A Clustering Approach to Improve IntraVoxel Incoherent Motion Maps from DW-MRI Using Conditional Auto-Regressive Bayesian Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. IVIM Fitting Procedure
2.1.1. Clustering Approach
2.1.2. Bayesian CAR Fitting
2.2. Evaluation
2.2.1. Simulated Data
2.2.2. Real Data
2.2.3. Comparison with State-of-the-Art Methods
3. Results
3.1. Simulated Data
3.2. Real Data
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Le Bihan, D.; Breton, E.; Lallemand, D.; Grenier, P.; Cabanis, E.; Laval-Jeantet, M. MR Imaging of Intravoxel Incoherent Motions: Application to Diffusion and Perfusion in Neurologic Disorders. Radiology 1986, 161, 401–407. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Federau, C. Intravoxel Incoherent Motion MRI as a Means to Measure In Vivo Perfusion: A Review of the Evidence. NMR Biomed. 2017, 30, e3780. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Tan, Q.; Mao, W.; Dai, C.; Hu, X.; Hou, J.; Zeng, M.; Zhou, J. Differentiating between Malignant and Benign Renal Tumors: Do IVIM and Diffusion Kurtosis Imaging Perform Better than DWI? Eur. Radiol. 2019, 29, 6930–6939. [Google Scholar] [CrossRef] [PubMed]
- Noij, D.P.; Martens, R.M.; Marcus, J.T.; de Bree, R.; Leemans, C.R.; Castelijns, J.A.; de Jong, M.C.; de Graaf, P. Intravoxel Incoherent Motion Magnetic Resonance Imaging in Head and Neck Cancer: A Systematic Review of the Diagnostic and Prognostic Value. Oral Oncol. 2017, 68, 81–91. [Google Scholar] [CrossRef] [PubMed]
- Nougaret, S.; Vargas, H.A.; Lakhman, Y.; Sudre, R.; Do, R.K.; Bibeau, F.; Azria, D.; Assenat, E.; Molinari, N.; Pierredon, M.A.; et al. Intravoxel Incoherent Motion–Derived Histogram Metrics for Assessment of Response after Combined Chemotherapy and Radiation Therapy in Rectal Cancer: Initial Experience and Comparison between Single-Section and Volumetric Analyses. Radiology 2016, 280, 446–454. [Google Scholar] [CrossRef]
- Marzi, S.; Farneti, A.; Vidiri, A.; Di Giuliano, F.; Marucci, L.; Spasiano, F.; Terrenato, I.; Sanguineti, G. Radiation-induced Parotid Changes in Oropharyngeal Cancer Patients: The Role of Early Functional Imaging and Patient-/Treatment-related Factors. Radiat. Oncol. 2018, 13, 189. [Google Scholar] [CrossRef]
- Bergamino, M.; Nespodzany, A.; Baxter, L.C.; Burke, A.; Caselli, R.J.; Sabbagh, M.N.; Walsh, R.R.; Stokes, A.M. Preliminary Assessment of Intravoxel Incoherent Motion Diffusion-Weighted MRI (IVIM-DWI) Metrics in Alzheimer’s Disease. J. Magn. Reson. Imaging 2020, 52, 1811–1826. [Google Scholar] [CrossRef]
- Mastropietro, A.; Porcelli, S.; Cadioli, M.; Rasica, L.; Scalco, E.; Gerevini, S.; Marzorati, M.; Rizzo, G. Triggered Intravoxel Incoherent Motion MRI for the Assessment of Calf Muscle Perfusion during Isometric Intermittent Exercise. NMR Biomed. 2018, 31, e3922. [Google Scholar] [CrossRef]
- Zhang, Y.; Kuang, S.; Shan, Q.; Rong, D.; Zhang, Z.; Yang, H.; Wu, J.; Chen, J.; He, B.; Deng, Y.; et al. Can IVIM Help Predict HCC Recurrence after Hepatectomy? Eur. Radiol. 2019, 29, 5791–5803. [Google Scholar] [CrossRef]
