Utilization of Wool Integral Lipids to Determine Milk Fat Content in Suffolk Down Ewes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Production System
2.2. Milk Samples and Analysis
2.3. Wool Analysis
2.4. Statistical Analysis
3. Results
3.1. Fatty Acid Composition of Ewes’ Diets
3.2. Wool Fat and Fatty Acid Composition
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gatzias, I.S.; Karabagias, I.K.; Kontakos, S.P.; Kontominas, M.G.; Badeka, A.V. Characterization and differentiation of sheep’s milk from Greek breeds based on physicochemical parameters, fatty acid composition and volatile profile. J. Sci. Food Agric. 2018, 98, 3935–3942. [Google Scholar] [CrossRef]
- Nudda, A.; Battacone, G.; Boaventura, O.; Cannas, A.; Francesconi, A.H.D.; Atzori, A.S.; Pulina, G. Feeding strategies to design the fatty acid profile of sheep milk and cheese. Rev. Bras. Zootec. 2014, 43, 445–456. [Google Scholar] [CrossRef] [Green Version]
- Balthazar, C.F.; Pimentel, T.C.; Ferrão, L.L.; Almada, C.N.; Santillo, A.; Albenzio, M.; Mollakhalili, N.; Mortazavian, A.M.; Nascimento, J.S.; Silva, M.C.; et al. Sheep Milk: Physicochemical Characteristics and Relevance for Functional Food Development. Compr. Rev. Food Sci. Food Saf. 2017, 16, 247–262. [Google Scholar] [CrossRef]
- Aguilar, C.; Toro-Mujica, P.; Vargas-Bello-Pérez, E.; Vera, R.; Ugalde, C.; Rodríguez, S.; Briones, I. A comparative study of the fatty acid profiles in commercial sheep cheeses. Grasas Aceites 2014, 65, e048. [Google Scholar] [CrossRef] [Green Version]
- Addis, M.; Cabiddu, A.; Pinna, G.; Decandia, M.; Piredda, G.; Pirisi, A.; Molle, G. Milk and cheese fatty acid composition in sheep fed Mediterranean forages with reference to conjugated linoleic acid cis-9,trans-11. J. Dairy Sci. 2005, 88, 3443–3454. [Google Scholar] [CrossRef] [Green Version]
- Rozbicka-Wieczorek, A.J.; Radzik-Rant, A.; Rant, W.; Kuczyńska, B.; Czauderna, M. Characterization of the milk lipid fraction in non-dairy sheep breeds. Arch. Anim. Breed. 2015, 58, 395–401. [Google Scholar] [CrossRef]
- Park, Y.W.; Juárez, M.; Ramos, M.; Haenlein, G.F.W. Physico-chemical characteristics of goat and sheep milk. Small Rumin. Res. 2007, 68, 88–113. [Google Scholar] [CrossRef] [Green Version]
- Bencini, R.; Pulina, G. The quality of sheep milk: A review. Aust. J. Exp. Agric. 1997, 37, 485. [Google Scholar] [CrossRef]
- Lešić, T.; Pleadin, J.; Krešić, G.; Vahčić, N.; Markov, K.; Vrdoljak, M.; Frece, J. Chemical and fatty acid composition of cow and sheep milk cheeses in a lamb skin sack. J. Food Compos. Anal. 2016, 46, 70–77. [Google Scholar] [CrossRef]
- Pulina, G.; Nudda, A.; Battacone, G.; Cannas, A. Effects of nutrition on the contents of fat, protein, somatic cells, aromatic compounds, and undesirable substances in sheep milk. Anim. Feed Sci. Technol. 2006, 131, 255–291. [Google Scholar] [CrossRef]
