Application of Artificial Neural Networks, Support Vector, Adaptive Neuro-Fuzzy Inference Systems for the Moisture Ratio of Parboiled Hulls
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Dataset
2.1.1. Sample Preparation
2.1.2. Parboiling Hulls
2.2. Pre-Processing
Drying Oven
2.3. Model Development
2.3.1. Artificial Neural Network
2.3.2. ANFIS
2.3.3. Support Vector Regression (SVR)
2.4. Model Evaluation Methods
3. Results and Discussion
3.1. Drying Kinetics
3.2. Artificial Neural Networks
3.3. ANFIS
3.4. Support Vector Regression
3.5. Comparison of ANN, ANFIS, and SVR
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, L.; Gao, M.; Zhu, Y.; Liu, C.; Wang, L.; Kamruzzaman, M.; Liu, C.; Zheng, X. Microwave drying of germinated brown rice: Correlation of drying characteristics with the final quality. Innov. Food Sci. Emerg. Technol. 2021, 70, 102673. [Google Scholar] [CrossRef]
- Nosrati, M.; Zare, D.; Nassiri, S.M.; Chen, G.; Jafari, A. Experimental and numerical study of intermittent drying of rough rice in a combined FIR-dryer. Dry. Technol. 2021, 1–13. [Google Scholar] [CrossRef]
- Golpour, I.; Guiné, R.P.F.; Poncet, S.; Golpour, H.; Chayjan, R.A.; Parian, J.A. Evaluating the heat and mass transfer effective coefficients during the convective drying process of paddy (Oryza sativa L.). J. Food Process Eng. 2021, 44, e13771. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Khoshtaghaza, M.H.; Minaei, S.; Latifi, A. Effect of Soaking Temperature and Steaming Time on the Quality of Parboiled Iranian Paddy Rice. Int. J. Food Eng. 2015, 11, 547–556. [Google Scholar] [CrossRef]
- Kaveh, M.; Abbaspour-Gilandeh, Y.; Nowacka, M. Optimisation of microwave-rotary drying process and quality parameters of terebinth. Biosyst. Eng. 2021, 208, 113–130. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Janius, R.; Abdan, K.; Chen, G.; Oladejo, A.O. Non-thermal hybrid drying of fruits and vegetables: A review of current technologies. Innov. Food Sci. Emerg. Technol. 2017, 43, 223–238. [Google Scholar] [CrossRef]
- Jeevarathinam, G.; Pandiselvam, R.; Pandiarajan, T.; Preetha, P.; Balakrishnan, M.; Thirupathi, V.; Kothakota, A. Infrared assisted hot air dryer for turmeric slices:Effect on drying rate and quality parameters. LWT 2021, 144, 111258. [Google Scholar] [CrossRef]
- Ren, Z.; Yu, X.; Yagoub, A.E.A.; Fakayode, O.A.; Ma, H.; Sun, Y.; Zhou, C. Combinative effect of cutting orientation and drying techniques (hot air, vacuum, freeze and catalytic infrared drying) on the physicochemical properties of ginger (Zingiber officinale Roscoe). LWT 2021, 144, 111238. [Google Scholar] [CrossRef]
- Salehi, F. Recent Applications and Potential of Infrared Dryer Systems for Drying Various Agricultural Products: A Review. Int. J. Fruit Sci. 2019, 20, 586–602. [Google Scholar] [CrossRef]
- Huang, D.; Yang, P.; Tang, X.; Luo, L.; Sunden, B. Application of infrared radiation in the drying of food products. Trends Food Sci. Technol. 2021, 110, 765–777. [Google Scholar] [CrossRef]
- Rekik, C.; Besombes, C.; Hajji, W.; Gliguem, H.; Bellagha, S.; Mujumdar, A.S.; Allaf, K. Study of interval infrared Airflow Drying: A case study of butternut (Cucurbita moschata). LWT 2021, 147, 111486. [Google Scholar] [CrossRef]
