Surface Subsidence Monitoring in Kunming City with Time-Series InSAR and GNSS
Abstract
:1. Introduction
2. Methods
2.1. Fundamental Principle of SBAS-InSAR Technique
2.2. Data Processing Flow
3. Dataset and Processing
3.1. Study Area
3.2. Data
3.3. SBAS-InSAR Data Processing
3.4. GNSS Data Processing
4. Results and Discussion
4.1. The Northeast Area of Dianchi Lake
4.2. The Eastern Area of Dianchi Lake
4.3. Mining Area
4.4. Factors of Land Subsidence in Kunming City
4.5. Comparative Analysis of Vertical Deformation Informationining
5. Conclusions
- (1)
- The surface deformation of Kunming City was monitored by GACOS-assisted SBAS technology, and the standard deviation of STD was corrected by 76.8%. The overall subsidence rate of Kunming City was obtained in the range of −48 mm/year–26 mm/year.
- (2)
- The main settlement areas are Fuhai-Hewei village- Yuhu village, Convention and Exhibition Center, Xiaobanqiao-Guangwei village, Pingzheng village-Sanjieqiao area and Kunyang Phosphate Mine. Fuhai-Hewei Village- Yuhu Village area, Convention Center area, Xiaobanqiao-Guangwei Village area, Pingzheng Village-Sanjie Bridge area and Kunyang phosphate mining area. The maximum subsidence rate reached −35 mm/year. The subsidence factor is related to the compression of soft soil layer caused by large-scale development projects and the exploitation of groundwater.
- (3)
- The observation data of 8 CORS stations during 2019–2020 were calculated, and Kring interpolation was performed on them. The results were compared and verified with the SBAS results in the same period. The maximum RMSE value was 6.20 and the minimum RMSE value was 0.34.
- (4)
- Since the accuracy of SBAS and CORS inversion is not in the same order of magnitude, the jump of CORS solution is relatively clear. The settlement results of different time series have some systematic deviation.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, J.Q.; Ma, T.; Lu, Y.K.; Bai, W.M.; Zhao, S. Land subsidence monitoring in North Henan plain based on SBAS-InSAR technology. J. Jilin Univ. 2019, 49, 1182–1191. [Google Scholar]
- Zhu, J.J.; Li, Z.W.; Hu, J. Research progress and methods of InSAR for deformation monitoring. Acta Geod. Cartogr. Sin. 2017, 46, 1717–1733. [Google Scholar]
- Hu, B.; Chen, J.; Zhang, X. Monitoring the surface subsidence area in a coastal urban area with InSAR and GNSS. Sensors 2019, 19, 3181. [Google Scholar] [CrossRef] [Green Version]
- Perissin, D.; Wang, T. Time-series InSAR applications over urban areas in China. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2010, 4, 92–100. [Google Scholar] [CrossRef]
- Herrera, G.; Gutiérrez, F.; García-Davalillo, J.C.; Guerrero, J.; Notti, D.; Galve, J.P.; Fernández-Merodo, J.A.; Cooksley, G. Multi-sensor advanced DInSAR monitoring of very slow landslides: The Tena Valley case study (Central Spanish Pyrenees). Remote Sens. Environ. 2013, 128, 31–43. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Huang, G. Precise monitoring and analysis of the surface subsidence in Jining coal mining area based on InSAR technique. J. China Univ. Min. Technol. 2014, 43, 169–174. [Google Scholar]
- Reinosch, E.; Gerke, M.; Riedel, B.; Schwalb, A.; Ye, Q.; Buckel, J. Rock glacier inventory of the western Nyainqêntanglha Range, Tibetan Plateau, supported by InSAR time series and automated classification. Permafr. Periglac. Process. 2021, 32, 657–672. [Google Scholar] [CrossRef]
- Brencher, G.; Handwerger, A.L.; Munroe, J.S. InSAR-based characterization of rock glacier movement in the Uinta Mountains, Utah, USA. Cryosphere 2021, 15, 4823–4844. [Google Scholar] [CrossRef]
