 75 |
Exo-H3 (2020) [95] | Technaid | 17 |
Industrial Applications | ||
Power Assist Suit (2015) [80] | Mitsubishi | 39 |
H-CEX (2017) [30] | Hyundai | 1.6 |
ChairlessChair (2017) [82] | Noonee | 2 |
Guardian XO (2019) [1] | Hyundai | 68 |
LegX (2019) [75] | SuitX | 11.7 |
PAEXO (2019) [78] | Ottobock Industrial | 4 |
CrayX (2020) [77] | German Bionics | 7.4 |
Institution/Name | Actuation | DOF | Absolute ROM | Velocity Limit | Torque Limit | Application Domain | Pros | Cons |
---|---|---|---|---|---|---|---|---|
HIT China, [115] (2019) | BLDC Motor | 3 | N/A | N/A | 22.3 Nm | Medical | The exoskeleton can stand, sit, and walk with stair ascending modes. A wearable device made from carbon fiber materials with a total mass less than 12 kg, it is designed by first simulating the biomechanics of the human body for joint alignment with the LifeModeler tool. The actuators consist of encoders, planetary gear, and bevel gears to absorb shock. | Difficulty grounding its own weight, with increased consumption power and stability control. |
Recupera-Reha, [28] (2019) | 〃 | 3 | DF-PF = 57, EV-IN = 57, AD-AB = 50 | 132/s | 120 Nm | Medical | A 41 kg lightweight modular exoskeleton adaptable to different human sizes. Depending on the body part, the device is made from aluminum, steel, polyamide and carbon-fiber reinforced materials. The self-designed modular actuator units are capable of satisfying specific requirements. | The prototype only supports sitting and standing modes and requires optimizing the design to incorporate a walking and running mode. |
Necmettin University Turkey, [102] (2017) | 〃 | 1 | N/A | 3190 rpm | N/A | Medical | An 18.5 kg lightweight wearable orthotic device that supports ReWalk. CGA data from human joint motions is used to determine the orientation of the exoskeleton joints. The 24 V DC motors are powered by Li-Po battery pack used for actuation of the hip by 30 W power. | Limited workspace, underactuated, and additionally supported with crutches. |
Cuenca University Ecuador, [116] (2017) | DC Servomotor | 1 | 〃 | N/A | 〃 | Medical | A wearable exoskeleton designed with real time fast data link between six sensors and actuator units with a main process unit. | Limited to few therapy motions due to less DOF. |
BLEEX, [85], (2006) | BLDC Motor | 3 | 〃 | 〃 | 〃 | Military | A 41 kg wearable autonomous exoskeleton designed with extra payload capacity, using a bidirectional hip actuator for stance and swing mode compared to the previous hydraulic actuated variant. | The exoskeleton hip joint axis only aligns with the biological joint from the CGA data. |
Yonsei Uni. China, [72] (2013) | 〃 | 3 | DF-PF = 20, EV-IN = 50, AD-AB = 40 | 〃 | 79.3 Nm | Medical | A wearable device embedded with sensor and inclinometer at the torso to measure CoP and reaction forces. The CGA estimated a 200 W power required for the hip and knee joint actuators with harmonic drives. | To supplement the stability problem, forearm crutches that are controlled by the upper limbs supports the hip. |
Institution/Name | Type | Actuation | DOF | Absolute ROM | Velocity Limit | Force/Torque Limit | Application Domain | Significant Feature |
---|---|---|---|---|---|---|---|---|
Recupera-Reha, [28] (2018) | Wearable | Linear BLDC motors. | 1 | N/A | 266 mm/s | 560 N | Medical | A wearable device made from a combination of aluminum, steel, and reinforced carbon-fiber. The prismatic joint of the knee is designed with a seat plate and foldable support when required to make angular motions. The actuators and ball screw on the two prismatic joints of the legs can support a total force of 1120 N. |
Vrije University Brussel, [104] (2009) | Platform | Pleated pneumatic artificial muscles | Multiple | EV-IN = 60 | N/A | 80 Nm | Medical | A 5.8 kg lightweight design made from thermoplastic materials, with artificial muscles that provide air-powered actuation in the design form of four-bar linkage, generating linear motions with a high force output that suits limb rehabilitation. A gravity supportive arm allows the platform device to mimic human posture and balance. |
BLEEX, [85] (2006) | Wearable | Electric Motors with harmonic drives | 1 | EV-IN = 65 | 〃 | 34.7 W | Military | The CGA-data determined the knee flexion angles and torques required for alignment with the human knee joint. The generated toe-off and stance torques have enough power to back drive the harmonic drives and actuators in an asymmetric manner. |