- Onwude, D.I.; Hashim, N.; Abdan, K.; Janius, R.; Chen, G. The effectiveness of combined infrared and hot-air drying strategies for sweet potato. J. Food Eng. 2018, 241, 75–87. [Google Scholar] [CrossRef]
- Golpour, I.; Kaveh, M.; Chayjan, R.A.; Guiné, R.P.F. Optimization of Infrared-convective Drying of White Mulberry Fruit Using Response Surface Methodology and Development of a Predictive Model through Artificial Neural Network. Int. J. Fruit Sci. 2020, 20, S1015–S1035. [Google Scholar] [CrossRef]
- Zhang, J.; Yagoub, A.E.A.; Sun, Y.; Arun, M.S.; Ma, H.; Zhou, C. Role of thermal and non-thermal drying techniques on drying kinetics and the physicochemical properties of shiitake mushroom. J. Sci. Food Agric. 2021, 102, 214–222. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; El-Mesery, H.S.; Ashfaq, M.M.; Shi, Y.; Zicheng, H.; Alshaer, W. Analysis of energy and specific energy requirements in various drying process of mint leaves. Case Stud. Therm. Eng. 2021, 26, 101113. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Kaveh, M.; Szumny, A. Thermodynamic and Quality Performance Studies for Drying Kiwi in Hybrid Hot Air-Infrared Drying with Ultrasound Pretreatment. Appl. Sci. 2021, 11, 1297. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Kaveh, M.; Szumny, A. Optimization and Prediction of the Drying and Quality of Turnip Slices by Convective-Infrared Dryer under Various Pretreatments by RSM and ANFIS Methods. Foods 2021, 10, 284. [Google Scholar] [CrossRef] [PubMed]
- Darvishi, H.; Farhudi, Z.; Behroozi-Khazaei, N. Multi-objective optimization of savory leaves drying in continuous infrared-hot air dryer by response surface methodology and desirability function. Comput. Electron. Agric. 2020, 168, 105112. [Google Scholar] [CrossRef]
- Cheng, S.; Su, W.; Yuan, L.; Tan, M. Recent developments of drying techniques for aquatic products: With emphasis on drying process monitoring with innovative methods. Dry. Technol. 2021, 39, 1577–1594. [Google Scholar] [CrossRef]
- Chasiotis, V.; Nadi, F.; Filios, A. Evaluation of multilayer perceptron neural networks and adaptive neuro-fuzzy inference systems for the mass transfer modeling of Echium amoenum Fisch. & C. A. Mey. J. Sci. Food Agric. 2021, 101, 6514–6524. [Google Scholar] [CrossRef]
- Okonkwo, C.E.; Olaniran, A.F.; Adeyi, O.; Adeyi, A.J.; Ojediran, J.O.; Adewumi, A.D.; Iranloye, Y.M.; Erinle, O.C. Drying characteristics of fermented-cooked cassava chips used in the production of complementary food: Mathematical and Gaussian process regression modeling approaches. J. Food Process Eng. 2021, 44, e13715. [Google Scholar] [CrossRef]
- Kaveh, M.; Chayjan, R.A.; Golpour, I.; Poncet, S.; Seirafi, F.; Khezri, B. Evaluation of exergy performance and onion drying properties in a multi-stage semi-industrial continuous dryer: Artificial neural networks (ANNs) and ANFIS models. Food Bioprod. Process. 2021, 127, 58–76. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Kaveh, M.; Khalife, E.; Chen, G. Drying of organic blackberry in combined hot air-infrared dryer with ultrasound pretreatment. Dry. Technol. 2020, 39, 2075–2091. [Google Scholar] [CrossRef]