- Scalco, E.; Mastropietro, A.; Bodini, A.; Marzi, S.; Rizzo, G. A Multi-Variate Framework to Assess Reliability and Discrimination Power of Bayesian Estimation of Intravoxel Incoherent Motion Parameters. Phys. Med. 2021, 89, 11–19. [Google Scholar] [CrossRef]
- Marquardt, D.W. An Algorithm for Least-Squares Estimation of Nonlinear Parameters. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Orton, M.R.; Collins, D.J.; Koh, D.M.; Leach, M.O. Improved Intravoxel Incoherent Motion Analysis of Diffusion Weighted Imaging by Data Driven Bayesian Modeling. Magn. Reson. Med. 2014, 71, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Kurugol, S.; Freiman, M.; Afacan, O.; Perez-Rossello, J.M.; Callahan, M.J.; Warfield, S.K. Spatially-constrained Probability Distribution Model of Incoherent Motion (SPIM) for Abdominal Diffusion-Weighted MRI. Med Image Anal. 2016, 32, 173–183. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lanzarone, E.; Scalco, E.; Mastropietro, A.; Marzi, S.; Rizzo, G. A Conditional Autoregressive Model for Estimating Slow and Fast Diffusion from Magnetic Resonance Images. In Bayesian Statistics and New Generations—Proceedings of BAYSM 2018 (Springer Proceedings in Mathematics & Statistics); Springer: Cham, Switzerland, 2019; Volume 296, pp. 135–144. [Google Scholar]
- Lanzarone, E.; Mastropietro, A.; Scalco, E.; Vidiri, A.; Rizzo, G. A Novel Bayesian Approach with Conditional Autoregressive Specification for Intravoxel Incoherent Motion Diffusion-Weighted MRI. NMR Biomed. 2020, 33, e4201. [Google Scholar] [CrossRef]
- Le Bihan, D. Intravoxel Incoherent Motion Imaging using Steady-State Free Precession. Magn. Reson. Med. 1988, 7, 346–351. [Google Scholar] [CrossRef]
- Leroux, B.G.; Lei, X.; Breslow, N. Estimation of Disease Rates in Small Areas: A new Mixed Model for Spatial Dependence. In Statistical Models in Epidemiology, the Environment, and Clinical Trials; Springer: New York, NY, USA, 2000; pp. 179–191. [Google Scholar]
- Carpenter, B.; Gelman, A.; Hoffman, M.D.; Lee, D.; Goodrich, B.; Betancourt, M.; Brubaker, M.; Guo, J.; Li, P.; Riddell, A. Stan: A Probabilistic Programming Language. J. Stat. Softw. 2017, 76, 1–32. [Google Scholar] [CrossRef] [Green Version]
- Marzi, S.; Piludu, F.; Vidiri, A. Assessment of Diffusion Parameters by Intravoxel Incoherent Motion MRI in Head and Neck Squamous Cell Carcinoma. NMR Biomed. 2013, 26, 1806–1814. [Google Scholar] [CrossRef]
- Gustafsson, O.; Montelius, M.; Starck, G.; Ljungberg, M. Impact of Prior Distributions and Central Tendency Measures on Bayesian Intravoxel Incoherent Motion Model Fitting. Magn. Reson. Med. 2018, 79, 1674–1683. [Google Scholar] [CrossRef]
- Nicoletta, V.; Guglielmi, A.; Ruiz, A.; Bélanger, V.; Lanzarone, E. Bayesian Spatio-temporal Modelling and Prediction of Areal Demands for Ambulance Services. IMA J. Manag. Math. 2022, 33, 101–121. [Google Scholar] [CrossRef]
- Barbieri, S.; Gurney-Champion, O.J.; Klaassen, R.; Thoeny, H.C. Deep Learning how to fit an Intravoxel Incoherent Motion Model to Diffusion-Weighted MRI. Magn. Reson. Med. 2020, 83, 312–321. [Google Scholar] [CrossRef] [Green Version]
