Impact of Carpets on Indoor Air Quality
Abstract
:1. Introduction
2. Methodology
3. Effects of Carpets on IAQ
3.1. VOCs
3.1.1. Emission of VOCs with Carpets
3.1.2. Sink Properties of Carpets for VOCs
3.1.3. VOC Transformation Reactions with Carpets
3.2. Particulate Matter
3.2.1. Particulate Matter Deposition on Carpets
3.2.2. Particulate Matter Resuspension from Carpets
4. Conclusions and Recommendations for Future Studies
- In real situations, the effects of carpets on IAQ are complicated because carpets affect the emission, sink, and transformation of VOCs. Previous studies showed that each layer of a carpet (fibre pile, backing, and adhesive) influences these behaviours.
- Carpets with separated layers showed that VOC emissions from the complete structures were lower than the sum of emissions from the single component layer, while the sorption was possibly higher due to the differences in the geometric configurations of the fibre.
- Carpets work as sorption sites with the ability to reduce peak concentrations of indoor VOCs and re-emit them over prolonged periods. Indoor environmental parameters such as RH affect the carpets’ sorption capacity of VOCs depending on the molecules’ hydrophilicity or hydrophobicity.
- In general, carpets resuspend more particles than hard floorings, and bigger PMs resuspend from carpets more than smaller PMs through human activities. In addition, the effects of RH on PM resuspension depend on the surface conditions of carpets, particle size, and particle types (hydrophilic or hydrophobic).
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization (WHO). WHO Guidelines for Indoor Air Quality: Selected Pollutants; WHO: Geneva, Switzerland, 2010.
- ASHRAE Board of Directors. ASHRAE Position Document on Indoor Air Quality; ASHRAE: Atlanta, GA, USA, 2020; p. 17. [Google Scholar]
- Elkilani, A.; Baker, C.G.; Al-Shammari, Q.; Bouhamra, W. Sorption of Volatile Organic Compounds on Typical Carpet Fibers. Environ. Int. 2003, 29, 575–585. [Google Scholar] [CrossRef] [PubMed]
- Katsoyiannis, A.; Leva, P.; Kotzias, D. VOC and Carbonyl Emissions from Carpets: A Comparative Study Using Four Types of Environmental Chambers. J. Hazard. Mater. 2008, 152, 669–676. [Google Scholar] [CrossRef]
- Salonen, H.; Pasanen, A.-L.; Lappalainen, S.; Riuttala, H.; Tuomi, T.; Pasanen, P.; Bäck, B.; Reijula, K. Volatile Organic Compounds and Formaldehyde as Explaining Factors for Sensory Irritation in Office Environments. J. Occup. Environ. Hyg. 2009, 6, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Vardoulakis, S.; Giagloglou, E.; Steinle, S.; Davis, A.; Sleeuwenhoek, A.; Galea, K.S.; Dixon, K.; Crawford, J.O. Indoor Exposure to Selected Air Pollutants in the Home Environment: A Systematic Review. Int. J. Environ. Res. Public Health 2020, 17, 8972. [Google Scholar] [CrossRef] [PubMed]
- U.S. EPA. Integrated Science Assessment (ISA) for Particulate Matter; Final Report; U.S. EPA: Washington, DC, USA, 2019. [Google Scholar]
- World Health Organization (WHO). Health Effects of Particulate Matter Policy Implications for Countries in Eastern Europe, Caucasus and Central Asia; WHO: Geneva, Switzerland, 2013.