- Martin, M.; Herlaar, S. Environmental and social performance of valorizing waste wool for sweater production. Sustain. Prod. Consum. 2021, 25, 425–438. [Google Scholar] [CrossRef]
- Monahan, F.J.; Moloney, A.P.; Osorio, M.T.; Röhrle, F.T.; Schmidt, O.; Brennan, L. Authentication of grass-fed beef using bovine muscle, hair or urine. Trends Food Sci. Technol. 2012, 28, 69–76. [Google Scholar] [CrossRef]
- Jia, J.-Y.; Zhang, L.-N.; Lu, Y.-L.; Zhang, M.-Q.; Liu, G.-Y.; Liu, Y.-M.; Lu, C.; Li, S.-J.; Lu, Y.; Zhang, R.-W.; et al. Hair analysis, a reliable and non-invasive method to evaluate the contamination by clenbuterol. Ecotoxicol. Environ. Saf. 2013, 93, 186–190. [Google Scholar] [CrossRef]
- Moeller, R.; Nuernberg, K.; Schmitt, A.O.; Brockmann, G.A. Relationship between hair fatty acid profile, reproduction, and milk performance in Holstein Friesian cows. J. Anim. Sci. 2013, 91, 1669–1676. [Google Scholar] [CrossRef]
- Möller, R.; Dannenberger, D.; Nürnberg, G.; Strucken, E.-M.; Brockmann, G.A. Relationship between the fatty acid profile of hair and energy availability of lactating primiparous cows. J. Dairy Res. 2019, 86, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Russel, A. Body condition scoring of sheep. Pract 1984, 6, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Canseco, C.; Demanet, R.; Balocchi, O.; Parga, J.; Anwandter, V.; Abarzúa, A.; Teuber, N.; Lopetegui, J. Determinación de la disponibilidad de materia seca de praderas en pastoreo. In Manejo del Pastoreo; Imprenta América: Osorno, Chile, 2007; Volume I, pp. 23–50. [Google Scholar]
- Burja, A.M.; Armenta, R.E.; Radianingtyas, H.; Barrow, C.J. Evaluation of Fatty Acid Extraction Methods for Thraustochytrium sp. ONC-T18. J. Agric. Food Chem. 2007, 55, 4795–4801. [Google Scholar] [CrossRef] [PubMed]
- Folch, J.; Lees, M.; Stanley, G.S. A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 1957, 226, 497–509. [Google Scholar] [CrossRef]
- Fuertes, J.A.; Gonzalo, C.; Carriedo, J.A.; San Primitivo, F. Parameters of test day milk yield and milk components for dairy ewes. J. Dairy Sci. 1998, 81, 1300–1307. [Google Scholar] [CrossRef]
- ISO. IDF-Milk and Milk Products-Guidelines for the Application of Mid-Infrared Spectrometry (ISO: 9622-2013); 2nd ed. International Organization for Standarization: Geneva, Switzerland, 2013.
- Coderch, L.; de la Maza, A.; Soriano, C.; Erra, P.; Parra, J.L. Chromatographic characterization of internal polar lipids from wool. J. Am. Oil Chem. Soc. 1995, 72, 715–720. [Google Scholar] [CrossRef]
- Seabold, S.; Perktold, J. Statsmodels: Econometric and Statistical Modeling with Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June 2010. [Google Scholar]