- Magen, Y.; Ziv, A.; Inbal, A.; Baer, G.; Hollingsworth, J. Fault rerupture during the July 2019 Ridgecrest earthquake pair from joint slip inversion of InSAR, optical imagery, and GPS. Bull. Seismol. Soc. Am. 2020, 110, 1627–1643. [Google Scholar] [CrossRef]
- Liu, F.; Elliott, J.R.; Craig, T.J.; Hooper, A.; Wright, T.J. Improving the resolving power of InSAR for earthquakes using time series: A case study in Iran. Geophys. Res. Lett. 2021, 48, e2021GL093043. [Google Scholar] [CrossRef]
- Cheloni, D.; De Novellis, V.; Albano, M.; Antonioli, A.; Anzidei, M.; Atzori, S. Geodetic model of the 2016 Central Italy earthquake sequence inferred from InSAR and GPS data. Geophys. Res. Lett. 2017, 44, 6778–6787. [Google Scholar] [CrossRef]
- Gatsios, T.; Cigna, F.; Tapete, D.; Sakkas, V.; Pavlou, K.; Parcharidis, I.S. Copernicus sentinel-1 MT-InSAR, GNSS and seismic monitoring of deformation patterns and trends at the Methana Volcano, Greece. Appl. Sci. 2020, 10, 6445. [Google Scholar] [CrossRef]
- He, Z.; Chen, T.; Wang, M.; Li, Y. Multi-segment rupture model of the 2016 Kumamoto earthquake revealed by InSAR and GPS data. Remote Sens. 2020, 12, 3721. [Google Scholar] [CrossRef]
- Maurya, V.K.; Dwivedi, R.; Martha, T.R. Site scale landslide deformation and strain analysis using MT-InSAR and GNSS approach-A case study. Adv. Space Res. 2022, 70, 3932–3947. [Google Scholar] [CrossRef]
- Lazos, I.; Papanikolaou, I.; Sboras, S.; Foumelis, M.; Pikridas, C. Geodetic Upper Crust Deformation Based on Primary GNSS and INSAR Data in the Strymon Basin, Northern Greece—Correlation with Active Faults. Appl. Sci. 2022, 12, 9391. [Google Scholar] [CrossRef]
- Yalvac, S. Validating InSAR-SBAS results by means of different GNSS analysis techniques in medium-and high-grade deformation areas. Environ. Monit. Assess. 2020, 192, 120. [Google Scholar] [CrossRef]
- Orhan, O.; Oliver-Cabrera, T.; Wdowinski, S.; Wdowinski, S.; Yalvaç, S.; Yakar, M. Surface subsidence and its relations with sinkhole activity in Karapınar region, Turkey: A multi-sensor InSAR time series study. Sensors 2021, 21, 774. [Google Scholar] [CrossRef]
- Tosi, L.; Lio, C.D.; Teatini, P.; Strozzi, T. Surface subsidence in coastal environments: Knowledge advance in the Venice coastland by TerraSAR-X PSI. Remote Sens. 2018, 10, 1191. [Google Scholar] [CrossRef] [Green Version]
- Neelmeijer, J.; Schöne, T.; Dill, R.; Klemann, V.; Motagh, M. Ground deformations around the Toktogul reservoir, Kyrgyzstan, from Envisat ASAR and Sentinel-1 data—A case study about the impact of atmospheric corrections on InSAR time series. Remote Sens. 2018, 10, 462. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Liu, Y.; Jin, M.; Jing, Y.; Liu, Y.; Liu, Y.; Sun, W.; Wei, J.; Chen, Y. Monitoring surface subsidence in Wuhan city (China) using the SBAS-InSAR method with radarsat-2 imagery data. Sensors 2019, 19, 743. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Lanari, R.; Mora, O.; Manunta, M.; Mallorquí, J.J.; Berardino, P.; Sansosti, E. A small-baseline approach for investigating deformations on full-resolution differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1377–1386. [Google Scholar] [CrossRef]
- Nonaka, T.; Asaka, T.; Iwashita, K.; Ogushi, F. Evaluation of the trend of deformation around the Kanto Region estimated using the time series of PALSAR-2 Data. Sensors 2020, 20, 339. [Google Scholar] [CrossRef] [PubMed]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, C.; Wang, M.; Wang, Z.; Zhang, H. Surface deformation monitoring in Zhengzhou city from 2014 to 2016 using time-series InSAR. Remote Sens. 2018, 10, 1731. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Dai, K.; Deng, J.; Ge, D.; Liang, R.; Li, W.; Xu, Q. Identifying potential landslides by stacking-InSAR in southwestern China and its performance comparison with SBAS-InSAR. Remote Sens. 2021, 13, 3662. [Google Scholar] [CrossRef]