- Valavanidis, A.; Fiotakis, K.; Vlachogianni, T. Airborne Particulate Matter and Human Health: Toxicological Assessment and Importance of Size and Composition of Particles for Oxidative Damage and Carcinogenic Mechanisms. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2008, 26, 339–362. [Google Scholar] [CrossRef]
- Bluyssen, P. The Indoor Environment Handbook; Routledge: New York, NY, USA, 2009; ISBN 9781136544828. [Google Scholar]
- Hegyi, A.; Bulacu, C.; Szilagyi, H.; Lăzărescu, A.-V.; Meiţă, V.; Vizureanu, P.; Sandu, M. Improving Indoor Air Quality by Using Sheep Wool Thermal Insulation. Materials 2021, 14, 2443. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, J.; Chen, Q. Effects of Environmental Conditions on the VOC Sorption by Building Materials-Part I: Experimental Results. ASHRAE Trans. 2002, 108, 273–282. [Google Scholar]
- Hawkins, N.C.; Luedtke, A.E.; Mitchell, C.R.; LoMenzo, J.A.; Black, M.S. Effects of Selected Process Parameters on Emission Rates of Volatile Organic Chemicals from Carpet. Am. Ind. Hyg. Assoc. J. 1992, 53, 275–282. [Google Scholar] [CrossRef]
- Morrison, G.C.; Nazaroff, W.W. The Rate of Ozone Uptake on Carpets: Experimental Studies. Environ. Sci. Technol. 2000, 34, 4963–4968. [Google Scholar] [CrossRef]
- Kong, M.; Kim, H.; Hong, T. An Effect of Numerical Data through Monitoring Device on Perception of Indoor Air Quality. Build. Environ. 2022, 216, 109044. [Google Scholar] [CrossRef]
- Bluyssen, P.M.; Fanger, P.O. Addition of Olfs from Different Pollution Sources, Determined by a Trained Panel. Indoor Air 1991, 1, 414–421. [Google Scholar] [CrossRef]
- Nicolas, M.; Ramalho, O.; Maupetit, F. Reactions between Ozone and Building Products: Impact on Primary and Secondary Emissions. Atmos. Environ. 2007, 41, 3129–3138. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Allen, M.R.; Roache, N.F. Characterization of Organophosphorus Flame Retardants’ Sorption on Building Materials and Consumer Products. Atmos. Environ. 2016, 140, 333–341. [Google Scholar] [CrossRef]
- Anderson, R.C.; Anderson, J.H. Carpet Emissions with Neurotoxic Effects. Adv. Occup. Med. Rehabil. 1997, 3, 47–54. [Google Scholar]
- Dietert, R.R.; Hedge, A. Toxicological Considerations in Evaluating Indoor Air Quality and Human Health: Impact of New Carpet Emissions. Crit. Rev. Toxicol. 1996, 26, 633–707. [Google Scholar] [CrossRef] [PubMed]
- Norback, D.; Bjornsson, E.; Janson, C.; Widstrom, J.; Boman, G. Asthmatic Symptoms and Volatile Organic Compounds, Formaldehyde, and Carbon Dioxide in Dwellings. Occup. Environ. Med. 1995, 52, 388–395. [Google Scholar] [CrossRef]
- Sukiene, V.; von Goetz, N.; Gerecke, A.C.; Bakker, M.I.; Delmaar, C.J.E.; Hungerbühler, K. Direct and Air-Mediated Transfer of Labeled SVOCs from Indoor Sources to Dust. Environ. Sci. Technol. 2017, 51, 3269–3277. [Google Scholar] [CrossRef]
- ISO Standard No. 2424:2007; Textile Floor Coverings—Vocabulary. International Organization for Standardization: Geneva, Switzerland, 2007.