- Ziaforoughi, A.; Yousefi, A.R.; Razavi, S.M. A Comparative Modeling Study of Quince Infrared Drying and Evaluation of Quality Parameters. Int. J. Food Eng. 2016, 12, 901–910. [Google Scholar] [CrossRef]
- Zhang, D.-Y.; Zhu, L.-K.; Yin, W.-F.; Gui, H.-J. Notice of Retraction: A novel modeling method of wood moisture content for drying process. In Proceedings of the 2010 International Conference on Machine Learning and Cybernetics, Qingdao, China, 11–14 July 2010; Volume 4, pp. 1920–1924. [Google Scholar] [CrossRef]
- Kaveh, M.; Abbaspour-Gilandeh, Y.; Chen, G. Drying kinetic, quality, energy and exergy performance of hot air-rotary drum drying of green peas using adaptive neuro-fuzzy inference system. Food Bioprod. Process. 2020, 124, 168–183. [Google Scholar] [CrossRef]
- Satorabi, M.; Salehi, F.; Rasouli, M. The Influence of Xanthan and Balangu Seed Gums Coats on the Kinetics of Infrared Drying of Apricot Slices: GA-ANN and ANFIS Modeling. Int. J. Fruit Sci. 2021, 21, 468–480. [Google Scholar] [CrossRef]
- Bakhshipour, A.; Zareiforoush, H.; Bagheri, I. Mathematical and intelligent modeling of stevia (Stevia Rebaudiana) leaves drying in an infrared-assisted continuous hybrid solar dryer. Food Sci. Nutr. 2020, 9, 532–543. [Google Scholar] [CrossRef]
- Amini, G.; Salehi, F.; Rasouli, M. Drying kinetics of basil seed mucilage in an infrared dryer: Application of GA-ANN and ANFIS for the prediction of drying time and moisture ratio. J. Food Process. Preserv. 2021, 45, e15258. [Google Scholar] [CrossRef]
- Ojediran, J.O.; Okonkwo, C.E.; Adeyi, A.J.; Adeyi, O.; Olaniran, A.F.; George, N.E.; Olayanju, A.T. Drying characteristics of yam slices (Dioscorea rotundata) in a convective hot air dryer: Application of ANFIS in the prediction of drying kinetics. Heliyon 2020, 6, e03555. [Google Scholar] [CrossRef]
- Taghinezhad, E.; Khoshtaghaza, M.H.; Suzuki, T.; Minaei, S.; Brenner, T. Quantifying the relationship between degree of starch gelatinization of rice and moisture-electrical conductivity of paddy during soaking. J. Food Process Eng. 2016, 39, 442–452. [Google Scholar] [CrossRef]
- Marshall, W.E.; Wadsworth, J.I.; Verma, L.R.; Velupillai, L. Determining the degree of gelatinization in parboiled rice: Comparison of a subjective and an objective method. Cereal Chem. 1993, 70, 226–230. [Google Scholar]
- Taghinezhad, E.; Khoshtaghaza, M.H.; Minaei, S.; Suzuki, T.; Brenner, T. Relationship Between Degree of Starch Gelatinization and Quality Attributes of Parboiled Rice During Steaming. Rice Sci. 2016, 23, 339–344. [Google Scholar] [CrossRef] [Green Version]
- Khan, I.H.; Sablani, S.S.; Joardder, M.U.H.; Karim, M.A. Application of machine learning-based approach in food drying: Opportunities and challenges. Dry. Technol. 2020, 1–17. [Google Scholar] [CrossRef]
- Aghbashlo, M.; Hosseinpour, S.; Mujumdar, A.S. Application of Artificial Neural Networks (ANNs) in Drying Technology: A Comprehensive Review. Dry. Technol. 2015, 33, 1397–1462. [Google Scholar] [CrossRef]
