Soil Moisture Retrieval by Integrating SAR and Optical Data over Winter Wheat Fields
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area and Study Sites
2.2. Satellite Data and In Situ SM Data
3. Methods
3.1. Estimation of LAI
3.2. The Improved Ratio Model
3.3. Parameterization of Soil Backscattering Model
4. Results and Discussion
4.1. SM Inversion
4.2. Validation
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Sehgal, V.; Gaur, N.; Mohanty, B.P. Global Surface Soil Moisture Drydown Patterns. Water Resour. Res. 2021, 57, e2020WR027588. [Google Scholar] [CrossRef]
- Zeng, J.; Li, Z.; Chen, Q.; Bi, H.; Qiu, J.; Zou, P. Evaluation of remotely sensed and reanalysis soil moisture products over the Tibetan Plateau using in-situ observations. Remote. Sens. Environ. 2015, 163, 91–110. [Google Scholar] [CrossRef]
- Moran, M.; Inoue, Y.; Barnes, E. Opportunities and limitations for image-based remote sensing in precision crop management. Remote Sens. Environ. 1997, 61, 319–346. [Google Scholar] [CrossRef]
- Nigatu, Z.M.; Fan, D.; You, W.; Melesse, A.M.; Pu, L.; Yang, X.; Wan, X.; Jiang, Z. Crop production response to soil moisture and groundwater depletion in the Nile Basin based on multi-source data. Sci. Total Environ. 2022, 825, 154007. [Google Scholar] [CrossRef]
- Bhogapurapu, N.; Dey, S.; Mandal, D.; Bhattacharya, A.; Karthikeyan, L.; McNairn, H.; Rao, Y.S. Soil moisture retrieval over croplands using dual-pol L-band GRD SAR data. Remote Sens. Environ. Interdiscip. J. 2022, 271, 112900. [Google Scholar] [CrossRef]
- Narvekar, P.S.; Entekhabi, D.; Kim, S.-B.; Njoku, E.G. Soil Moisture Retrieval Using L-Band Radar Observations. IEEE Trans. Geosci. Remote Sens. 2015, 53, 3492–3506. [Google Scholar] [CrossRef]
- Zheng, D.; Van Der Velde, R.; Wen, J.; Wang, X.; Ferrazzoli, P.; Schwank, M.; Colliander, A.; Bindlish, R.; Su, Z. Assessment of the SMAP Soil Emission Model and Soil Moisture Retrieval Algorithms for a Tibetan Desert Ecosystem. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3786–3799. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Belaud, G.; Cheviron, B.; Courault, D.; Charron, F. Soil moisture retrieval over irrigated grassland using X-band SAR data. Remote Sens. Environ. 2016, 176, 202–218. [Google Scholar] [CrossRef] [Green Version]
- Karthikeyan, L.; Pan, M.; Wanders, N.; Kumar, D.N.; Wood, E.F. Four decades of microwave satellite SM observations: Part A review of retrieval algorithms. Adv. Water Resour. 2017, 109, 106–120. [Google Scholar] [CrossRef]
- Zhang, M.; Lang, F.; Zheng, N. Soil Moisture Retrieval during the Wheat Growth Cycle Using SAR and Optical Satellite Data. Water 2021, 13, 135. [Google Scholar] [CrossRef]
- Baghdadi, N.; El Hajj, M.; Zribi, M.; Bousbih, S. Calibration of the Water Cloud Model at C-Band for Winter Crop Fields and Grasslands. Remote Sens. 2017, 9, 969. [Google Scholar] [CrossRef] [Green Version]
- Shashikant, V.; Shariff, A.R.M.; Wayayok, A.; Kamal, R.; Lee, Y.P.; Takeuchi, W. Vegetation Effects on Soil Moisture Retrieval from Water Cloud Model Using PALSAR-2 for Oil Palm Trees. Remote Sens. 2021, 13, 4023. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, B.; Zhao, H.; Li, T.; Chen, Q. Physical-based soil moisture retrieval method over bare agricultural areas by means of multi-sensor SAR data. Int. J. Remote Sens. 2018, 39, 3870–3890. [Google Scholar] [CrossRef]
- Attarzadeh, R.; Amini, J.; Notarnicola, C.; Greifeneder, F. Synergetic Use of Sentinel-1 and Sentinel-2 Data for Soil Moisture Mapping at Plot Scale. Remote Sens. 2018, 10, 1285. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.B.; Huang, H.T.; Liao, T.H.; Colliander, A. Estimating Vegetation Water Content and Soil Surface Roughness Using Physical Models of L-Band Radar Scattering for SM Retrieval. Remote Sens. 2018, 10, 556. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Lv, X.; Chen, Q.; Sun, G.; Yao, J. Estimation of Surface Soil Moisture during Corn Growth Stage from SAR and Optical Data Using a Combined Scattering Model. Remote Sens. 2020, 12, 1844. [Google Scholar] [CrossRef]