- Chaudhuri, S.K. Structure and Properties of Carpet Fibres and Yarns. In Advances in Carpet Manufacture; Elsevier: Amsterdam, The Netherlands, 2018; pp. 17–34. ISBN 9781845693336. [Google Scholar]
- Paknejad, S.H.; Vadood, M.; Soltani, P.; Ghane, M. Modeling the Sound Absorption Behavior of Carpets Using Artificial Intelligence. J. Text. Inst. 2021, 112, 1763–1771. [Google Scholar] [CrossRef]
- Osman, B.; Esin, S.; Sıdıka Ziba, O. Compressibility and Resiliency Properties of Wilton Type Woven Carpets Produced with Different Fiber Blend Ratio. IOP Conf. Ser. Mater. Sci. Eng. 2017, 254, 082018. [Google Scholar] [CrossRef]
- Kraus, M.; Senitkova, I.J. VOCs Emission Simulation of Common Flooring Materials. IOP Conf. Ser. Mater. Sci. Eng. 2020, 960, 042093. [Google Scholar] [CrossRef]
- Guo, H.; Murray, F.; Lee, S.C.; Wilkinson, S. Evaluation of Emissions of Total Volatile Organic Compounds from Carpets in an Environmental Chamber. Build. Environ. 2004, 39, 179–187. [Google Scholar] [CrossRef]
- Prevedouros, K.; Cousins, I.T.; Buck, R.C.; Korzeniowski, S.H. Sources, Fate and Transport of Perfluorocarboxylates. Environ. Sci. Technol. 2006, 40, 32–44. [Google Scholar] [CrossRef] [PubMed]
- Petersen, R.C. Triclosan Antimicrobial Polymers. AIMS Mol. Sci. 2016, 3, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.; Chen, C.-Y.; Lee, C.; Chen, C.; Lo, S. Air Phthalate Emitted from Flooring Building Material by the Micro-Chamber Method: Two-Stage Emission Evaluation and Comparison. Toxics 2021, 9, 216. [Google Scholar] [CrossRef] [PubMed]
- Won, D.; Corsi, R.L.; Rynes, M. Sorptive Interactions between VOCs and Indoor Materials. Indoor Air 2001, 11, 246–256. [Google Scholar] [CrossRef] [Green Version]
- Hendy, A.M.; Bakr, D.; Kamal Bakr, D. Indoor Air Quality Between Textiles’ Treatment And Human Health Article In. Int. J. Sci. Technol. Res. 2020, 9, 200–206. [Google Scholar]
- Haines, S.R.; Hall, E.C.; Marciniak, K.; Misztal, P.K.; Goldstein, A.H.; Adams, R.I.; Dannemiller, K.C. Correction to: Microbial Growth and Volatile Organic Compound (VOC) Emissions from Carpet and Drywall under Elevated Relative Humidity Conditions. Microbiome 2021, 9, 219. [Google Scholar] [CrossRef] [PubMed]
- ISO Standard No. 16000; Series 1–11, Indoor Air. International Organization for Standardization: Geneva, Switzerland, 2004.
- European Standard. EN 16516:2017; Construction Products: Assessment of Release of Dangerous Substances—Determination of Emissions into Indoor Air. European Parliament and of the Council: Washington, DC, USA, 2017.
- Emission Test for Volatile Organic Compounds (VOC’s) in Textile Floor Coverings. Available online: https://Gut-Prodis.Eu/En/Product-Testing-Gut/Emission-Test (accessed on 1 December 2022).
- Kephalopoulos, S.; Crump, D.; Daumling, C.; Funch, L.; Horn, W.; Keirsbulck, M.; Maupetit, F.; Sateri, J.; Saarela, K.; Scutaru, A.; et al. Harmonisation Framework for Indoor Products Labelling Schemes in the EU; ECA Report No. 27; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Haines, S.R.; Adams, R.I.; Boor, B.E.; Bruton, T.A.; Downey, J.; Ferro, A.R.; Gall, E.; Green, B.J.; Hegarty, B.; Horner, E.; et al. Ten Questions Concerning the Implications of Carpet on Indoor Chemistry and Microbiology. Build. Environ. 2020, 170, 106589. [Google Scholar] [CrossRef]