- Kocabas, F.; Korkmaz, M.; Sorgucu, U.; Donmez, S. Modeling of heating and cooling performance of counter flow type vortex tube by using artificial neural network. Int. J. Refrig. 2010, 33, 963–972. [Google Scholar] [CrossRef]
- Demuth, H.; Beale, M.; Hagan, M. Neural Network Toolbox 5; The MathWorks: Natick, MA, USA, 2007. [Google Scholar]
- Amiri Chayjan, R.; Esna-Ashari, M. Comparison between artificial neural networks and mathematical models for estimating equilibrium moisture content in raisin. Agric. Eng. Int. CIGR J. 2010, 12, 158–166. [Google Scholar]
- Chakraborty, S.; Gautam, S.P.; Sarma, M.; Hazarika, M.K. Adaptive neuro-fuzzy interface system and neural network modeling for the drying kinetics of instant controlled pressure drop treated parboiled rice. Food Sci. Technol. Int. 2021, 27, 746–763. [Google Scholar] [CrossRef]
- Chayjan, R.A.; Kaveh, M.; Khayati, S. Modeling some drying characteristics of sour cherry (Prunus cerasus L.) under infrared radiation using mathematical models and artificial neural networks. Agric. Eng. Int. CIGR J. 2014, 16, 265–279. [Google Scholar]
- Wang, H.; Liu, Z.-L.; Vidyarthi, S.K.; Wang, Q.-H.; Gao, L.; Li, B.-R.; Wei, Q.; Liu, Y.-H.; Xiao, H.-W. Effects of different drying methods on drying kinetics, physicochemical properties, microstructure, and energy consumption of potato (Solanum tuberosum L.) cubes. Dry. Technol. 2020, 39, 418–431. [Google Scholar] [CrossRef]
- Okonkwo, C.E.; Olaniran, A.F.; Adeyi, A.J.; Adeyi, O.; Ojediran, J.O.; Erinle, O.C.; Mary, I.Y.; Taiwo, A.E. Neural network and adaptive neuro-fuzzy inference system modeling of the hot air-drying process of orange-fleshed sweet potato. J. Food Process. Preserv. 2022, e16312. [Google Scholar] [CrossRef]
- Mingyi, F.; Tongjun, L.; Jiwei, H.; Rensheng, C.; Xionghui, W.; Xuedan, S.; Wenqian, R. Artificial neural network modeling and genetic algorithm optimization for cadmium removal from aqueous solutions by reduced graphene oxide-supported nanoscale zero-valent iron (nzvi/rgo) composites. Materials 2017, 10, 544. [Google Scholar]
- Afkhamipour, M.; Mofarahi, M.; Borhani, T.N.G.; Zanganeh, M. Prediction of heat capacity of amine solutions using artificial neural network and thermodynamic models for CO2 capture processes. Heat Mass Transf. 2018, 54, 855–866. [Google Scholar] [CrossRef]
- Kaveh, M.; Chayjan, R.A. Prediction of some physical and drying properties of terebinth fruit (pistacia atlantica l.) Using artificial neural networks. Acta Sci. Pol. Technol. Aliment. 2014, 13, 65–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kaveh, M.; Chayjan, R. Mathematical and neural network modelling of terebinth fruit under fluidized bed drying. Res. Agric. Eng. 2016, 61, 55–65. [Google Scholar] [CrossRef] [Green Version]
- Elijah, O.C.; Philomena, K.I.; Joseph, T.N.; Paschal, E.O. ANFIS, ANN and RSM modeling of moisture content reduction of cocoyam slices. J. Food Processing Preserv. 2022, 46, e16032. [Google Scholar]
- Awad, M.; Khanna, R. Support vector regression. In Efficient Learning Machines; Apress: Berkeley, CA, USA, 2015; pp. 67–80. [Google Scholar]
- Esmaeili, M.; Salimi, A.; Drebenstedt, C.; Abbaszadeh, M.; Bazzazi, A.A. Application of PCA, SVR, and ANFIS for modeling of rock fragmentation. Arab. J. Geosci. 2014, 8, 6881–6893. [Google Scholar] [CrossRef]