- Kaandorp, M.P.; Barbieri, S.; Klaassen, R.; van Laarhoven, H.W.; Crezee, H.; While, P.T.; Nederveen, A.J.; Gurney-Champion, O.J. Improved Unsupervised Physics-informed Deep Learning for Intravoxel Incoherent Motion Modeling and Evaluation in Pancreatic Cancer Patients. Magn. Reson. Med. 2021, 86, 2250–2265. [Google Scholar] [CrossRef] [PubMed]
- Vasylechko, S.D.; Warfield, S.K.; Afacan, O.; Kurugol, S. Self-supervised IVIM DWI Parameter Estimation with a Physics based Forward Model. Magn. Reson. Med. 2022, 87, 904–914. [Google Scholar] [CrossRef] [PubMed]
HN Patients | D [mm/s] | f | D* [mm/s] | ||||
---|---|---|---|---|---|---|---|
Mean | StD | Mean | StD | Mean | StD | ||
Parotid | BAYES | 0.0010 | 0.0003 | 0.1975 | 0.1275 | 0.0318 | 0.0168 |
CAR-cluster | 0.0011 | 0.0004 | 0.1974 | 0.1127 | 0.0378 | 0.0298 | |
CAR-orig | 0.0011 | 0.0004 | 0.1957 | 0.1084 | 0.0379 | 0.0286 | |
Tumor | BAYES | 0.0009 | 0.0002 | 0.1600 | 0.0856 | 0.0292 | 0.0126 |
CAR-cluster | 0.0009 | 0.0003 | 0.1679 | 0.0843 | 0.0424 | 0.0305 | |
CAR-orig | 0.0009 | 0.0003 | 0.1666 | 0.0824 | 0.0421 | 0.0309 | |
Muscle | BAYES | 0.0013 | 0.0003 | 0.2094 | 0.1054 | 0.0259 | 0.0113 |
CAR-cluster | 0.0014 | 0.0004 | 0.1771 | 0.0930 | 0.0332 | 0.0184 | |
CAR-orig | 0.0015 | 0.0004 | 0.1747 | 0.0871 | 0.0347 | 0.0189 | |
PELVIC patients | |||||||
Prostate | BAYES | 0.0012 | 0.0002 | 0.1614 | 0.0740 | 0.0192 | 0.0090 |
CAR-cluster | 0.0013 | 0.0002 | 0.1456 | 0.0481 | 0.0136 | 0.0081 | |
CAR-orig | 0.0013 | 0.0002 | 0.1498 | 0.0445 | 0.0116 | 0.0046 | |
Tumor | BAYES | 0.0010 | 0.0003 | 0.1711 | 0.0969 | 0.0242 | 0.0118 |
CAR-cluster | 0.0010 | 0.0004 | 0.1856 | 0.1114 | 0.0189 | 0.0161 | |
CAR-orig | 0.0010 | 0.0004 | 0.1838 | 0.1092 | 0.0189 | 0.0159 | |
Muscle | BAYES | 0.0011 | 0.0002 | 0.1606 | 0.0754 | 0.0231 | 0.0091 |
CAR-cluster | 0.0012 | 0.0002 | 0.1488 | 0.0474 | 0.0155 | 0.0046 | |
CAR-orig | 0.0012 | 0.0002 | 0.1473 | 0.0407 | 0.0160 | 0.0043 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scalco, E.; Mastropietro, A.; Rizzo, G.; Lanzarone, E. A Clustering Approach to Improve IntraVoxel Incoherent Motion Maps from DW-MRI Using Conditional Auto-Regressive Bayesian Model. Appl. Sci. 2022, 12, 1907. https://doi.org/10.3390/app12041907
Scalco E, Mastropietro A, Rizzo G, Lanzarone E. A Clustering Approach to Improve IntraVoxel Incoherent Motion Maps from DW-MRI Using Conditional Auto-Regressive Bayesian Model. Applied Sciences. 2022; 12(4):1907. https://doi.org/10.3390/app12041907
Chicago/Turabian StyleScalco, Elisa, Alfonso Mastropietro, Giovanna Rizzo, and Ettore Lanzarone. 2022. "A Clustering Approach to Improve IntraVoxel Incoherent Motion Maps from DW-MRI Using Conditional Auto-Regressive Bayesian Model" Applied Sciences 12, no. 4: 1907. https://doi.org/10.3390/app12041907
APA StyleScalco, E., Mastropietro, A., Rizzo, G., & Lanzarone, E. (2022). A Clustering Approach to Improve IntraVoxel Incoherent Motion Maps from DW-MRI Using Conditional Auto-Regressive Bayesian Model. Applied Sciences, 12(4), 1907. https://doi.org/10.3390/app12041907