- Lee, C.S.; Haghighat, F.; Ghaly, W.S. A Study on VOC Source and Sink Behavior in Porous Building Materials—Analytical Model Development and Assessment. Indoor Air 2005, 15, 183–196. [Google Scholar] [CrossRef]
- Knudsen, H.N.; Kjaer, U.D.; Nielsen, P.A.; Wolkoff, P. Sensory and Chemical Characterization of VOC Emissions from Building Products: Impact of Concentration and Air Velocity. Atmos. Environ. 1999, 33, 1217–1230. [Google Scholar] [CrossRef] [Green Version]
- Little, J.C.; Hodgson, A.T.; Gadgil, A.J.; Hotxson, A.T.; Gadgil, A.J. Modeling Emissions Of Volatile Organic Compounds From New Carpets. Atmos. Environ. 1994, 28, 227–234. [Google Scholar] [CrossRef] [Green Version]
- Wal, J.F.; Hoogeveen, A.W.; Wouda, P. The Influence of Temperature on the Emission of Volatile Organic Compounds from PVC Flooring, Carpet, and Paint. Indoor Air 1997, 7, 215–221. [Google Scholar] [CrossRef]
- Hodgson, A.T.; Wooley, J.D.; Daisey, J.M. Emissions of Volatile Organic Compounds from New Carpets Measured in a Large-Scale Environmental Chamber. Air Waste 1993, 43, 316–324. [Google Scholar] [CrossRef] [PubMed]
- Gunnarsen, L. The Influence of Area-Specific Ventilation Rate on the Emissions from Construction Products. Indoor Air 1997, 7, 116–120. [Google Scholar] [CrossRef]
- Sollinger, S.; Levsen, K.; Wünsch, G. Indoor Air Pollution by Organic Emissions from Textile Floor Coverings. Climate Chamber Studies under Dynamic Conditions. Atmos. Environ. Part B. Urban Atmos. 1993, 27, 183–192. [Google Scholar] [CrossRef]
- Wolkoff, P. Impact of Air Velocity, Temperature, Humidity, and Air on Long-Term Voc Emissions from Building Products. Atmos. Environ. 1998, 32, 2659–2668. [Google Scholar] [CrossRef]
- Igielska, B.; Wiglusz, R.; Sitko, E.; Nikel, G. The Release of Volatile Organic Compounds from Textile Floor Coverings at Higher Temperature. Rocz. Panstw. Zakl. Hig. 2003, 54, 329–335. [Google Scholar]
- Yang, S.; Chen, Q.; Bluyssen, P.M. Prediction of Short-Term and Long-Term VOC Emissions from SBR Bitumen-Backed Carpet under Different Temperatures. In Proceedings of the ASHRAE Transactions, ASHRAE Annual Meeting, Toronto, ON, Canada, 20–24 June 1998; part 2. American Society of Heating, Refrigerating and Air-Conditioning Engineers, Inc.: Atlanta, GA, USA, 1998; Volume 104. [Google Scholar]
- Bluyssen, P.M.; Cornelissen, H.J.M.; Hoogeveen, A.W.; Wouda, P.; Van der Wal, J.F. The effect of temperature on the chemical and sensory emission of indoor materials. In Proceedings of the Indoor Air ’96, Nagoya, Japan, 21–26 July 1996. [Google Scholar]
- Rothweiler, H.; Wager, P.A.; Schlatter, C. Long Term Emissions from Two Glued Carpets with Different Backings Measured in Indoor Air. Environ. Technol. 1992, 13, 891–896. [Google Scholar] [CrossRef]
- Kowalska, J.; Gierczak, T. Qualitative and Quantitative Analyses of the Halogenated Volatile Organic Compounds Emitted from the Office Equipment Items. Indoor Built Environ. 2013, 22, 920–931. [Google Scholar] [CrossRef]
- Wilke, O.; Jann, O.; Brodner, D. VOC- and SVOC-Emissions from Adhesives, Floor Coverings and Complete Floor Structures. Indoor Air 2004, 14, 98–107. [Google Scholar] [CrossRef]