- Zhang, N.; Leatham, K. Feature selection based on SVM in photo-thermal infrared (IR) imaging spectroscopy classification with limited training samples. WSEAS Trans. Signal Processing 2017, 13, 285–292. [Google Scholar]
- Mia, M.; Dhar, N.R. Prediction and optimization by using SVR, RSM and GA in hard turning of tempered AISI 1060 steel under effective cooling condition. Neural Comput. Appl. 2019, 31, 2349–2370. [Google Scholar] [CrossRef]
- Sharabiani, V.R.; Kaveh, M.; Abdi, R.; Szymanek, M.; Tanaś, W. Estimation of moisture ratio for apple drying by convective and microwave methods using artificial neural network modeling. Sci. Rep. 2021, 11, 1–12. [Google Scholar] [CrossRef]
- Sadeghi, E.; Movagharnejad, K.; Asl, A.H. Parameters optimization and quality evaluation of mechanical properties of infrared radiation thin layer drying of pumpkin samples. J. Food Process Eng. 2019, 43, e13309. [Google Scholar] [CrossRef]
- Jeevarathinam, G.; Pandiselvam, R.; Pandiarajan, T.; Preetha, P.; Krishnakumar, T.; Balakrishnan, M.; Thirupathi, V.; Ganapathy, S.; Amirtham, D. Design, development, and drying kinetics of infrared-assisted hot air dryer for turmeric slices. J. Food Process Eng. 2021, e13876. [Google Scholar] [CrossRef]
- Sadeghi, E.; Movagharnejad, K.; Asl, A.H. Mathematical modeling of infrared radiation thin-layer drying of pumpkin samples under natural and forced convection. J. Food Process. Preserv. 2019, 43, e14229. [Google Scholar] [CrossRef]
- Sadeghi, E.; Asl, A.H.; Movagharnejad, K. Mathematical modelling of infrared-dried kiwifruit slices under natural and forced convection. Food Sci. Nutr. 2019, 7, 3589–3606. [Google Scholar] [CrossRef] [PubMed]
- Beigi, M.; Torki, M. Experimental and ANN modeling study on microwave dried onion slices. Heat Mass Transf. 2021, 57, 787–796. [Google Scholar] [CrossRef]
- Abdollahpour, S.; Kosari-Moghaddam, A.; Bannayan, M. Prediction of wheat moisture content at harvest time through ANN and SVR modeling techniques. Inf. Process. Agric. 2020, 7, 500–510. [Google Scholar] [CrossRef]
- Taheri, S.; Brodie, G.; Gupta, D. Optimised ANN and SVR models for online prediction of moisture content and temperature of lentil seeds in a microwave fluidised bed dryer. Comput. Electron. Agric. 2021, 182, 106003. [Google Scholar] [CrossRef]
- Zadhossein, S.; Abbaspour-Gilandeh, Y.; Kaveh, M.; Szymanek, M.; Khalife, E.; Samuel, O.D.; Amiri, M.; Dziwulski, J. Exergy and Energy Analyses of Microwave Dryer for Cantaloupe Slice and Prediction of Thermodynamic Parameters Using ANN and ANFIS Algorithms. Energies 2021, 14, 4838. [Google Scholar] [CrossRef]
- Abbaspour-Gilandeh, Y.; Jahanbakhshi, A.; Kaveh, M. Prediction kinetic, energy and exergy of quince under hot air dryer using ANNs and ANFIS. Food Sci. Nutr. 2020, 8, 594–611. [Google Scholar] [CrossRef] [Green Version]
Parameter | Sign | Unit | Category | Min | Max |
---|---|---|---|---|---|
Inlet air temperature | °C | Input | 40 | 60 | |
Infrared power | W/cm2 | Input | 0.32 | 0.49 | |
Drying time | min | Input | 0 | 68 | |
Moisture ratio | - | Output | 0.2 | 1 |