Meltran V, [9] (2001) | Platform | BLDC Servo motors | 1 | N/A | 〃 | 109 W | Industrial | The linear inverted pendulum mode design approach is used to determine the CoM, which aligns with the human hip joint on the 46 kg robot to maintain posture. It is designed with a synthetic rubber material from Neoprene. |
Yonsei University China, [72] (2017) | Wearable | BLDC motors | 1 | EV-IN = 100 | 〃 | 42.2 Nm | Medical | The sensor system design based on the CoP and ZMP determines human intention to move the knee through force reactions measured between the wearer and the device. This enabled the proper mounting of the device onto the human body complex. Duralumin material is used for the joint linkages, and the actuators produce an estimated 200 W. |
Institution/Name | Type | DOF | Absolute ROM | Velocity Limit | Force/Torque Limit | Application Domain | Design Strategy |
---|---|---|---|---|---|---|---|
Beijing University of Tech. [117] (2020) | Wearable | 3 | DF-PF = 75, EV-IN = 44, AD-AB = 72 | N/A | N/A | Medical | Workspace analysis |
PARR, [118] (2019) | Platform | 3 | DF-PF = 68.16, EV-IN = 32.57, AD-AB=64.20 | 〃 | 〃 | 〃 | 〃 |
ASPM Active Ankle [101] (2019) | Wearable | 3 | DF-PF = 57.06, EV-IN = 50, AD-AB = 66.16 | 330/s | 28 Nm | 〃 | Workspace and finding optimal placement of the mechanism in the leg. |
Anklebot, [119] (2016) | Platform | 2 | DF-PF = 70, EV-IN = 45 | N/A | N/A | 〃 | Workspace analysis |
Purdue University Fort Wayne, [120] (2013) | 〃 | 3 | DF-PF = 100.8, EV-IN = 56.0, AD-AB = 99.50 | 〃 | 〃 | 〃 | 〃 |
Chongqing University China, [121] (2013) | 〃 | 3 | DF-PF = 75.60, EV-IN = 39.0, AD-AB = 61.90 | 〃 | 〃 | 〃 | 〃 |
Yonsei University China, [72] (2013) | Wearable | 3 | DF-PF = 10, EV-IN = 25, AD-AB = 50 | 〃 | 〃 | 〃 | Stability criteria using CoP to determine walking intention. |
PKAnkle, [122] (2013) | Wearable | 3 | DF-PF = 75, EV-IN = 45, AD-AB = 30 | 90/s | 52 Nm | 〃 | Kinematic optimization (alignment with the human ankle joint complex) |
Institution/Name | Programming Language | Control Methods | Mechatronics Feature |
---|---|---|---|
Recupera-Reha, [28,52] (2018) | Matlab, Python, Ruby, C++ | Kinematic and Dynamic Model. Position, velocity, force and torque control. Low and mid level control hierarchy. | EMG and EEG sensors, FPGA electronics, Eyetracker, especially in Virtual Reality-based serious gaming. |
University of Cuenca Ecuador, [116], (2017) | Matlab | 〃 | EMG and EEG sensors. |
DRACO, [146], (2019) | 〃 | PID feedback controllers, observers, and estimators. | Viscoelastic liquid cooled actuator (VLCA). |
Vanderbilt University Nashville [147], (2021) | 〃 | PD position control with a feedback sensing | Hydraulic actuators. IMU sensors and digital signal processor. |
KIT-CO-1 [62], (2015) | Matlab, C++ | PID controllers | Linear series elastic actuators. Force signals processed by Arduino. |
ATALANTE, [29], (2018) | 〃 | Hybrid control combining dynamic model and state machine, gain tuning using virtual constraints via feedback control. | BLDC Motors, digital encoders with IMUs to measure joint velocity and displacements. Force sensors for detecting ground contacts. |
MINDWALKER, [74] (2014) | Matlab simulink | CoM transition with finite-state machine based controller. | Series elastic actuator. Motion steps are triggered using arm muscle attached to IMU, EMG, and EEG sensors |
HEE, [148], (2016) | 〃 | Fuzzy self-adaptive PI controller | No Information |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tijjani, I.; Kumar, S.; Boukheddimi, M. A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking. Appl. Sci. 2022, 12, 2395. https://doi.org/10.3390/app12052395
Tijjani I, Kumar S, Boukheddimi M. A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking. Applied Sciences. 2022; 12(5):2395. https://doi.org/10.3390/app12052395
Chicago/Turabian StyleTijjani, Ibrahim, Shivesh Kumar, and Melya Boukheddimi. 2022. "A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking" Applied Sciences 12, no. 5: 2395. https://doi.org/10.3390/app12052395
APA StyleTijjani, I., Kumar, S., & Boukheddimi, M. (2022). A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking. Applied Sciences, 12(5), 2395. https://doi.org/10.3390/app12052395