- Abbass, O.A.; Sailor, D.J.; Gall, E.T. Effect of Fiber Material on Ozone Removal and Carbonyl Production from Carpets. Atmos. Environ. 2017, 148, 42–48. [Google Scholar] [CrossRef] [Green Version]
- Nielsen, G.D.; Hansen, L.F.; Maria, H.; Vejrup, K.V.; Wolkoff, P. Chemical and Biological Evaluation of Building Material Emissions. I. A Screening Procedure Based on a Closed Emission System. Indoor Air 1997, 7, 8–16. [Google Scholar] [CrossRef]
- Schaeffer, V.H.; Bhooshan, B.; Chen, S.-B.; Sonenthal, J.S.; Hodgson, A.J. Characterization of Volatile Organic Chemical Emissions From Carpet Cushions. J. Air Waste Manage. Assoc. 1996, 46, 813–820. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, R.B.; Bjorseth, O.; Malvik, B. Chamber Testing of Adsorption of Volatile Organic Compounds (VOCs) on Material Surfaces. Indoor Air 1999, 9, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Chang, J.C.S.; Sparks, L.E.; Guo, Z.; Fortmann, R. Evaluation of Sink Effects on Vocs from a Latex Paint. J. Air Waste Manag. Assoc. 1998, 48, 953–958. [Google Scholar] [CrossRef] [Green Version]
- Won, D.; Corsi, R.L.; Rynes, M. New Indoor Carpet as an Adsorptive Reservoir for Volatile Organic Compounds. Environ. Sci. Technol. 2000, 34, 4193–4198. [Google Scholar] [CrossRef]
- Deng, Q.; Zhang, J.S.; Yang, X. The Validation of a VOC Diffusion Sink Model Based on Full-Scale Chamber Test. ASHRAE Trans. 2009, 115, 943–963. [Google Scholar]
- Senitkova, I. Impact of Indoor Surface Material on Perceived Air Quality. Mater. Sci. Eng. C 2014, 36, 1–6. [Google Scholar] [CrossRef]
- Jorgensen, R.B.; Bjorseth, O. Sorption Behaviour of Volatile Organic Compounds on Material Surfaces—The Influence of Combinations of Compounds and Materials Compared to Sorption of Single Compounds on Single Materials. Environ. Int. 1999, 25, 17–27. [Google Scholar] [CrossRef]
- Borrazzo, J.E.; Davidson, C.I.; Andelman, J.B. Small Closed-Chamber Measurements for the Uptake of Trichloroethylene and Ethanol Vapor by Fibrous Surfaces; STP 1205; ASTM International, American Society for Testing and Materials: West Conshohocken, PA, USA, 1993; pp. 25–41. [Google Scholar]
- Gall, E.; Darling, E.; Siegel, J.A.; Morrison, G.C.; Corsi, R.L. Evaluation of Three Common Green Building Materials for Ozone Removal, and Primary and Secondary Emissions of Aldehydes. Atmos. Environ. 2013, 77, 910–918. [Google Scholar] [CrossRef]
- Wang, H.; Morrison, G.C. Ozone-Initiated Secondary Emission Rates of Aldehydes from Indoor Surfaces in Four Homes. Environ. Sci. Technol. 2006, 40, 5263–5268. [Google Scholar] [CrossRef] [PubMed]
- Palmisani, J.; Nørgaard, A.W.; Kofoed-Sørensen, V.; Clausen, P.A.; de Gennaro, G.; Wolkoff, P. Formation of Ozone-Initiated VOCs and Secondary Organic Aerosol Following Application of a Carpet Deodorizer. Atmos. Environ. 2020, 222, 117149. [Google Scholar] [CrossRef]
- Weschler, C.J.; Hodgson, A.T.; Wooley, J.D. Indoor Chemistry: Ozone, Volatile Organic Compounds, and Carpets. Environ. Sci. Technol. 1992, 26, 2371–2377. [Google Scholar] [CrossRef]
- Sakr, W.; Weschler, C.J.; Fanger, P.O. The Impact of Sorption on Perceived Indoor Air Quality. Indoor Air 2006, 16, 98–110. [Google Scholar] [CrossRef] [PubMed]