Network | Training Algorithm | Activation Functions | Number of Layers and Neurons | Test | Train | Epoch | |||
---|---|---|---|---|---|---|---|---|---|
MAE | MAE | ||||||||
FFBP | LM | TAN-TAN-TAN | 3-8-8-1 | 0.0059 | 0.9991 | 0.0423 | 0.9967 | 0.0618 | 144 |
FFBP | BR | PUR-TAN-TAN | 3-5-5-1 | 0.0073 | 0.9982 | 0.0501 | 0.9711 | 0.0924 | 118 |
CFBP | LM | TAN-LOG-PUR | 3-10-8-1 | 0.0068 | 0.9989 | 0.0449 | 0.9968 | 0.0599 | 68 |
CFBP | BR | TAN-TAN-TAN | 3-5-5-1 | 0.0080 | 0.9979 | 0.0533 | 0.9899 | 0.0855 | 132 |
Result | ANFIS Modeling Results |
---|---|
Sugeno-type | Fuzzy structure |
Genfis1 | Basic FIS for training |
3-3-3 | Number of membership functions for each entry |
Gaussian (gaussmf) | Type of membership function for each entry |
1000 | Epoch |
Linear | Type of membership function for each output |
Hybrid | Training algorithm |
3 | Number of entries |
27 | Number of output membership functions |
114 | Number of data for training |
49 | Number of data to evaluate |
27 | Number of fuzzy rules |
Type of Membership Function for Each Entry | Number of Membership Functions for Each Entry | MSE | Test | Train | ||
---|---|---|---|---|---|---|
R2 | MAE | R2 | MAE | |||
gaussmf | 3-3-3 | 0.0036 | 0.9995 | 0.038 | 0.9991 | 0.042 |
trimf | 3-3-3 | 0.0050 | 0.9992 | 0.0414 | 0.9972 | 0.0468 |
trapmf | 3-5-3 | 0.0064 | 0.9989 | 0.0451 | 0.9978 | 0.0459 |
Type of Algorithm | MSE | R2 | MAE |
---|---|---|---|
Linear | 0.0023 | 0.9611 | 0.0352 |
Quadratic | 0.0004 | 0.9997 | 0.0182 |
Cubic | 0.0005 | 0.9990 | 0.0201 |
Fine Gaussian | 0.0018 | 0.9705 | 0.0335 |
Medium Gaussian | 0.0006 | 0.9985 | 0.0203 |
Coarse Gaussian | 0.0010 | 0.9814 | 0.0235 |
MR | |||
---|---|---|---|
ANN | ANFIS | SVR | |
MSE | 0.0059 | 0.0036 | 0.0004 |
MAE | 0.0423 | 0.0388 | 0.0182 |
R2 | 0.9991 | 0.9995 | 0.9997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharabiani, V.R.; Kaveh, M.; Taghinezhad, E.; Abbaszadeh, R.; Khalife, E.; Szymanek, M.; Dziwulska-Hunek, A. Application of Artificial Neural Networks, Support Vector, Adaptive Neuro-Fuzzy Inference Systems for the Moisture Ratio of Parboiled Hulls. Appl. Sci. 2022, 12, 1771. https://doi.org/10.3390/app12041771
Sharabiani VR, Kaveh M, Taghinezhad E, Abbaszadeh R, Khalife E, Szymanek M, Dziwulska-Hunek A. Application of Artificial Neural Networks, Support Vector, Adaptive Neuro-Fuzzy Inference Systems for the Moisture Ratio of Parboiled Hulls. Applied Sciences. 2022; 12(4):1771. https://doi.org/10.3390/app12041771
Chicago/Turabian StyleSharabiani, Vali Rasooli, Mohammad Kaveh, Ebrahim Taghinezhad, Rouzbeh Abbaszadeh, Esmail Khalife, Mariusz Szymanek, and Agata Dziwulska-Hunek. 2022. "Application of Artificial Neural Networks, Support Vector, Adaptive Neuro-Fuzzy Inference Systems for the Moisture Ratio of Parboiled Hulls" Applied Sciences 12, no. 4: 1771. https://doi.org/10.3390/app12041771
APA StyleSharabiani, V. R., Kaveh, M., Taghinezhad, E., Abbaszadeh, R., Khalife, E., Szymanek, M., & Dziwulska-Hunek, A. (2022). Application of Artificial Neural Networks, Support Vector, Adaptive Neuro-Fuzzy Inference Systems for the Moisture Ratio of Parboiled Hulls. Applied Sciences, 12(4), 1771. https://doi.org/10.3390/app12041771