- Körner, A.; Höcker, H.; Rivett, D.E. The fatty acid composition of lipids from the wool cell membrane complex. Fresenius J. Anal. Chem. 1992, 344, 501–509. [Google Scholar] [CrossRef]
- Bionaz, M.; Vargas-Bello-Pérez, E.; Busato, S. Advances in fatty acids nutrition in dairy cows: From gut to cells and effects on performance. J. Anim. Sci. Biotechnol. 2020, 11, 110. [Google Scholar] [CrossRef]
- Inostroza, K.; Bravo, S.; Larama, G.; Saenz, C.; Sepúlveda, N. Variation in Milk Composition and Fatty Acid Profile during the Lactation of Araucana Creole Ewes in a Pasture-Based System. Animals 2020, 10, 92. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Månsson, H.L. Fatty acids in bovine milk fat. Food Nutr. Res. 2008, 52, 1821. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jorjong, S.; van Knegsel, A.T.M.; Verwaeren, J.; Lahoz, M.V.; Bruckmaier, R.M.; De Baets, B.; Kemp, B.; Fievez, V. Milk fatty acids as possible biomarkers to early diagnose elevated concentrations of blood plasma nonesterified fatty acids in dairy cows. J. Dairy Sci. 2014, 97, 7054–7064. [Google Scholar] [CrossRef] [Green Version]
- Pollott, G.E.; Gootwine, E. Reproductive performance and milk production of Assaf sheep in an intensive management system. J. Dairy Sci. 2004, 87, 3690–3703. [Google Scholar] [CrossRef]
- Ospina, P.A.; Nydam, D.V.; Stokol, T.; Overton, T.R. Evaluation of nonesterified fatty acids and beta-hydroxybutyrate in transition dairy cattle in the northeastern United States: Critical thresholds for prediction of clinical diseases. J. Dairy Sci. 2010, 93, 546–554. [Google Scholar] [CrossRef]
- Stoop, W.M.; Bovenhuis, H.; Heck, J.M.L.; van Arendonk, J.A.M. Effect of lactation stage and energy status on milk fat composition of Holstein-Friesian cows. J. Dairy Sci. 2009, 92, 1469–1478. [Google Scholar] [CrossRef] [PubMed]
- Garnsworthy, P.C.; Masson, L.L.; Lock, A.L.; Mottram, T.T. Variation of Milk Citrate with Stage of Lactation and De Novo Fatty Acid Synthesis in Dairy Cows. J. Dairy Sci. 2006, 89, 1604–1612. [Google Scholar] [CrossRef] [Green Version]
- Palmquist, D.L.; Beaulieu, A.D.; Barbano, D.M. Feed and Animal Factors Influencing Milk Fat Composition. J. Dairy Sci. 1993, 76, 1753–1771. [Google Scholar] [CrossRef]
- Kay, J.K.; Weber, W.J.; Moore, C.E.; Bauman, D.E.; Hansen, L.B.; Chester-Jones, H.; Crooker, B.A.; Baumgard, L.H. Effects of week of lactation and genetic selection for milk yield on milk fatty acid composition in Holstein cows. J. Dairy Sci. 2005, 88, 3886–3893. [Google Scholar] [CrossRef] [Green Version]
- Cabiddu, A.; Decandia, M.; Addis, M.; Piredda, G.; Pirisi, A.; Molle, G. Managing Mediterranean pastures in order to enhance the level of beneficial fatty acids in sheep milk. Small Rumin. Res. 2005, 59, 169–180. [Google Scholar] [CrossRef]
Fatty Acid (mg/g DM) | Pasture | Oat | |