- Weschler, C.J. Chemical Reactions among Indoor Pollutants: What We’ve Learned in the New Millennium. Indoor Air 2004, 14, 184–194. [Google Scholar] [CrossRef]
- Knudsen, H.N.; Nielsen, P.A.; Clausen, P.A.; Wilkins, C.K.; Wolkoff, P. Sensory Evaluation of Emissions from Selected Building Products Exposed to Ozone. Indoor Air 2003, 13, 223–231. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Morrison, G. Ozone-Surface Reactions in Five Homes: Surface Reaction Probabilities, Aldehyde Yields, and Trends. Indoor Air 2010, 20, 224–234. [Google Scholar] [CrossRef]
- Thatcher, T.L.; Lai, A.C.K.; Moreno-Jackson, R.; Sextro, R.G.; Nazaroff, W.W. Effects of Room Furnishings and Air Speed on Particle Deposition Rates Indoors. Atmos. Environ. 2002, 36, 1811–1819. [Google Scholar] [CrossRef] [Green Version]
- Bramwell, L.; Qian, J.; Howard-Reed, C.; Mondal, S.; Ferro, A.R. An Evaluation of the Impact of Flooring Types on Exposures to Fine and Coarse Particles within the Residential Micro-Environment Using CONTAM. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 86–94. [Google Scholar] [CrossRef]
- Becher, R.; Øvrevik, J.; Schwarze, P.E.; Nilsen, S.; Hongslo, J.K.; Bakke, J.V. Do Carpets Impair Indoor Air Quality and Cause Adverse Health Outcomes: A Review. Int. J. Environ. Res. Public Health 2018, 15, 184. [Google Scholar] [CrossRef] [Green Version]
- Nastasi, N.; Haines, S.R.; Xu, L.; da Silva, H.; Divjan, A.; Barnes, M.A.; Rappleye, C.A.; Perzanowski, M.S.; Green, B.J.; Dannemiller, K.C. Morphology and Quantification of Fungal Growth in Residential Dust and Carpets. Build. Environ. 2020, 174, 106774. [Google Scholar] [CrossRef] [PubMed]
- Nastasi, N.; Renninger, N.; Bope, A.; Cochran, S.J.; Greaves, J.; Haines, S.R.; Balasubrahmaniam, N.; Stuart, K.; Panescu, J.; Bibby, K.; et al. Persistence of Viable MS2 and Phi6 Bacteriophages on Carpet and Dust. Indoor Air 2022, 32, e12969. [Google Scholar] [CrossRef] [PubMed]
- ISO 12103-1:2016; Road Vehicles—Test Contaminants for Filter Evaluation—Part 1: Arizona Test Dust. International Organization for Standardization: Geneva, Switzerland, 2016.
- Ferro, A.R.; Kopperud, R.J.; Hildemann, L.M. Source Strengths for Indoor Human Activities That Resuspend Particulate Matter. Environ. Sci. Technol. 2004, 38, 1759–1764. [Google Scholar] [CrossRef] [PubMed]
- Lewis, R.D.; Ong, K.H.; Emo, B.; Kennedy, J.; Kesavan, J.; Elliot, M. Resuspension of House Dust and Allergens during Walking and Vacuum Cleaning. J. Occup. Environ. Hyg. 2018, 15, 235–245. [Google Scholar] [CrossRef]
- Corsi, R.L.; Siegel, J.A.; Chiang, C. Particle Resuspension During the Use of Vacuum Cleaners on Residential Carpet. J. Occup. Environ. Hyg. 2008, 5, 232–238. [Google Scholar] [CrossRef]
- Qian, J.; Ferro, A.R. Resuspension of Dust Particles in a Chamber and Associated Environmental Factors. Aerosol Sci. Technol. 2008, 42, 566–578. [Google Scholar] [CrossRef] [Green Version]
- Benabed, A.; Boulbair, A. PM10, PM2.5, PM1, and PM0.1 Resuspension Due to Human Walking. Air Qual. Atmos. Health 2022, 15, 1547–1556. [Google Scholar] [CrossRef]
- Corn, M. The Adhesion of Solid Particles to Solid Surfaces Ii. J. Air Pollut. Control Assoc. 1961, 11, 566–584. [Google Scholar] [CrossRef]