- Oh, Y.; Sarabandi, K.; Ulaby, F.T. An empirical model and an inversion technique for radar scattering from bare soil surfaces. IEEE Trans. Geosci. Remote Sens. 1992, 30, 370–381. [Google Scholar] [CrossRef]
- Dubois, P.; Van Zyl, J.; Engman, T. Measuring soil moisture with imaging radars. IEEE Trans. Geosci. Remote Sens. 1995, 33, 915–926. [Google Scholar] [CrossRef] [Green Version]
- Ma, T.; Han, L.; Liu, Q. Retrieving the Soil Moisture in Bare Farmland Areas Using a Modified Dubois Model. Front. Earth Sci. 2021, 9, 735958. [Google Scholar] [CrossRef]
- Chen, K.S.; Wu, T.D.; Tsang, L.; Li, Q.; Shi, J.C.; Fung, A.K. Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Trans. Geosci. Remote Sens. 2003, 41, 90–101. [Google Scholar] [CrossRef]
- Ulaby, F.T.; Sarabandi, K.; McDonald, K.Y.L.E.; Whitt, M.; Dobson, M.C. Michigan microwave canopy scattering model. Int. J. Remote Sens. 1990, 11, 1223–1253. [Google Scholar] [CrossRef]
- Joseph, A.; van der Velde, R.; O’neill, P.; Lang, R.; Gish, T. Effects of corn on C-and L-band radar backscatter: A correction method for soil moisture retrieval. Remote Sens. Environ. 2010, 114, 2417–2430. [Google Scholar] [CrossRef]
- Zribi, M.; Dechambre, M. A new empirical model to retrieve soil moisture and roughness from C-band radar data. Remote Sens. Environ. 2003, 84, 42–52. [Google Scholar] [CrossRef]
Date | Satellite Platform | Product Type | Relative Oribit Number |
---|---|---|---|
3 April 2019 | S2B | MSIL2A | R075 |
5 April 2019 | S2A | MSIL2A | R032 |
10 April 2019 | S2B | MSIL2A | R032 |
15 April 2019 | S2A | MSIL2A | R032 |
28 April 2019 | S2A | MSIL2A | R075 |
30 April 2019 | S2B | MSIL2A | R032 |
3 May 2019 | S2B | MSIL2A | R075 |
10 May 2019 | S2B | MSIL2A | R032 |
13 May 2019 | S2B | MSIL2A | R075 |
15 May 2019 | S2A | MSIL2A | R032 |
20 May 2019 | S2B | MSIL2A | R032 |
23 May 2019 | S2B | MSIL2A | R075 |
25 May 2019 | S2A | MSIL2A | R032 |
28 May 2019 | S2A | MSIL2A | R075 |
Parameters | Value Range | Interval | Units |
---|---|---|---|
LAI | 0.5~5.0 | 0.1 | — |
Leaf radius | 1.0 | — | cm |
leaf thickness | 0.2 | — | mm |
Leaf water content | 75~85 | 5 | % |
Stem length | 30~40 | 2 | cm |
Stem radius | 0.1~0.2 | 0.05 | cm |
SM content | 0.05~0.45 | 0.025 | cm3·cm−3 |
Polarization | a1 | b1 | a2 | b2 | a3 | b3 | k |
---|---|---|---|---|---|---|---|
VV | −1.73 | −0.0530 | 12.3 | 0.214 | 11.3 | 0.157 | 0.292 |
VH | −0.807 | −0.129 | 6.29 | −0.0533 | 5.51 | 0.0216 | 0.225 |
Parameters | Value Range | Interval | Units |
---|---|---|---|
S | 0. 25~2.5 | 0.05 | cm |
L | 8~15 | 0.5 | cm |
SM | 0.05~0.45 | 0.01 | cm3·cm−3 |
Polarization | as | bs | cs | ds |
---|---|---|---|---|
VV | −1.51 | 2.01 | −0.17 | 0.740 |
VH | −0.116 | 0.155 | −0.0142 | 0.573 |
Data | 28 April | 16 April and 28 April | 28 April and 10 May | 16 April and 28 April and 10 May |
---|---|---|---|---|
R | 0.56 | 0.79 | 0.77 | 0.85 |
RMSE/cm3·cm−3 | 0.061 | 0.041 | 0.044 | 0.032 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Z.; Sun, S.; Jiang, Y.; Li, S.; Ma, H. Soil Moisture Retrieval by Integrating SAR and Optical Data over Winter Wheat Fields. Appl. Sci. 2022, 12, 12057. https://doi.org/10.3390/app122312057
Wang Z, Sun S, Jiang Y, Li S, Ma H. Soil Moisture Retrieval by Integrating SAR and Optical Data over Winter Wheat Fields. Applied Sciences. 2022; 12(23):12057. https://doi.org/10.3390/app122312057
Chicago/Turabian StyleWang, Zhaowei, Shuyi Sun, Yandi Jiang, Shuguang Li, and Hongzhang Ma. 2022. "Soil Moisture Retrieval by Integrating SAR and Optical Data over Winter Wheat Fields" Applied Sciences 12, no. 23: 12057. https://doi.org/10.3390/app122312057
APA StyleWang, Z., Sun, S., Jiang, Y., Li, S., & Ma, H. (2022). Soil Moisture Retrieval by Integrating SAR and Optical Data over Winter Wheat Fields. Applied Sciences, 12(23), 12057. https://doi.org/10.3390/app122312057