---|---|---|---|
30 Days in Milk | 60 Days in Milk | ||
C16:0 | 0.23 | 0.10 | 8.46 |
C18:0 | 0.08 | 0.03 | 1.57 |
C18:1n9c | 0.03 | 0.02 | 25.75 |
C18:2n6c | 0.23 | 0.07 | 23.56 |
C18:3n3 | 1.33 | 0.44 | 0.24 |
Fatty Acids | 30 Days in Milk | 60 Days in Milk | |||||
---|---|---|---|---|---|---|---|
Low 1 (n = 40) | High 2 (n = 40) | p-Value | Low 1 (n = 40) | High 2 (n = 40) | p-Value | ||
Capric acid | C10:0 | 1.51 ± 0.28 | 1.45 ± 0.64 | 0.600 | 1.11 ± 0.33 b | 1.59 ± 0.39 a | 0.000 |
Lauric acid | C12:0 | 2.40 ± 0.23 | 2.25 ± 0.45 | 0.064 | 2.02 ± 0.42 | 2.19 ± 0.38 | 0.053 |
Tridecanoic acid | C13:0 | 0.81 ± 0.19 | 0.79 ± 0.32 | 0.727 | 0.52 ± 0.17 b | 0.85 ± 0.31 a | 0.001 |
Myristic acid | C14:0 | 9.26 ± 1.94 b | 15.56 ± 5.13 a | 0.000 | 13.42 ± 4.09 | 13.76 ± 3.37 | 0.685 |
Myristoleic acid | C14:1 | 25.77 ± 3.65 a | 18.95 ± 3.28 b | 0.000 | 17.67 ± 3.35 b | 23.75 ± 7.28 a | 0.000 |
Pentadecanoic acid | C15:0 | 5.58 ± 0.81 a | 5.03 ± 1.04 b | 0.010 | 4.91 ± 1.35 | 5.49 ± 1.43 | 0.067 |
Palmitic acid | C16:0 | 112.61 ± 10.95 | 108.25 ± 24.51 | 0.309 | 88.23 ± 10.61 b | 124.20 ± 22.94 a | 0.000 |
Palmitoleic acid | C16:1 | 2.76 ± 0.62 | 2.29 ± 1.04 | 0.059 | 1.40 ± 0.51 b | 2.12 ± 0.70 a | 0.003 |
Heptadecanoic acid | C17:0 | 13.95 ± 3.44 | 11.61 ± 4.87 | 0.059 | 13.24 ± 6.26 | 14.11 ± 6.75 | 0.608 |
Stearic acid | C18:0 | 65.02 ± 6.67 | 62.39 ± 15.00 | 0.316 | 50.35 ± 4.09 b | 73.69 ± 13.03 a | 0.000 |
Oleic acid | C18:1n9c | 15.19 ± 4.26 b | 28.44 ± 7.25 a | 0.002 | 15.58 ± 4.01 b | 27.36 ± 8.65 a | 0.001 |
Linoleic acid | C18:2n6c | 15.47 ± 2.46 b | 21.23 ± 6.11 a | 0.000 | 12.44 ± 3.53 b | 19.82 ± 3.70 a | 0.000 |
Arachidic acid | C20:0 | 1.60 ± 0.36 | 1.84 ± 0.70 | 0.056 | 1.79 ± 0.71 | 2.05 ± 0.62 | 0.086 |
α-Linolenic acid | C18:3n3 | 6.66 ± 1.16 | 6.35 ± 2.52 | 0.481 | 6.48 ± 1.15 b | 8.21 ± 2.86 a | 0.001 |
Behenic acid | C22:0 | 4.93 ± 1.37 | 4.79 ± 1.71 | 0.698 | 5.22 ± 1.62 | 5.20 ± 1.74 | 0.954 |
cis-8,11,14-Eicosatrienoic acid | C20:3n6 | 3.38 ± 0.85 b | 6.60 ± 2.36 a | 0.000 | 6.23 ± 2.09 | 5.17 ± 2.12 | 0.077 |
cis-13,16-Docosadienoic acid | C22:2 | 8.33 ± 1.57 b | 13.39 ± 5.11 a | 0.004 | 7.47 ± 3.22 b | 10.38 ± 3.31 a | 0.000 |
Lignoceric acid | C24:0 | 12.75 ± 2.45 b | 15.42 ± 4.68 a | 0.002 | 14.41 ± 3.97 | 16.58 ± 6.42 | 0.074 |
Nervonic acid | C24:1n9 | 30.70 ± 6.03 | 29.80 ± 11.32 | 0.062 | 21.44 ± 8.44 b | 31.74 ± 11.76 a | 0.000 |
Docosahexaenoic acid | C22:6n3 | 18.23 ± 3.43 | 21.36 ± 8.21 | 0.058 | 17.40 ± 3.54 | 22.14 ± 8.75 | 0.054 |
Proportions FA | |||||||
SFA 3 | 230.40 ± 16.79 | 229.39 ± 29.70 | 0.852 | 195.23 ± 18.13 b | 259.72 ± 36.46 a | 0.000 | |
MUFA 4 | 74.67 ± 7.83 | 79.49 ± 13.15 | 0.051 | 56.09 ± 12.07 b | 84.97 ± 18.96 a | 0.000 | |
PUFA 5 | 52.46 ± 5.08 b | 68.93 ± 14.79 a | 0.000 | 50.04 ± 8.65 b | 65.73 ± 15.76 a | 0.006 | |