- Yuan, M.; Li, M.; Liu, H.; Lv, P.; Li, P.C.; Zheng, W. Subsidence monitoring base on SBAS-InSAR and slope stability analysis method for damage analysis in mountainous mining subsidence regions. Remote Sens. 2021, 13, 3107. [Google Scholar] [CrossRef]
- Du, Q.; Li, G.; Zhou, Y.; Chai, M.; Chen, D.; Qi, S.; Wu, G. Deformation monitoring in an alpine mining area in the Tianshan Mountains based on SBAS-InSAR technology. Adv. Mater. Sci. Eng. 2021, 2021, 9988017. [Google Scholar] [CrossRef]
- Chen, Y.; Yu, S.; Tao, Q.; Liu, G.; Wang, L.; Wang, F. Accuracy verification and correction of D-InSAR and SBAS-InSAR in monitoring mining surface subsidence. Remote Sens. 2021, 13, 4365. [Google Scholar] [CrossRef]
- Tao, Q.; Guo, Z.; Wang, F.; An, Q.; Han, Y. SBAS-InSAR time series ground subsidence monitoring along Metro Line 13 in Qingdao, China. Arab. J. Geosci. 2021, 14, 2628. [Google Scholar] [CrossRef]
- Wu, Q.; Jia, C.; Chen, S.; Li, H. SBAS-InSAR based deformation detection of urban land, created from mega-scale mountain excavating and valley filling in the Loess Plateau: The case study of Yan’an City. Remote Sens. 2019, 11, 1673. [Google Scholar] [CrossRef]
- Guo, S.P.; Zhang, W.F.; Kang, W.; Zhang, T.W.; Li, Y. Study on surface subsidence in Kunming city by integrating PS, SBAS and DS InSAR. Remote Sens. Technol. Appl. 2022, 37, 460–473. [Google Scholar]
- Zhang, J.M.; Gan, S.; Yuan, X.P.; Qiu, P.R. The extraction and analysis of Kunming city groud deformation characteristics based on PS-InSAR. Sci. Surv. Mapp. 2019, 44, 53–59. [Google Scholar]
- Pu, C.H.; Xu, Q.; Jiang, Y.N.; Zhao, K.Y.; Jiang, Y.N.; Liu, J.L.; Kou, P.L. Land Uplift Monitoring and Analysis in Yan’an New District Based on SBAS-InSAR Technology. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 983–993. [Google Scholar]
- Xue, C.D.; Li, X.; Li, B.Z.; Meng, G.T.; Li, F. Mechanism analysis of land subsidence in Kunming city area. Chin. J. Geol. Hazard Control 2004, 3, 51–58. [Google Scholar]
- Zhang, C.L.; Li, Z.H.; Yu, C.; Song, C.; Xiao, R.Y.; Peng, J.B. Landslide Detection of the Jinsha River Region Using GACOS Assisted InSAR Stacking. Geomat. Inf. Sci. Wuhan Univ. 2021, 46, 1649–1657. [Google Scholar]
Station | CORS/(mm/Year) | InSAR/(mm/Year) | RMSE/mm |
---|---|---|---|
ANNI | 5.99 | 3.50 | 0.78 |
BJIE | −10.10 | −12.34 | 0.63 |
CHG0 | 0.58 | 7.62 | 6.20 |
JINN | −31.76 | −33.57 | 0.41 |
KMCH | 2.49 | 7.78 | 3.50 |
QINL | −40.53 | −44.36 | 1.83 |
TJIE | −16.28 | −17.93 | 0.34 |
XIAH | −45.57 | −49.10 | 1.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, S.; Zuo, X.; Shi, K.; Li, Y.; Guo, S.; Li, C. Surface Subsidence Monitoring in Kunming City with Time-Series InSAR and GNSS. Appl. Sci. 2022, 12, 12752. https://doi.org/10.3390/app122412752
Zhu S, Zuo X, Shi K, Li Y, Guo S, Li C. Surface Subsidence Monitoring in Kunming City with Time-Series InSAR and GNSS. Applied Sciences. 2022; 12(24):12752. https://doi.org/10.3390/app122412752
Chicago/Turabian StyleZhu, Shasha, Xiaoqing Zuo, Ke Shi, Yongfa Li, Shipeng Guo, and Chen Li. 2022. "Surface Subsidence Monitoring in Kunming City with Time-Series InSAR and GNSS" Applied Sciences 12, no. 24: 12752. https://doi.org/10.3390/app122412752
APA StyleZhu, S., Zuo, X., Shi, K., Li, Y., Guo, S., & Li, C. (2022). Surface Subsidence Monitoring in Kunming City with Time-Series InSAR and GNSS. Applied Sciences, 12(24), 12752. https://doi.org/10.3390/app122412752