- Corn, M. The Adhesion of Solid Particles to Solid Surfaces, i. a Review. J. Air Pollut. Control Assoc. 1961, 11, 523–528. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Täubel, M.; Holopainen, R.; Viitanen, A.K.; Vainiotalo, S.; Tuomi, T.; Keskinen, J.; Hyvärinen, A.; Hämeri, K.; Saari, S.E.; et al. Infant and Adult Inhalation Exposure to Resuspended Biological Particulate Matter. Environ. Sci. Technol. 2018, 52, 237–247. [Google Scholar] [CrossRef]
- Wu, T.; Fu, M.; Valkonen, M.; Taübel, M.; Xu, Y.; Boor, B.E. Particle Resuspension Dynamics in the Infant Near-Floor Microenvironment. Environ. Sci. Technol. 2021, 55, 1864–1875. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yao, M. Walking-Induced Exposure of Biological Particles Simulated by a Children Robot with Different Shoes on Public Floors. Environ. Int. 2022, 158, 106935. [Google Scholar] [CrossRef] [PubMed]
- Salimifard, P.; Rim, D.; Gomes, C.; Kremer, P.; Freihaut, J.D. Resuspension of Biological Particles from Indoor Surfaces: Effects of Humidity and Air Swirl. Sci. Total Environ. 2017, 583, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Sul, K.; Qian, J.; Mondal, S.; Ferro, A.R. A Comparative Study of Walking-Induced Dust Resuspension Using a Consistent Test Mechanism. Indoor Air 2014, 24, 592–603. [Google Scholar] [CrossRef] [PubMed]
- Rosati, J.A.; Thornburg, J.; Rodes, C. Resuspension of Particulate Matter from Carpet Due to Human Activity. Aerosol Sci. Technol. 2008, 42, 472–482. [Google Scholar] [CrossRef]
- Zheng, S.; Zhang, J.; Mou, J.; Du, W.; Yu, Y.; Wang, L. The Influence of Relative Humidity and Ground Material on Indoor Walking-Induced Particle Resuspension. J. Environ. Sci. Health Part A Toxic Hazard. Subst. Environ. Eng. 2019, 54, 1044–1053. [Google Scholar] [CrossRef]
Ref | Test Materials | Test Chamber | PM Type | RH | Resuspension Rate | Major Results about RH Effects |
---|---|---|---|---|---|---|
[81] |
| Full-scale experimental chamber (4.88 × 3.66 × 3.05 m) | ISO 12103–1 Test dust (A1) (0.8–10 μm) | 30–50% | 1.7 × 10−7–1.7 × 10−4 min−1 |
|
[90] |
| Chamber (7.0 × 4.0 × 6.5 m) | ISO 12103–1 Test dust (A1) (0.8–10 μm) | 20, 40, 80% | 5.0 × 10−6–4.0 × 10−2 mg/mg (Emission Factor) |
|
[89] |
| Chamber (61× 38 × 53 cm) | Dust in 18 houses (0.4–10 µm) | 40% and 70% | 1.5 × 10−6–1.5 × 10−3 min−1 |
|
[88] |
| Chamber (40 × 20 × 20 cm) | Quartz, dust mite, cat fur, dog fur, and bacterial spore (1–20 µm) | 10, 45, 80% | 1.0 × 10−9–1.5 × 10−4 min−1 |
|
[91] |
| Laboratory room (6 × 3.6 × 3.5 m) | ISO 12103–1 Test dust (A1) (0–10 µm) | 40, 60, 80% | 0–1.2 × 10−9 min−1 |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noorian Najafabadi, S.A.; Sugano, S.; Bluyssen, P.M. Impact of Carpets on Indoor Air Quality. Appl. Sci. 2022, 12, 12989. https://doi.org/10.3390/app122412989
Noorian Najafabadi SA, Sugano S, Bluyssen PM. Impact of Carpets on Indoor Air Quality. Applied Sciences. 2022; 12(24):12989. https://doi.org/10.3390/app122412989
Chicago/Turabian StyleNoorian Najafabadi, Seyyed Abbas, Soma Sugano, and Philomena M. Bluyssen. 2022. "Impact of Carpets on Indoor Air Quality" Applied Sciences 12, no. 24: 12989. https://doi.org/10.3390/app122412989