Desaturase index | |||||||
DI C14 6 | 0.73 ± 0.05 a | 0.55 ± 0.01 b | 0.000 | 0.57 ± 0.09 | 0.61 ± 0.09 | 0.058 | |
DI C16 7 | 0.02 ± 0.01 | 0.02 ± 0.01 | 0.577 | 0.01 ± 0.005 | 0.02 ± 0.007 | 0.161 | |
DI C18 8 | 0.19 ± 0.04 b | 0.32 ± 0.07 a | 0.000 | 0.24 ± 0.05 | 0.26 ± 0.06 | 0.067 | |
Fat content | |||||||
Wool fat (g/g of wool) | 0.01 ± 0.005 | 0.01 ± 0.003 | 0.172 | 0.01 ± 0.004 | 0.01 ± 0.003 | 0.290 | |
Milk fat (%) | 6.43 ± 0.66 b | 9.27 ± 1.00 a | 0.000 | 7.16 ± 0.48 b | 9.24 ± 0.87 a | 0.000 |
Fatty Acids | Milk Fat Content | |
---|---|---|
30 Days in Milk | 60 Days in Milk | |
C10:0 | 0.005 | 0.528 ** |
C12:0 | −0.177 | 0.263 * |
C13:0 | 0.035 | 0.547 ** |
C14:0 | 0.570 ** | 0.012 |
C14:1 | −0.527 ** | 0.374 ** |
C15:0 | −0.356 ** | 0.264 * |
C16:0 | −0.144 | 0.599 ** |
C16:1 | −0.194 | 0.535 ** |
C17:0 | −0.157 | −0.027 |
C18:0 | −0.246 * | 0.646 ** |
C18:1n9c | 0.699 ** | 0.640 ** |
C18:2n6c | 0.552 ** | 0.656 ** |
C20:0 | 0.209 | 0.204 |
C18:3n3 | −0.142 | 0.335 ** |
C22:0 | 0.011 | −0.006 |
C20:3n6 | 0.463 ** | −0.258 * |
C22:2 | 0.438 ** | 0.395 ** |
C24:0 | 0.251 * | 0.137 |
C24:1n9 | −0.070 | 0.299 ** |
C22:6n3 | 0.196 | 0.229 ** |
SFA | −0.120 | 0.628 ** |
MUFA | 0.189 | 0.566 ** |
PUFA | 0.533 ** | 0.497 ** |
DI C14 | −0.633 ** | 0.166 |
DI C16 | −0.050 | 0.191 |
DI C18 | 0.698 ** | 0.271 * |
Wool fat | −0.150 | 0.149 |
Variable | True Positive | False Positive | False Negative | True Negative | MCC | Accuracy |
---|---|---|---|---|---|---|
C18:1n9c | 9 | 3 | 2 | 10 | 0.58 | 79.17 |
C18:2n6c | 8 | 4 | 3 | 9 | 0.41 | 70.83 |
C22:2 | 8 | 5 | 3 | 8 | 0.34 | 66.67 |
C18:1n9c + C18:2n6c | 10 | 2 | 1 | 11 | 0.75 | 87.50 |
C18:1n9c + C22:2 | 9 | 5 | 2 | 8 | 0.43 | 70.83 |
C18:1n9c + C18:2n6c + C22:2 | 10 | 2 | 1 | 11 | 0.75 | 87.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inostroza, K.; Larama, G.; Bravo, S.; Díaz, M.; Sepúlveda, N. Utilization of Wool Integral Lipids to Determine Milk Fat Content in Suffolk Down Ewes. Appl. Sci. 2022, 12, 1046. https://doi.org/10.3390/app12031046
Inostroza K, Larama G, Bravo S, Díaz M, Sepúlveda N. Utilization of Wool Integral Lipids to Determine Milk Fat Content in Suffolk Down Ewes. Applied Sciences. 2022; 12(3):1046. https://doi.org/10.3390/app12031046
Chicago/Turabian StyleInostroza, Karla, Giovanni Larama, Silvana Bravo, Mario Díaz, and Néstor Sepúlveda. 2022. "Utilization of Wool Integral Lipids to Determine Milk Fat Content in Suffolk Down Ewes" Applied Sciences 12, no. 3: 1046. https://doi.org/10.3390/app12031046
APA StyleInostroza, K., Larama, G., Bravo, S., Díaz, M., & Sepúlveda, N. (2022). Utilization of Wool Integral Lipids to Determine Milk Fat Content in Suffolk Down Ewes. Applied Sciences, 12(3), 1046. https://doi.org/10.3390/app12031046